This appears in arXiv: 2306.00269

Best L_p Isotonic Regressions, $\mathbf{p} \in \{\mathbf{0}, \mathbf{1}, \infty\}$

Quentin F. Stout

Computer Science and Engineering, University of Michigan qstout@umich.edu www.eecs.umich.edu/~qstout/

Extended Abstract: Given a real-valued weighted function f on a finite dag G, an L_p isotonic regression of f is a nondecreasing function on G which minimizes the L_p regression error. Isotonic regression comes up in a wide array of applications, and while L_2 regression is most commonly used, there is also longstanding interest in L_1 and L_∞ , and more recent interest in L_0 . L_p isotonic regression is unique for all $p \in (1, \infty)$, but not when $p \in [0, 1] \cup \{\infty\}$. We are interested in determining a "best" isotonic regression for $p \in \{0, 1, \infty\}$, where by best we mean a regression satisfying stronger properties than merely having minimal norm.

One approach is to use *strict* L_p regression, which is the limit of the best L_q approximation as q approaches p. When $p = \infty$ this is known as the Polya approach, and when p = 1 is sometimes called the Polya-1 approach. A quite different approach is to use *lex regression*, which is based on lexical ordering of regression errors. The ordering for L_{∞} uses the errors in decreasing order, while for L_0 they are in increasing order. For L_{∞} the strict and lex regressions are unique and the same. For L_1 , strict $q \searrow 1$ is unique, but we show that $q \nearrow 1$ may not be, and even when it is unique the two limits may not be the same. The strict $q \searrow 1$ approach has also been used to determine a best median. For L_0 , in general neither of the strict and lex regressions are unique, nor do they always have the same set of optimal regressions, but by expanding the objectives of L_p optimization to p < 0 we show $p \nearrow 0$ is the same as lex regression.

We also give algorithms for computing the best L_p isotonic regression in certain situations. One is a refinement of a previous algorithm for L_{∞} , based on the lex definition, and another determines L_1 for a linear order, based on the strict $q \searrow 1$ definition. The latter uses L_1 partitioning and pool adjacent violators (PAV).

Paper

Keywords: strict isotonic regression, lex regression, monotonic, Polya approach, L_0 , L_1 , L_∞ , Hamming distance, best median

My work on shape-constrained regression (isotonic, unimodal, step). Particularly relevant is a paper on strict L_{∞} and lex ordering.

©2023