
SOME RESEARCH TOPICS FOR STUDENTS

Quentin F. Stout

QStout@umich.edu

Here’s a quick overview of some research topics I’m interested in. I’ve also worked with many students that

initiated their own project. If you have something interesting to pursue come and discuss it. I’ve emphasized

PhD thesis topics, but for some of the areas there are undergraduate research projects available. Most of our

research involves parallelism, though some is serial. Most, but not all, of my students:

• design algorithms for various abstract models of parallelism (with myriad tiny processors or agents)

• and/or design algorithms for real computers (machine learning, multidisciplinary science, etc.)

• and/or model and analyze some aspect of parallelism or cooperative behavior

Former students have gone on to careers at universities, Google, IBM, Intel, Microsoft, think tanks, Silicon

Valley startups, national research labs, etc. Two won awards for Best Thesis within the entire university.

Many computational/learning/social processes are inherently parallel: your brain, internet traffic, evolution,

the stock market, etc. Another important reason to study parallelism: computers aren’t getting any faster (due

to pesky limitations imposed by physics), but problems keep getting larger and harder.

You are stuck here

Fortunately, this is happening

For example, Facebook has more than a billion users, and probably > 1011 messages have been left on

users’ walls. Suppose you want to find the strongly connected components of the directed graph with edges

given by who wrote a message on whose wall. This takes at least 15 minutes using an optimized implementation

of Tarjan’s algorithm. Finding strongly connected components is often the first step in much harder graph

problems. Perhaps the harder problem takes 100× as long — do you want to wait a day for its solution?

Can the 15 minutes be reduced to 15 seconds, and the day to less than 1/2 hour? Not on a serial computer:

Tarjan’s serial algorithm is optimal in O-notation, and the high-order coefficients are close to absolutely optimal.

15 seconds should be possible on a parallel computer. However, you need a new algorithm since Tarjan’s uses

depth-first search, which can’t be parallelized.

Laptops have graphics processors (GPUs) with ≈ 100 processors, IBM’s Watson computer won Jeopardy

by using ≈ 3,000 cores, supercomputers have > 106 cores, etc. However, for many problems there are no

efficient parallel programs, so there are many open research problems. Here’s a whimsical explanation of

parallel computing: http://web.eecs.umich.edu/˜qstout/parallel.html

b

a

r

r

i

e

r

load balancing

OpenMP

MPI
CREW

owner

computes

speedup

scaling

latency

shared

memory

message

passing manager-worker

Serial

d
e
a
d
lo

c
k

d
e
a
d
lo

c
k

SPMD

b r o a d c a s t

domain

decomp

osition

Law

Amdahl's

over
de com po si ti on

http://web.eecs.umich.edu/~qstout/parallel.html

PARALLEL ALGORITHMS (LEARNING, GRAPHS, GEOMETRY, OPTIMIZATION, ETC.): Choose your favorite

problem: deep learning, convex hull, selecting an optimal set of friends for a party, etc. You might know

(perhaps invented) an optimal serial algorithm, or it isn’t optimal but it’s the fastest known.

What if the serial algorithm isn’t fast enough for the large problems you want to solve? Parallelism can

give dramatic improvements, but to create good parallel algorithms you need to know the mathematics and

approaches used in serial algorithms, and then figure out additional approaches and properties. For example,

space-filling curves are used far more often in parallel algorithms than in serial ones, and many results about

hypercube graphs were motivated by work on hypercube computers.

We often look at abstract models based on computing in 2- or 3-dimensional space, motivated by moving

electrons on a chip, blood transporting molecules, ant colonies, cellular automata, etc. How can many small

entities, each having only a fraction of the data and only communicating with nearby computers, cooperate to

efficiently solve the problem? You need algorithms that think globally, act locally. Yujie An is working on such

a model, showing that adding a small amount of shared memory can give significant speedups.

Faster than quantum, and something we can actually build: A 2-dimensional grid of n very simple processors

can sort n items in Θ(
√
n) time, and a 3-d grid in Θ(3

√
n) time. Similar times hold for finding a minimal

spanning tree, intersecting polygons, etc. Lower bound proofs show that these times are impossible on a

quantum computer with the same number of qubits.

Minimizing Energy: Power and energy are often the most important constraints on systems ranging from sensors

to cellphones to supercomputers. Tim Lewis is looking at sensor networks where the sensors are cooperating,

but at any given time almost all of them are in a sleep state to conserve energy. Coordinating a bunch of sleepy

processors, where none of them knows all that has happened so far, is rather challenging.

A Simple Example: This illustrates differences between serial, parallel, and energy-minimizing parallel algo-

rithms http://web.eecs.umich.edu/˜qstout/maze_algorithms.pdf

Randomized Algorithms for Graphs, Social Graphs, Geometry: Phil MacKenzie won Best Thesis for the fol-

lowing work: given n/ log∗n PRAM processors and the adjacency matrix of a random graph of n vertices, his

algorithm finds a Hamiltonian cycle, or proves none exists, in Θ(log∗ n) expected time. log∗ (“log star”) is

just barely more than constant. Each processor looks at a tiny fraction of the matrix, yet cooperatively they

can solve an NP-complete problem faster, in expected time, than they can count. The paper is rather technical:

http://web.eecs.umich.edu/˜qstout/pap/SPAA93ultra.pdf

Social graphs are quite different than general graphs, and I’m interested in algorithms for random models of

both. I’m also interested in algorithms for random points in 2- or 3-dimensional space. For some problems the

input might be semi-random, where an adversary is allowed to alter some of the random values. For non-random

input, another area of interest is in using randomized algorithms to reduce the energy required.

MACHINE LEARNING AND WORKING IN A GROUP: Several students have worked on projects motivated

by term projects they did in my parallel computing class. Amy Netsky is currently working on neural nets

for “deep learning”, showing that the majority of the connections between neurons can be removed and yet the

system learns just as well. She observed this experimentally, and is now working on the mathematics that proves

it. Reiko Tanese created a parallel version of the genetic algorithm used for optimization, and surprisingly it

showed superlinear speedup. We ended up formalizing this as the “island model” of genetic algorithms, where

island populations evolve on their own, but occasionally individuals migrate to other islands. This work has

been cited > 1000 times. For both of these projects, initially the changes were made to make them run faster

on a parallel computer, and then we noticed that they did better than you would expect.

Julia Lipman analyzed a setting where processors (computers, people) are trying to get tasks done. Each

does part of a task and then passes it on, but they get randomly interrupted. She analytically determined the exact

rate at which tasks would get completed, modeling it as a directed graph with random delays at the vertices. This

http://web.eecs.umich.edu/~qstout/maze_algorithms.pdf
http://web.eecs.umich.edu/~qstout/pap/SPAA93ultra.pdf

mathematical thesis was motivated by Ted Tabe’s timing measurements of communication on our parallel com-

puter. They didn’t quite match what we expected, and the cause was random operating system interrupts. Here’s

Julia’s paper: http://web.eecs.umich.edu/˜qstout/pap/SICOMPLocalSynch.pdfand Ted’s:

http://web.eecs.umich.edu/˜qstout/pap/IF95ibm.pdf

USING SUPERCOMPUTERS FOR COMPUTATIONAL SCIENCE: This often involves large multidisciplinary

teams. Projects have included a NASA National Grand Challenge team for Sun-Earth modeling and a DOE Cen-

ter of Excellence in Predictive Science for improving computer simulation methodology. NOAA (the national

weather forecasting agency) uses our Earth Systems Modeling Framework. All US weather forecasts are based

on NOAA’s simulations. Here’s a movie our space modeling group helped create for the American Museum

of Natural History http://csem.engin.umich.edu/gallery/CSEM/SolarStorms_S.mp4. I

think they could have picked better music, but we didn’t have any input on this aspect.

PARTY GAMES: Parallel algorithms give a variety of party games. For example, use n/2 seesaws and Bitonic

sort to sort n partiers by weight, taking only log2 n · (1 + log2 n)/2 rounds of seesaws. Or run a parallel

algorithm for the stable marriage problem (the host gets to choose whether it is male or female optimal).

Actually, parallelizing the stable marriage problem is an interesting research question. If you take my parallel

computing course you’ll be a data item, and a processor, in a parallel quicksort, and you’ll need a coin for the

load-balancing/synchronization example. I used to encourage people to wear sneakers for the post-apocaplyptic

relabeling algorithm, but the race conditions caused too many collisions.

PROJECTS STUDENTS INITIATE: I’ll also listen to ideas about quite different projects. Several students

worked on projects that they initiated, where they convinced me it was an interesting problem to pursue. Not

all of the projects involve parallelism. For example, I co-advised a team that used machine learning to improve

the production rate of Boeing’s 787 Dreamliner.

CONTACT: The easiest way to contact me is via email: QStout@umich.edu

If you are within audio range, “Hi” is quite effective. Feel free to drop by my office: 3605 BBB.

http://web.eecs.umich.edu/~qstout/pap/SICOMPLocalSynch.pdf
http://web.eecs.umich.edu/~qstout/pap/IF95ibm.pdf
http://csem.engin.umich.edu/gallery/CSEM/SolarStorms_S.mp4

