
Fastest Known Isotonic Regression Algorithms

Quentin F. Stout

qstout@umich.edu

University of Michigan

Ann Arbor, MI

June 2022

Abstract

This note is a status report on the fastest known isotonic regression algorithms for various Lp metrics and

partial orderings. The metrics considered are unweighted and weighted L0, L1, L2, and L∞. The partial

orderings considered are linear, tree, d-dimensional grids, points in d-dimensional space with component-

wise ordering, and arbitrary orderings (posets). Throughout, “fastest” means for the worst case in O-notation,

not in any measurements of implementations. This note will occasionally be updated as better algorithms are

developed. Citations are to the first paper to give a correct algorithm with the given time bound, though in

some cases two are cited if they appeared nearly contemporaneously.

Keywords: isotonic regression algorithm, shape-constrained nonparametric regression, linear order, tree,

multidimensional grid, coordinate-wise ordering, dag, poset

1 Introduction

A directed acyclic graph (dag) G(V,E) with n vertices V = {v1, ..., vn} and m edges defines a partial order

(poset) over the vertices, where vi ≺ vj if and only if there is a path from vi to vj . It is assumed that G is

connected, and hence m ≥ n−1. If it isn’t connected then the algorithms would be applied to each component

independently of the others. A real-valued function z = (z1 . . . zn) on G is isotonic if whenever vi ≺ vj , then

zi ≤ zj , i.e., it is a weakly order-preserving map from G to ℜ. In some contexts this is known as a monotonic

function. By data (y,w) on G we mean there is a weighted value (yi, wi) at vertex vi, 1 ≤ i ≤ n, where yi
is an arbitrary real number and wi, the weight, is ≥ 0. By unweighted data we mean wi = 1 for all i.

For 1 ≤ p ≤ ∞, or p = 0, given data (y,w) on dag G(V,E), an Lp isotonic regression of the data is an

isotonic function z over V that minimizes

(
∑n

i=1
wi|yi − zi|

p)1/p 1 ≤ p < ∞

maxni=1
wi|yi − zi| p = ∞

∑n
i=1

wi · (yi 6= zi) p = 0

among all isotonic functions. The Lp regression error is the value of this expression.

Note that if vi ≺ vj ≺ vk, then for any isotonic function z, if zi = zk then zj has the same value. A set

V ′ ⊂ V is a level set of z iff it is a maximal order-closed subset where all the values are the same. Order-

closed means that if vi ≺ vj ≺ vk and vi, vk ∈ V ′ then vj ∈ V ′. An isotonic function may have disjoint level

sets with the same value. The value of the level set of an isotonic regression depends upon the metric, and is

discussed in the sections below.

The orderings listed in the tables are linear (also known as total), rooted tree, points in multidimensional

space with component-wise ordering, and general (i.e., an algorithm that applies to all orderings). A dag of

1

points in multidimensional space is the isotonic version of multivariate regression. In d-dimensional space

(the “dim” orderings), point p = (p1, . . . , pd) precedes point q = (q1, . . . , qd) iff pi ≤ qi for all 1 ≤ i ≤ d.

This is the product ordering of the linear coordinate orders. In some settings, q is said to dominate p. In

the tables the multidimensional orderings are further subdivided into regular grids and points in arbitrary

positions, and into dimension 2 and dimension ≥ 3. They are subdivided like this because there are different

algorithms that can be used in these cases. Throughout, the analysis of time for points or grids in d-space

assumes d is fixed and n → ∞. The implied constants in the O-notation depend on d, but in general the

papers do not explicitly determine them.

This is a compendium of the fastest known algorithms so far, not an historical review nor a survey of

applications. There are many applications, a tiny random sample of which includes [6, 7, 9, 12, 14, 16, 19,

22, 23, 35]). The books [3, 25] contain numerous applications, though the books are far out of date.

I’ve omitted related topics such as unimodal regression, prefix isotonic regression, convex regression, river

regression, isotonic regression with constraints on the number of level sets (“reduced isotonic regression”)

or on the differences between adjacent ones (Lipschitz), etc. No parallel algorithms are considered since

regrettably there has been no interesting work in this area, even though they would be useful for large data

sets.

The tables list the best times known to me, with citations to the relevant references. In the “weighted”

and “unweighted” columns all algorithms are exact (to within machine error) for arbitrary real inputs, and all

times are worst-case. Throughout “fastest time” is in terms of O-notation, not on any measurements of im-

plementations, though pointers to a few implementations are included (see remark 2 in the Final Remarks 7).

For all orderings except the most general one, time is given as a function of n, while for the algorithms for

arbitrary dags time is given as a function of n and m. While m may be as large as
(
n
2

)
, for most dags of

interest it is far smaller. In particular, m = Θ̃(n) for all of the other orderings considered here. However,

for L0 isotonic regression a dag with small m might be converted into a violator dag (see Section 3) where

m = Θ(n2).
Originally I did not include approximations nor algorithms with fast expected time but slow worst-case

time. However, in many cases far simpler, but slower in O-notation, algorithms may be much more useful, as

might algorithms with only expected case guarantees on their time, and approximations may be acceptable.

Thus I’ve now included some such algorithms. To help make it clearer what type of algorithm is being

discussed, when using Θ (or O or o): Θe indicates that it is expected time; Θδ indicates the result is accurate

to within δ, where the time depends on δ; and Θu indicates that it is pseudo-polynomial, with the values and

weights integers in [0, U], where U grows at most polynomially in n and the time depends on U . These are

listed in the tables in the “other” column. They are usually dependent on maximum flow algorithms, and

in [34] the isotonic regression algorithms are explicitly written so that improvements in the times of flow

algorithms directly give faster isotonic regression algorithms. Algorithms with time ou(n
1.5) currently rely

on using the flow algorithm in [10] which takes Õ(m
3

2
− 1

328 logU) time, and others rely on the flow algorithm

in [5] which takes Õ(m+ n
3

2 logU) time.

Throughout, ω represents the smallest value such that matrix multiplication can be done in Θ(nω) time.

While Strassen’s algorithm (with ω = log2 7 ≈ 2.81) is practical, galactic algorithms achieving values < 2.4
have appeared. Thus one may want to interpret algorithms in terms of the smallest ω known so far, or in terms

of a practical value. Many ignore Strassen’s algorithm despite the fact that it is quite practical.

2 Cross-cutting Techniques

There are some approaches that have been used for all of the metrics. One is that if there is a vertex q such that

f(p) ≤ f(q) for all p ≺ q, and f(q) ≤ f(p) for all p ≻ q, then one can always choose an isotonic regression

of minimal error where the value at q is unchanged. In some cases removing q from the dag would reduce

2

a) All edges are required b) Edges using Steiner point

Figure 1: Dag edges for Component-wise Ordering in 2 Dimensions

the time, while in other cases it might be kept in because the number of edges may increase if it is removed

because it might have to be replaced with edges from its immediate predecessors to its immediate successors.

2.1 Linear Orders

For linear orders the “pool adjacent violators”, PAV, approach has been repeatedly rediscovered. To incre-

mentally construct an isotonic regression using PAV, start with the initial data values. Whenever there are

consecutive level sets A and B, where A precedes B but the regression value on A is greater than that of B
(i.e., they are a violating pair), then they are joined together to form a new level set, and its regression value

is determined. This continues until there are no more violating pairs. Level sets can be pooled in any order

and the process will still result in an isotonic regression. In practice a simple left-right scan is used. For the

L2 metric it is trivial to implement in linear time, while for L1 more complicated data structures are needed

to achieve the fastest known time of Θ(n log n) [1, 27].

Algorithms for L0 do not rely on PAV [8, 24], using a longest nondecreasing sequence approach instead.

For the L∞ metric with unweighted data PAV can be used, but the generic topological sort approach mentioned

in Section 6 is easier and faster. For the L∞ metric with weighted data, previously the fastest algorithm used

PAV, taking Θ(n log n) time, but now the fastest takes Θ(n) time and is not based on PAV [31] (but is far

more complex, so probably slower in practice).

Unfortunately, while PAV can also be used for trees it does not apply to more general orderings, not even

2-dimensional grids. Even for trees adjacent violating subtree level sets cannot be paired in arbitrary order.

This is discussed in [20].

2.2 Points in d-dimensional Space

For points in d-dimensional space with simple component-wise ordering there is no requirement that a dimen-

sion has real coordinates, merely that it is linearly ordered (well ordered). For example, one dimension may

be S, M, L, XL shirt sizes. For d-dimensional grids n points require < nd edges to represent the partial order

(it is strictly less than nd because of points on the boundary). Unfortunately, n points in arbitrary locations

may require Θ(n2) edges to represent the partial order, even if transitivity is taken into account. This is shown

in Figure 1 a). However, sometimes adding points, called Steiner points, can reduce the number of edges

required, as in Figure 1 b).

3

So far all of the fastest algorithms for points in d-dimensional space, d ≥ 3, are based on order-preserving

embeddings. Given set P of n d-dimensional points, they are embedded into a dag G = (P ′, E), where

P ⊂ P ′, and for any s, t ∈ P , s precedes t in component-wise ordering iff s precedes t in G. G has

Θ
(
n logd−1 n

)
vertices and edges, and can be constructed in time linear in its size ([30]). Points in P ′ \ P

are given weight 0, and the isotonic regression for G is determined. This induces an isotonic regression on P .

This approach was first used in the original (2008) version of [32], but was subsequently moved to [30].

For L1 and L2 and d ≥ 3, G is explicitly created and then the algorithms for general dags are applied to

G. The same approach is used for L0 and d ≥ 2. For L∞, the algorithm in [31] only uses G conceptually,

simulating it via repeated sorting and taking only Θ(n) space. It is not based on using the L∞ algorithm for

general dags.

A symmetric version of G, where all dimensions are treated the same as opposed to having one kept as

a standard linear ordering, has Θ
(
n logd n

)
vertices and edges. It too appears in [30] and is the same as the

Steiner 2-transitive-closure discussed in [4].

Another use of this approach is to generate a violator graph of points. Given a function f on a dag

G = (V,E), a pair (u, v) of points in V is a violating pair if u ≺ v but f(u) > f(v), i.e., they violate the

isotonic requirement. Some algorithms are based on constructing a violator graph G′(V,E′) where there is a

directed edge in E′ from u to v iff (u, v) is a violating pair. This is quite easy to do for points in d-dimension

space: for each point u just add an extra dimension with value f(u), and slightly redefine the component-wise

ordering so that the ordering on the last coordinate is reversed. Given the results for standard ordering of

d-dimensional points, a violator graph can be constructed in Θ
(
n logd n

)
time. Apparently this was first used

in [33].

3 L0

L0 is also known as the Hamming distance or 0-1 distance. It has only been studied much more recently

than the others, appearing in [8, 24] (where it is called monotonic relabeling) and some related papers. The

emphasis is on keeping values unchanged, with no consideration of how much they are changed if they need

to be. Because of this, the values only need a linear ordering, with no notion of distance between them.

However, sometimes the results are compared to L1 regression with the assumption that consecutive labels

are at unit distance, or that the labels are arbitrary real numbers. In the early papers the values at vertices are

called labels, with the implication that there are far fewer labels than vertices. However, the same algorithms

work even if there are n labels. People have noted that if there are only 2 labels then L0 optimization is the

same as L1, if the L1 regression is restricted to two values, typically 0 and 1. If the data on a linear order is 1,

0, then 0.5, 0.5 would be an optimal L1 regression, but makes no sense for L0. However, there is always an

optimal L1 regression where all of the regression values are values in the original data.

The algorithms for all but linear and tree orderings are based on violator dags: given data (y,w) on G,

vertices vi, vj are a violating pair if vi ≺ vj but yi > yj . A vertex y is a violator if it is in some violator pair.

The violator dag is Ĝ = (V̂ , Ê), where V̂ are the violators and there is an edge from vi to vj iff they are a

violating pair. A maximal anti-chain in this ordering corresponds to a maximum set of vertices where keeping

the originally values at these vertices has no violators, i.e., minimizes the L0 error. Once these vertices have

been determined, finding suitable values for the other vertices can be done via topological sort, so previously

one bottleneck was in finding this maximal set. The standard approach for finding it is via flow algorithms

(see [8, 24]). Due to advances in flow algorithms, now for arbitrary dags the bottleneck is in creating the

violator dag, which can be done via the transitive closure, taking Θ(min{nm,nω}) time. However, for points

in d-dimensional space it can be found far faster, so once again the bottleneck is the flow algorithm. See [34].

In general the result is not unique. E.g., for data 3, 2, 1 on a linear order, all of the vertices are violators,

and any one of them can be chosen to be unchanged, forcing the other two to change. See comment 4 in Final

4

time reference

linear Θ(n log ℓ) [8, 24]

d-dim, d ≥ 2 o(n1.5) [33]

arbitrary dag Θ(min{nm,nω}) [8, 24, 34]

Table 1: L0, ℓ is the number of labels

weighted unweighted other

time reference time reference time reference

linear Θ(n log n) [1, 27] Θ(n log n) W

tree Θ(n log n) [29] Θ(n log n) W

2-dim grid Θ(n log n) [29] Θ(n log n) W

2-dim arbitrary Θ
(
n log2 n

)
[29] Θ

(
n log2 n

)
W

d ≥ 3 grid Θ
(
n2 log n

)
A o(n1.5) [34]

d ≥ 3 arbitrary Θ
(
n2 logd n

)
[29] o(n1.5) [34]

arbitrary Θ(nm+ n2 log n) [2] Θ(nm+n2 log n) W Θe,u(n
ω) [34]

Θ̃e,δ(m
1.5) [17]

A: Result implied by that for arbitrary dag

W: Result implied by that for weighted data

Table 2: L1

Remarks.

4 L1

The L1 metric is also known as Manhattan or taxi-cab distance, median regression, or least absolute deviation.

The L1 regression value on a level set is a weighted median. If the data values in the set are v1 . . . vk,

with weights w1 . . . wk, a weighted median is a value x such that
∑

{wi | vi ≤ x, 1 ≤ i ≤ k} ≥ W/2, and∑
{wi | vi ≥ x, 1 ≤ i ≤ k} ≥ W/2, where W =

∑
1≤i≤k wi. In general weighted medians are not unique,

e.g., for unweighted real-valued data 0, 1, 2, 5.3, any value in [1,2] is a weighted median. Weighted medians

can always be chosen to be one of the data values, a fact most L1 algorithms exploit. However, the result may

not always be what is desired. For example, unweighted data 1, 0, 1 on a linear order would result in 0, 0, 1

or 1, 1, 1. These are useful if one wants to restrain regression values to the set of original values, while for

some other purposes 0.5, 0.5, 1 would be considered better. See comment 4 in Final Comments.

The algorithm for L1 isotonic regression on 2-dimensional grids given in [29] is based on recursively

using dynamic programming, much like the earlier algorithm in [26] for L2. For 2-dimensional points with

arbitrary placement, [29] shows how to to use a balanced tree to simulate the 2-dimensional grid algorithms.

For a set P of arbitrary points in d-space, while it is embedded into dag G as discussed in Section 2, the

time is a bit smaller than if one merely inserted the number of vertices and edges of G in the time analysis

of the algorithm for arbitrary orderings. [29] shows that for L1 regression the minimum cost flow approach

in [2] uses a number of steps linear in the number of vertices with nonzero weight, which is n rather than the

5

weighted other

time reference time reference

linear Θ(n) PAV

tree Θ(n log n) [20]

2-dim grid Θ
(
n2

)
[26] Θu(n log n) [34]

2-dim arbitrary Θ
(
n2 log n

)
[29] Θu(n log2 n) [34]

d ≥ 3 grid Θ
(
n2 log n

)
A ou(n

1.5) [34]

d ≥ 3 arbitrary Θ
(
n2 log2d−1 n

)
A ou(n

1.5) [34]

arbitrary Θ
(
nm log n2

m

)
[11] Θe,u(n

ω) [34]

Θ̃e,δ(m
1.5) [17]

A: Result implied by that for arbitrary dag

Table 3: L2, no improvements known for unweighted data.

number of vertices in G, namely Θ(n logd−1 n).

5 L2

The L2 metric is also known as squared error regression or Euclidean distance. Here the optimum value of a

level set is just its weighted mean.

It was widely stated, by the author and others, that the fastest known algorithm for arbitrary orderings is

due to Maxwell and Muckstadt [18], with a small correction by Spouge, Wan, and Wilbur [26]. However, this

early work, published in 1985, gives an algorithm taking Θ(n4) time, in contrast to the Θ(n3) time of the later

algorithm by Hochbaum and Queyranne [11]. Perhaps this oversight is due to the fact that the introduction in

Hochbaum and Queyranne’s paper defines the problem being solved as an integer approximation, and isotonic

regression is only mentioned for the linear case (a result known for decades). However, the paper includes

isotonic regression for arbitrary orderings and later they show that for L2 one can obtain exact answers.

This illustrates an issue that has come up multiple times, namely that efficient algorithms for isotonic

regression are not always discussed as such. For example, the Maxwell and Muckstadt paper does not contain

the words “isotonic” nor “regression”.

For L2, the algorithms in the “other” column which require that the input is weights and values in the range

[0,U] (i.e., all those where the time has a subscript u) can produce an exact result with additional logarithmic

factors in the time. This is based on the fact that level sets have values that differ by at least 1/(n2U2), and

hence approximating to within 1/4 of this identifies which level set each vertex will belong in. Once this is

known, the exact value of the level set can be determined. See [29].

The algorithm for points on a 2-dimensional grid uses an iterative dynamic programming approach,

and [29] shows how to simulate this to handle points at arbitrary positions in 2-space.

6 L∞

The L∞ metric is also known as minimax optimization, uniform metric, Chebyshev distance, supremum, or

maximum absolute deviation.

To determine the regression value for level sets, suppose there are only two vertices v1, v2, with data

(y,w), where v1 ≺ v2 but v1 > v2. Then they need to form a level set, and the error is minimized by using

6

weighted unweighted other

time reference time time reference

linear Θ(n) [31] Θ(n)

tree Θ(n) [31] Θ(n)

d ≥ 2 grid Θ(n) [31] Θ(n)

d ≥ 2 arbitrary Θ
(
n logd−1 n

)
[31] Θ

(
n logd−1 n

)

arbitrary Θ(m log n) [15, 32] Θ(m) Θe(m) [17]

A: Result implied by that for arbitrary dag

Table 4: L∞, unweighted results widely known for a long time and vastly simpler

value V (v1, v2) = (w1y1 + w2y2)/(w1 + w2), with regression error e(v1, v2) = w1w2|y1 − y2|/(w1 + w2).
These values can be obtained by the intersection of the planar line through (y2, 0) with slope w2 and the line

through (y1, 0) with slope −w1. This geometric viewpoint is used by many of the algorithms for weighted

L∞ regression. For a level set with vertices v1, . . . , vk, the regression value is V (vi, vj), where (vi, vj) =
argmax{e(vi, vj) : 1 ≤ i < j ≤ k}.

For unweighted data this simplifies significantly, with V (vi, vj) = (yi+yj)/2 and e(vi, vj) = |vi−vj|/2,

and the regression value of a level set is just (max1≤i≤k yi + min1≤i≤k yi)/2. Using this, it is easy to show

that the regression value at vertex v can be chosen to be the average of the maximum y value of all of its

predecessors (including v) and the minimum y value of all of its successors (including v). This regression

can easily be computed in Θ(m) time by topological sort. However, this can result in regressions that are not

quite what one would want. For example, for unweighted data 1, -1, 0 on the line, the result would be 0, 0,

0.5, i.e., there is an unnecessary change in the last value. This is discussed in [28].

For arbitrary dags with weighted data, the algorithm in [32] is a modest improvement of the algorithm

of Kaufman and Tamir [15], reducing the time from Θ(m log n + n log2 n) to Θ(m log n). This is faster

for sparse dags where m = o(n log n), which is relevant for all of the other orderings considered, though

the results in [31] make this moot as far as the tables are concerned. The approach in [15, 32] is based on

parametric search, which is completely impractical, requiring a galactic algorithm. A very simple and fast

algorithm, also in [32], has the same time bound, but in expected time with high probability, not worst case.

A somewhat more complicated algorithm, taking Θ(m) expected time, appears in [17]. This is obviously the

best possible in terms of expected time, and it is an open question if this time can be obtained in the worst

case.

Many algorithms for weighted L∞ regression use an indirect approach based on queries determining if

there is an isotonic regressions with error ≤ ǫ, and, if so, produces one. A search is used to find the minimum

such ǫ. Unfortunately the results, while optimal, are not always appealing since they result in many vertices

having a large regression error. For the unweighted data 1, -1, 2, on a linear order, almost all algorithms

using an indirect approach would produce 0, 0, 1, or 0, 0, 3, i.e., they behave even worse than using the

approach based on topological sorts involving predecessors and successors. See the L∞ comments in 4 in

Final Remarks.

7 Final Remarks

1. Most of the entries have changed since I first posted tables in 2009. I put the tables together and posted

them because it was suggested that it was too difficult to keep track of what the fastest algorithms were

7

at that time. I decided to work on some of the areas where improvement seemed possible or additional

interest arose. Many other people did as well, and pointed out references to work I hadn’t known.

Results for L0 were added in 2019.

2. Most of the algorithms in the tables are described in papers, but implementations are not provided

though sometimes the algorithms are described in enough detail that they can be easily implemented.

Online there are numerous implementations of the PAV algorithm for L2 isotonic regression on a linear

order. The R package listed in the entry for [27] contains ones for the L1 metric on a linear order

and for the L1 and L2 metrics on 2-dimensional orders. For some of the other orderings and metrics

there are algorithms that are publicly available but slower than those listed above, though for practical

applications they might be faster than a decent implementation of the ones in the table. Rather than

go through and identify which are good and which aren’t, in the bibliography I’ve indicated when

implementations by the authors are available. I have almost certainly missed some implementations of

the algorithms — feel free to contact me to improve the list.

3. For L1 and L0 there are always optimal regressions where regression values come from the original

values, but for Lp, when 1 < p ≤ ∞, this is not always possible.

4. For Lp, when 1 < p < ∞ there is always a unique optimal regression, but that is not true for L0, L1,

nor L∞.

For L1 the regression one might prefer is limp→1 fp, where fp is the Lp regression, and for L∞ one

might want limp→∞ fp. For the former, Jackson [13] was apparently the first to determine the appro-

priate value of the level sets. He did this for unweighted data, but it is easily extended to the weighted

case.

The L∞ version is introduced in [28], where it is called strict L∞ regression. A Θ(min{nm,nω} +
n2 log n) time algorithm appears there, and an algorithm taking Θ(nm) expected time appears in [17].

For L0 there doesn’t appear to be a special regression defined via a limit. One possibility is to list

the vertex errors of a regression in increasing order, viewing this as an n-element string. Listing these

strings in lexical order, select the first one (there may be ties) as the preferred regression. In [33] this

is called strong L0 regression. This is similar to a property of the strict L∞ regression, where there

the strings are formed from the errors listed in decreasing error. The strict L∞ regression is first in the

lexical ordering of these strings. Strong L0 regression maximizes the number of small errors, while

strict L∞ minimizes the number of large ones. However, no algorithm to compute strong L0 regression

has appeared, nor has anyone investigated to see if it has any special properties such as those that the

strict L∞ regression has. It would have been better if the author had chosen consistent naming and used

“strict” or “strong” for both L0 and L∞.

5. The algorithms for weighted L∞ regression in [31] for arbitrary points in d-dimensional space are

unusual in that for fixed d the space required is Θ(n), i.e., the space does not grow with the number of

edges in an explicit dag that gives the multidimensional ordering. All other algorithms referenced in

this overview utilize an explicit dag no matter what the ordering.

References

[1] Ahuja, RK and Orlin, JB (2001), “A fast scaling algorithm for minimizing separable convex functions

subject to chain constraints”, Operations Research 49, pp. 784–789.

8

[2] Angelov, S, Harb, B, Kannan, S, and Wang, L-S (2006), “Weighted isotonic regression under the L1

norm”, Symposium on Discrete Algorithms (SODA), pp. 783–791.

[3] Barlow, RE, Bartholomew, DJ, Bremner, JM, and Brunk, HD (1972), Statistical Inference Under Order

Restrictions: The Theory and Application of Isotonic Regression, John Wiley.

[4] Berman, P, Bhattacharyya, A, Grigorescu, E, Raskhodnikova, S, Woodruff, DP, and Yaroslavtsev, G

(2014), “Steiner transitive-closure spanners of low-dimensional posets”, J. Combinatorica 34, pp. 255–

277.

[5] van den Brend, J; Lee, YT; Liu, YP; Saranurak, T; Sidford, A; Song, Z; Wang, D (2021), “Minimum

cost flows, MDPs, and L1 regression in nearly linear time for dense instances”, arXiv:2001.005719.

[6] Caruana, R and Niculescu-Mizil, A (2006), “An empirical comparison of supervised learning algo-

rithms”, Proc. Int’l. Conf. Machine Learning.

[7] Chakrabarti, D, Kumar, R and Punera, K (2007), “Page-level template detection via isotonic smoothing”,

Proc. 16th Int’l. World Wide Web Conf.

[8] Feelders, A, Velikova, M, and Daniels, H (2006), “Two polynomial algorithms for relabeling non-

monotone data”, Tech. Report UU-CS-2006-046, Dept. Info. Com. Sci., Utrecht Univ.

[9] Gamarnik, D (1998), “Efficient learning of monotone concepts via quadratic optimization”, Proceedings

of Computational Learning Theory (COLT), pp. 134–143.

[10] Gao, Y; Liu, Y; Peng, R (2021). “Fully dynamic electrical flows: sparse maxflow faster than Goldberg-

Rao”, arXiv:2101.07233

[11] Hochbaum, DS and Queyranne, M (2003), “Minimizing a convex cost closure set”, SIAM J. Discrete

Math 16, pp. 192–207.

The code is available at http://riot.ieor.berkeley.edu/Applications/Pseudoflow/parametric.html

[12] Kalai, A.T. and Sastry, F. (2009), “The Isotron algorithm: High-dimensional isotonic regression”, COLT

’09.

[13] Jackson, D (1921), “Note on the median of a set of numbers”, Bull. Amer. Math. Soc. 27, pp. 160–164.

[14] van de Kamp, R, Feelders, A, and Barile, N, (2009), “Isotonic classification trees”, Advances in Intel.

Data Analysis VIII, LNCS 5772, pp. 405–416.

[15] Kaufman, Y and Tamir, A (1993), “Locating service centers with precedence constraints”, Discrete

Applied Math. 47, pp. 251–261.

[16] Kotlowski, W and Slowinski, R (2013), “On nonparametric ordinal classification with monotonicity

constraints”, IEEE Trans. Knowledge and Data Engin. 25, pp. 2576–2589.

[17] Kyng, R, Rao, A, and Sachdeva, S (2015), “Fast, provable algorithms for isotonic regression in all

L p-norms”, NIPS. Their algorithms are at https://github.com/danspielman/YINSlex

[18] Maxwell, WL and Muckstadt, JA (1985), “Establishing consistent and realistic reorder intervals in

production-distribution systems”, Operations Research 33, pp. 1316–1341.

[19] Moon, T, Smola, A, Chang, Y and Zheng, Z (2010), “IntervalRank — isotonic regression with listwise

and pairwise constraints”, Proc. Web Search and Data Mining, pp. 151–160.

9

[20] Pardalos, PM and Xue, G (1999), “Algorithms for a class of isotonic regression problems”, Algorithmica

23, pp. 211–222.

[21] Piljs, W and Potharst, R (2014), “Repairing non-monotone ordinal data sets by changing class labels”,

Econometric Inst. Report EI 2014–29.

[22] Punera, K and Ghosh, J (2008), “Enhanced hierarchical classification via isotonic smoothing”, Int’l.

Conf. World Wide Web.

[23] Rademaker, M, De Baets, R, and De Meyer, H (2009), “Loss optimal monotone relabeling of noisy

multi-criteria data sets”, Info. Sciences 179, pp. 4089–4096.

[24] Rademaker, M, De Baets, B, and De Meyer, H (2012), “Optimal monotone relabelling of partially non-

monotone ordinal data”, Optimization Methods and Soft. 27, 17–31.

[25] Robertson, T, Wright, FT, and Dykstra, RL (1988), Order Restricted Statistical Inference, Wiley.

[26] Spouge J, Wan H, and Wilbur WJ (2003), “Least squares isotonic regression in two dimensions”, J.

Optimization Theory and Applications 117, pp. 585–605.

[27] Stout, QF (2008), “Unimodal regression via prefix isotonic regression”, Computational Stat. and Data

Analysis 53, pp. 289–297. A preliminary version appeared in “Optimal algorithms for unimodal regres-

sion”, Computing and Statistics 32, 2000. Some of the algorithms are implemented in the R package

UniIsoRegression.

[28] Stout, QF (2012), “Strict L∞ isotonic regression”, J. Optimization Theory and Applications 152,

pp. 121–135.

[29] Stout, QF (2013), “Isotonic regression via partitioning”, Algorithmica 66, pp. 93–112.

[30] Stout, QF (2015), “Isotonic regression for multiple independent variables”, Algorithmica 71, pp. 450–

470.

[31] Stout, QF (2015), “L∞ isotonic regression for linear, multidimensional, and tree orders”, arXiv

1507.02226.

[32] Stout, QF (2018), “Weighted L∞ isotonic regression”, J. Computer Sys. and Sci. 91, pp. 69–81.

This is a major revision of the original version that was posted on the web in 2008. Some of the material

in that paper was moved to [30].

[33] Stout, QF (2021), “L0 isotonic regression with secondary objectives”, arXiv:2106.00279v2

[34] Stout, QF (2021), “Lp isotonic regression algorithms using an L0 approach”, arXiv:2107.00251v2

[35] Velikova, M and Daniels, H (2008), Monotone Prediction Models in Data Mining, VDM Verlag.

10

	Introduction
	Cross-cutting Techniques
	Linear Orders
	Points in d-dimensional Space

	L0
	L1
	L2
	L
	Final Remarks

