
A Cross-Layer Approach to Heterogeneity and Reliability

Daniel Williams Aprotim Sanyal1 Dan Upton Jason Mars Sudeep Ghosh Kim Hazelwood
Department of Computer Science

University of Virginia
www.tortolaproject.com

Abstract
As modern hardware becomes increasingly complex, it becomes
more difficult to create efficient software for common computing
workloads. One way to manage this complexity is to employ holis-
tic solutions that consider multiple layers of hardware and software
in conjunction, allowing software to adapt and react to changing
conditions at run time. This paper focuses on lightweight modifi-
cations to commodity hardware that enable virtual execution envi-
ronments to help solve problems in the areas of power, reliability,
security, and performance. We present our experimental simula-
tion framework, which enables us to explore the design space of
hardware/software collaboration, and we demonstrate its ability to
produce simplified, reactive solutions to two emerging computing
problems. First, we improve heterogeneous process migration with
hardware feedback, and second, we use hardware information to
respond to voltage emergencies (di/dt) in software. These symbi-
otic design approaches illustrate the simple nature yet significant
potential of cross-layer, reactive solutions.

1. Introduction
Research efforts in optimizing computer systems have historically
targeted a single logical layer in the system stack, be it applica-
tion code, operating systems, virtual machines, microarchitecture,
or circuits. Solutions that target a single layer in isolation are unfor-
tunately reaching the point of diminishing returns, given the com-
plex nature of modern processors, and the correspondingly com-
plex challenges that have arisen regarding power, reliability, and
security.

Over the years, various researchers have explored co-designed
hardware-software systems that introduced revolutionary hardware
while providing software-compatibility for existing applications [14,
16]. Such approaches have potential that extends beyond perfor-
mance, but revolutionary approaches often preclude a thorough un-
derstanding of the benefits and drawbacks of each individual design
choice; not to mention that these approaches experience market re-
sistance. Instead, we take an evolutionary approach to exploring
the potential for collaboration between various system layers. We
look for opportunities to make major impact with minor hardware
and OS feedback channels. A virtual-execution environment (VEE)
then orchestrates this feedback information to provide a cohesive
solution. This approach permits the design of adaptive solutions
that adjust to changing conditions of the operating environment.
Adaptation can be triggered by a variety of factors, including hard-
ware or OS feedback, program behavior, or user preference, among
others. This paper focuses on a subset of adaptive solutions, re-
active solutions, where the hardware can detect a problem and the
VEE can take action to correct the problem. For many problems, re-

1 Aprotim Sanyal is now employed by Google; this work was completed
while he was a student at the University of Virginia.

HW

Apps

VEEVEE
Hardware
feedback

Modified
code

Runtime 
traits

App
code

Figure 1. Abstraction of our target system. A virtual layer supports
well-defined HW-SW communication channels.

active solutions are the correct approach because, as we later show,
it is much easier to react to a particular problem than it is to predict
hardware-specific problems before they occur.

As Figure 1 illustrates, our vision for the future standard in
system architecture consists of a virtualization layer (VEE) inter-
jected between the application software and the underlying ma-
chine architecture. This virtual layer communicates bidirectionally
with the microprocessor and other software layers via well-defined
channels. The VEE can use hardware feedback to detect various
machine-specific events, such as voltage fluctuations in the power
supply, temperature problems, as well as performance-related events,
such as cache misses or resource contention. The VEE can then fac-
tor in its global knowledge about the executing workload, such as
the specific instructions selected by the compiler, the instruction
schedule, and the control-flow graph. Finally, the VEE can orches-
trate a comprehensive solution to the problem which accounts for
both hardware and software inputs.

In this paper, we focus on two specific challenges that are well
suited for such collaborative design solutions. Our first example
centers on the problem of heterogeneous multicore scheduling. Cur-
rent trends in architecture design indicate that heterogeneous mul-
ticore processors will soon become ubiquitous, in large part due
to the heterogeneity that naturally arises during the fabrication pro-
cess. We show that the problem of process-to-core scheduling, which
is currently relegated to the operating system alone, can be bet-
ter solved using hardware and application feedback in conjunction
with operating system input. This turns out to be particularly true
for heterogeneous cores, where the OS scheduling algorithms can
become needlessly complex and specific to the hardware. Rather
than solving these complex application-to-core mappings statically,
a simpler (and more effective) approach involves detecting and re-
acting to performance issues in the current schedule.

Our second example of an opportunity for effective collabo-
rative solutions involves power supply voltage stability2, which,
when left unchecked, can cause timing errors or reliability prob-

2 The International Technology Roadmap for Semiconductors (ITRS) has
cited this phenomenon as one of the emerging Grand Challenges.



lems due to electromigration. In modern systems, voltage stabil-
ity is guaranteed by adding decoupling capacitors, or by throttling
resources [23]. Yet these solutions are not particularly scalable –
specialized capacitors are expensive, and resource throttling harms
performance. We provide a lightweight and complementary solu-
tion, letting the VEE react and rewrite application code to dynami-
cally respond to power emergencies that may arise.

While we focus on two specific motivating examples in this pa-
per, we feel that the potential for cross-layer design extends well
beyond reliability and performance into numerous other areas in-
cluding security, power, and temperature. The specific contribu-
tions of this paper include:

• The introduction of several lightweight changes to existing com-
modity systems that will enable reactive, cross-layer solutions
to emerging computing challenges.

• The presentation of our new simulation framework that tightly
integrates two well-known tools: SimpleScalar [4] and Pin [28].
This framework allows researchers to explore lightweight ex-
tensions to existing hardware, and the potential of cross-layer
collaboration.

• Demonstration of the potential of a reactive, cross-layer solu-
tion to the heterogeneous multicore scheduling problem – using
hardware-based performance counter feedback to drive process-
to-core rescheduling.

• Demonstration of the potential of a reactive, cross-layer solu-
tion to the di/dt problem – using novel hardware feedback chan-
nels to drive code rewriting to avoid future power emergencies.

The remainder of this paper is organized as follows. Section 2
motivates the notion of cross-layer design solutions. Section 3 then
goes on to provide the details of our simulation approach. Next,
Section 4 describes our two sample problems that are well-suited
for symbiotic solutions, as well as our proposed solutions and
evaluation. Section 5 then discusses other collaborative systems
and related work. Section 6 presents our ideas for follow-on work,
and Section 7 concludes.

2. Lightweight Collaboration
Significant hardware changes often require long lead times before
they can be realized in the market. However, minor changes to
existing hardware, such as exposing additional hardware perfor-
mance monitors or other diagnostic information to the ISA, can be
added to the hardware relatively quickly. In fact, hardware design-
ers have historically been very willing to expose additional perfor-
mance monitors if a case is made for their benefit. From the soft-
ware side, there have been a few success stories in terms of com-
munication to lower layers, and one key example is the prefetch
instruction. Other software-based hints have been less successful
(such as the register keyword in C) because certain design chal-
lenges require input from multiple layers in the design stack. Nev-
ertheless, isolated changes that increase hardware-software com-
munication can provide numerous benefits, without the overhead
of testing, validating, and tuning completely new hardware.

Moving toward cross-layer solutions means that one layer will
be required to collate, analyze, and respond to the various inputs
from multiple design layers in order to orchestrate a cohesive solu-
tion. We feel that a virtual execution environment is the best place
to perform this orchestration. Modern VEEs provide the flexibility
required to adapt to changing hardware constraints in a way that
is transparent to the application. It is even possible to use VEEs
to transparently support changes in the underlying ISA without
the multi-year design and adoption time required by significant
changes in hardware. Furthermore, if the changes to hardware are

App

HW

(a) Native

App

VEE

HW

(b) Mediated

App

VEE

Sim

HW

(c) Simulated Mediation

Figure 2. (a) The native execution stack, (b) mediated stack used
for a baseline, and (c) simulated mediated stack, used for experi-
mentation.

minor, we can leverage existing, performance-tuned VEEs to per-
form these new tasks.

Using virtual execution environments to improve or extend pro-
grams has been a highly active area of research within the architec-
ture and compiler communities. VEEs have been used to perform
dynamic optimization [6], security policy enforcement [25], profil-
ing [28], and binary translation [16]. Modern VEEs operate trans-
parently to perform these tasks without otherwise perturbing the
application software. While application software (and even operat-
ing systems) are designed to be portable and to minimize system-
dependent features, VEEs typically possess (and benefit from) di-
rect knowledge of the underlying hardware.

An interesting benefit of using a VEE in the domain of hardware-
software collaboration is that it moves us in the direction of decou-
pling the hardware and software interfaces from a single, fixed ISA.
In essence, the VEE can virtualize the ISA by converting any vir-
tualized instructions used in an application with the corresponding
instruction(s) for the underlying hardware. This is a powerful ap-
proach because it allows hardware designers ultimate design free-
dom without code compatibility concerns. Meanwhile, any hard-
ware errors that are detected after shipment can be masked by a
simple update to the VEE.

The biggest challenge to operating all software under the con-
trol of a VEE is the performance overhead. Fortunately, researchers
have been extensively investigating ways to reduce this overhead.
Meanwhile, other constraints, including power, reliability and se-
curity have begun to outweigh the importance of raw performance.
We are reaching the point where the 10% performance overhead of
modern VEEs becomes much more tolerable if it means that relia-
bility concerns will be addressed, battery life will be extended, or
security policies will be enforced.

Given the benefits and challenges of a move toward cross-
layer solutions, we have chosen to explore an evolutionary path to
our long-term goal. We start with lightweight changes to existing,
proven systems. This approach allows us to analyze each hardware
and OS change in isolation, comparing the costs and benefits of
each technique relative to existing systems.

Developing the best design requires us to throughly prototype
and test each hardware or software modification. Yet, simulating
our hardware changes can be time consuming because of the need
to simulate both the VEE and the application itself. The next section
explores simulation methodologies we used in our project.

3. Our Simulation Infrastructure
Ideally a simulation infrastructure is fast, accurate, and easy to
modify. In practice these goals are often at odds with each other.
To address these trade-offs, we used two experimental stacks –
configurations of application, virtualization, and hardware layers
– to optimize for one particular requirement over the other.

The native stack, shown in Figure 2(a), is used to as the baseline
for comparison. On-board performance counters are measured us-
ing the Performance Application Programming Interface (PAPI) [11]



Figure 3. L1 data cache miss rate of gzip (a) natively and (b) under control of Pin. After Pin’s initialization, the last 1600 datapoints of the
Pin graph are similar to those of the native graph.

and the perfctr kernel extension for GNU/Linux. The number of
performance counters built into modern processors is extensive [3,
22] and useful for evaluating performance for many hardware fea-
tures of interest (e.g., cache behavior, CPI, etc.) However, the infor-
mation from this stack only serves to help us understand the impact
that introducing software translation has on the system. In order to
actually modify the executing application, we need to add a VEE
into the stack.

To this end, we use a mediated stack, inserting a VEE between
the target application and the underlying hardware, as shown in
Figure 2(b). This mediated stack allows us to create VEE tools that
modify the code based on internal and external control signals. We
can, for example, develop a tool that reacts to the performance data
being generated by the existing hardware performance counters in
real time. Because of the overhead of interjecting a binary trans-
formation layer, this mediated stack results in less than a twofold
increase in run time over the native execution stack.

Numerous VEEs are available for the x86 platform, both above
and below the OS [9, 12, 28, 35], that are able to orchestrate the
interaction between hardware and software. We use the Intel Pin
system [28], an extensible run-time binary instrumentation tool.
Pin runs in user space, giving it access to binary information on
a per-process level. Whole-system implementations need a VEE
below the OS, as is the case with PinOS [12]. Once PinOS is
publicly released, we plan to investigate its utility for whole-system
experimentation.

To enable novel hardware extensions, we created a simulated
mediated stack (Figure 2(c)), where a processor simulation frame-
work is inserted just above the hardware layer of the correspond-
ing un-simulated stack. Together, the simulator and the hardware
form a virtual hardware layer – functionally similar, from the ap-
plication’s or VEE’s perspective, to the hardware layer in their un-
simulated analogues. However, unlike the actual hardware, we are
able to modify and control all aspects of the simulated processor in
order to create new control conduits between the virtual hardware
layer and the VEE software layer.

In all of our simulations, we used the x86 version of Simple-
Scalar [4] as our processor simulator. We performed numerous sig-
nificant extensions to SimpleScalar to enable it to successfully run
applications as complex as Pin. For instance, we implemented sev-
eral missing instructions, such as pushf, popf, pushes, cpuid.
The time penalty associated with this simulation stack is several
orders of magnitude slower than running on native hardware – a
thousand-fold or ten-thousand-fold increase in run time, which is

on par with the overhead of SimpleScalar alone. We are currently
evaluating other simulations alternatives, including PTLSim [40]
and Simics [29].

Validation Before implementing solutions using our various stacks,
we wanted to verify that the data generated by the tools were trust-
worthy. Complete validation of two large, complex systems such as
Pin and SimpleScalar was outside the scope of this work; however,
we did perform some sanity checks on the results reported by Pin
and SimpleScalar-x86.

Our first task was to determine whether Pin unreasonably af-
fected the behavior of programs. We found that on many well-
behaved programs – those that spend much of their execution time
in loops that have already been translated into Pin’s code cache –
Pin’s overhead is small. Figure 3 shows the L1 data cache miss
rate collected every one million cycles over the entire execution of
gzip running natively and on Pin3. With the exception of startup
time (the first 1.5B cycles) and some dynamic compilation over-
head, there is a notable similarity in the run-time behavior of gzip
executing natively and on Pin. Programs with less code reuse or
many indirect branches, however, prevent the VEE from being able
to amortize time spent translating or rewriting code. In these cases,
the overhead of translation must be taken into account in the design
and heuristics.

Figure 4 displays the results of further validation, where we use
a log scale so as to clearly display all data on one graph (otherwise,
h264, gobmk, and astar would dwarf the other applications).
Figure 4(a) compares the instruction counts reported by Simple-
Scalar, Pin, and PAPI. Pin instruments every dynamic instruction,
thus its instruction count should be quite accurate. PAPI accesses
the hardware performance counters, but we determined that the
calls for starting and stopping the counters also get included in the
instruction count, thus there is a fixed error. This fixed overhead be-
comes negligible, however, for long running programs, such as the
SPECint2006 benchmarks [20]. Finally, as the graph demonstrates,
SimpleScalar reports an instruction count comparable to those re-
ported by Pin and PAPI. Beyond instruction count, we also looked
at performance metrics at the microarchitectural level: clock cycles
(Figure 4(b)) and branch mispredictions (Figure 4(c)). Because Pin
operates above the OS, only data from SimpleScalar and PAPI are
included in these results. SimpleScalar simulates an idealized five-

3 Previous work [37] has shown correlation between such performance fac-
tors as cache miss rates, branch prediction miss rates, energy consumption,
and IPC.



SS
PIN
PAPI

  1e+07

  1e+08

  1e+09

  1e+10

  1e+11

  1e+12

astaromnetpph264libquansjenghmmergobmkmcfgccbzip2

In
str

uc
tio

n 
Co

un
t (

lo
g 

sc
al

e)

(a) Dynamic Instruction Count

SS
PAPI

  1e+07

  1e+08

  1e+09

  1e+10

  1e+11

  1e+12

astaromnetpph264libquansjenghmmergobmkmcfgccbzip2

Cy
cl

e 
Co

un
t (

lo
g)

(b) Execution Time (Cycles)

SS
PAPI

  100,000

  1e+06

  1e+07

  1e+08

  1e+09

astaromnetpph264libquansjenghmmergobmkmcfgccbzip2

Br
an

ch
 M

isp
re

di
ct

io
ns

 (l
og

)

(c) Branch Mispredictions

Figure 4. Evaluation of the accuracy of SS-x86 and Pin on instruc-
tion count, cycle count, and branch mispredictions, relative to the
hardware performance counters as accessed by PAPI.

stage processor, which is unlike most modern processors. Neverthe-
less, the values reported by SimpleScalar followed similar trends as
that reported by PAPI on a real dual-core NetBurst Xeon processor.

4. Symbiotic Optimizations
Collaborative design encompasses a variety of potential challenges
within a large design space. We now demonstrate the usefulness
of reactive, cross-layer solutions by examining two problems that
can be more effectively solved with hardware/software collabora-
tion. The first application – heterogeneous migration – is the task
of dynamically scheduling simultaneous processes or threads on
cores of differing capabilities in a way that optimizes for resource
utilization. The second application – the di/dt problem – is a well-
studied issue arising from the current and voltage variations caused
by rapidly enabling and disabling processor resources. These are
two problems of great interest to the community, and they are prob-
lems that are difficult to solve without reactive techniques to handle
changes in processor and program state. This section explains our
approach and methodologies for using collaborative techniques to
solve these two challenges.

4.1 Heterogeneous Migration
We examined the benefits of feedback-based scheduling of multi-
ple programs on heterogeneous cores as an illustrative example of
the simplicity and potential of a reactive solution. Processor het-
erogeneity (sometimes also called processor asymmetry) comes in
many forms. Some multicore processors are designed with different
features on each core. Heterogeneity can also result from the fabri-
cation process [21]. Regardless of the nature of the heterogeneity,
scheduling processes on the available cores becomes a non-trivial
challenge, since one core may be better suited than another to exe-
cute a particular process. Kumar et al. demonstrated that dynamic
process migration can outperform the best static process-to-core
matching on a many-way heterogeneous Alpha ISA system [27].
In this section, we evaluate a number of migration heuristics in an
x86-based environment to determine the system changes necessary
to support the solution.

Problem Description The problem of heterogeneous process mi-
gration is a complication of traditional process scheduling. When
an OS schedules processes on homogeneous multicore systems, all
cores can be considered equivalent and processor load becomes a
good indicator of an effective schedule. By contrast, if the OS as-
sumes equivalence on a heterogeneous system, performance could
suffer considerably. To examine heuristics for improved scheduling
across heterogeneous cores, we consider two heterogeneous cores
and two different processes running simultaneously. On such a sys-
tem either process could be run on either core at any given time.
Therefore, the OS must decide when to migrate processes from one
core to another. Yet, integrating very specific hardware details into
the OS scheduler is not a scalable approach, as it needlessly com-
plicates the scheduling algorithms to support the seemingly endless
amount of heterogeneity possible. An easier solution is to use feed-
back from the hardware to allow the OS to recognize and react to
poor scheduling decisions.

Consider the relatively simple case of a processor with a single
out-of-order superscalar core and a simpler in-order scalar core.
Traditionally, the OS does not consider performance in its schedul-
ing decisions, it only considers runnable queues and resource uti-
lization, which works well on today’s homogeneous systems. Yet,
in our heterogeneous case, simply running two applications to com-
pletion on their initially assigned cores may not be the wisest strat-
egy; one program many be able to better take advantage of the out-
of-order processor at a particular time than another. Even a single
assignment of the programs based on amortized performance may
not be sufficient. Phase behavior within the program may cause the
proper program-to-core mapping to change while the program ex-
ecutes. We investigate run-time indicators from other design layers
that may help us dynamically schedule process execution on the
different cores.

4.1.1 Simulating Migration
Table 1 outlines the configuration of our simulated in-order and out-
of-order processors. We execute the SPEC2006 integer benchmarks
on both configurations. We collect statistics every 1M instructions,
checkpointing the current state of the performance counters. These
checkpoints are used to drive our migration decisions. After collect-
ing the execution statistics for the programs on both configurations,
we can analytically investigate arbitrarily migrating processes at
the selected granularity.

Migration Overhead When a migration decision is made, the
process state must be transferred from one processor to the other.
This transfer is often costly. Thus we must factor this cost into
our performance analysis. Multicore processors often share the
same physical L2 cache. Assuming such an arrangement, migrating



Parameter Value
Processor width 8 (outorder), 2 (inorder)
Fetch queue size 16
Branch predictor Combined predictor w/ 16K-entry meta-

table, 2-lev predictor w/ 16K entry L1,
16K entry L2, 14-bit history XORed with
address

BTB size 512 sets, 4-way
RAS size 8
RUU size 128
L1 caches 64K, 4-way, 32B blocks
Unified L2 cache 512K, 4-way, 64B blocks
Functional units 6 int ALU, 2 int mult, 4 FP ALU, 2 FP

mult

Table 1. Our SimpleScalar-x86 Configuration

processes between cores should incur a penalty similar to that of
a context switch invoked by an operating system. The state of the
architected registers and the state of memory that is associated with
the process must be transferred from one core to the next. Other
structures, such as cache contents and on-chip structures designed
for speculation such as branch predictors need not be maintained
for correctness. However, when this information is lost there is a
cost to warm these structures again; for example, the L1 cache
contents associated with our process are essentially flushed with the
migration. This forces the per-core cache to be repopulated, adding
to our migration overhead [32].

To calculate the cost of process migration we used LMBench [30]
– a suite of portable benchmarks used to evaluate the performance
of Unix machines – to calculate the cost of a typical context switch
on our machines. We observed the cost to be approximately 12,000
to 15,000 cycles, depending on the warmth of the L2 cache. Con-
sidering that we only consider switching at a granularity of 1M in-
structions, this overhead proves to have a relatively small impact
on the performance gained from migration. In theory, swapping
cores should leave the L2 cache perfectly warm, as no data need be
marked dirty or invalid. With this in mind, we assumed a relatively
warm L2, and thus a penalty of 12,000 cycles for our experiments.

Ideal Scheduling The ideal schedule is the one that minimizes
the total cycle count for both processes. Consider the situation where
gcc takes 500K cycles to execute a given slice of instructions
on the out-of-order processor and 1.5M on the in-order processor.
Meanwhile, astar takes 1M cycles out-of-order and 2.2M cycles
in-order. In this case, it is better to schedule astar on the out-of-
order processor and gcc on the in-order processor. The ideal per-
formance in terms of cycle counts for pairs of benchmarks is shown
in Table 2. These values were collected by post-processing the per-
formance information to determine the best possible process-to-
core mapping for each 1M instruction timeslice. Table 2 shows the
sum of the cycle count for the two processors over the run of the two
benchmarks. The results shown are the pairwise comparison of the
SPEC2006 integer benchmarks. We used the test inputs since they
alone required over a week of simulation time. The experiments
excluded perlbench and xalancbmk since SimpleScalar-x86
does not support all of the required system calls.

Throughout this section, we will present the performance of
each policy in terms of its distance from ideal, which is defined in
Equation 1. The sum cycle count for the schedule is the total cycle
count for both processors while both benchmarks continued to run,
plus any migration penalty incurred. The ideal sums are the total
cycle counts for the ideal weaving of the two benchmarks, which
are presented in Table 2.

Benchmark Pair Cyc(M) Benchmark Pair Cyc(M)
gcc + libquant 1298 gcc + omnetpp 6686
gcc + astar 9707 gcc + bzip2 7582
gcc + go 1375 gcc + hmmer 8212
gcc + mcf 1928 gcc + sjeng 8016
libquant + omnetpp 1417 libquant + astar 1659
libquant + bzip2 1225 libquant + go 1173
libquant + hmmer 1345 libquant + mcf 1659
libquant + sjeng 1404 omnetpp + astar 7753
omnetpp + bzip2 6231 omnetpp + go 1520
omnetpp + hmmer 6835 omnetpp + mcf 2092
omnetpp + sjeng 6692 astar + bzip2 12034
astar + go 1611 astar + hmmer 12753
astar + mcf 21623 astar + sjeng 12356
bzip2 + go 1310 bzip2 + hmmer 11275
bzip2 + mcf 1890 bzip2 + sjeng 11464
go + hmmer 1421 go + mcf 1704
go + sjeng 1495 hmmer + mcf 1951
hmmer + sjeng 12208 mcf + sjeng 2022

Table 2. Sum of cycle count (in millions) using ideal weaving at
1M instruction swapping granularity.

Process 1 on Core 1
Process 2 on Core 1

  0

  20

  40

  60

  80

  100

bz
ip

2 
an

d 
hm

m
er

gc
c 

an
d 

sje
ng

go
 a

nd
 m

cf
bz

ip
2 

an
d 

sje
ng

m
cf

 a
nd

 o
m

ne
tp

p
go

 a
nd

 o
m

ne
tp

p
hm

m
er

 a
nd

 o
m

ne
tp

p
bz

ip
2 

an
d 

m
cf

bz
ip

2 
an

d 
gc

c
as

ta
r a

nd
 o

m
ne

tp
p

bz
ip

2 
an

d 
om

ne
tp

p
as

ta
r a

nd
 li

bq
ua

nt
um

hm
m

er
 a

nd
 sj

en
g

gc
c 

an
d 

lib
qu

an
tu

m
as

ta
r a

nd
 sj

en
g

gc
c 

an
d 

hm
m

er
as

ta
r a

nd
 g

o
go

 a
nd

 h
m

m
er

m
cf

 a
nd

 sj
en

g
gc

c 
an

d 
m

cf
go

 a
nd

 li
bq

ua
nt

um
hm

m
er

 a
nd

 li
bq

ua
nt

um
gc

c 
an

d 
om

ne
tp

p
as

ta
r a

nd
 g

cc
go

 a
nd

 sj
en

g
bz

ip
2 

an
d 

lib
qu

an
tu

m
bz

ip
2 

an
d 

go
as

ta
r a

nd
 b

zi
p2

hm
m

er
 a

nd
 m

cf
as

ta
r a

nd
 m

cf
gc

c 
an

d 
go

lib
qu

an
tu

m
 a

nd
 m

cf
lib

qu
an

tu
m

 a
nd

 sj
en

g
as

ta
r a

nd
 h

m
m

er
lib

qu
an

tu
m

 a
nd

 o
m

ne
tp

p
sje

ng
 a

nd
 o

m
ne

tp
p

D
ist

an
ce

 fr
om

 id
ea

l (
%

)

Figure 5. Coarse-grained scheduling performance reported as dis-
tance from ideal. (Lower is better.)

distance from ideal% =

∑
scheduled cycles−

∑
ideal∑

ideal
(1)

Static Scheduling Perhaps the simplest scheduling solution is to
choose one core to execute each process in its entirety, never con-
sidering migration. Since this policy provides an effective context
for comparison, we present its performance in Figure 5. An im-
portant observation from this figure is that it is often the case that a
particular static mapping can result in a significant performance im-
pact, therefore the scheduling decision becomes paramount. Mean-
while, both static schedules are (often significantly) worse than the
ideal schedule.

This result implies that feedback-based scheduling may have
a very positive effect, even in light of the migration overhead oc-
curred. We next examined heuristics that allow the system to dy-
namically adapt to changing behavior in the programs as indicated
by our hardware feedback mechanism.



10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Probability of swapping at each timeslice

0

20

40

60

Pe
rc

en
t D

ist
an

ce
 fr

om
 Id

ea
l

Figure 6. Performance of random fine-grained scheduling, aver-
aged over SPECint2006.

4.1.2 Scheduling Heuristics
The most naı̈ve migration-based scheduling approach is to ran-
domly migrate programs at run time. Figure 6 shows the perfor-
mance of random scheduling, taking the average of five runs. As
expected, random scheduling performs worse than static schedul-
ing due to unnecessary migrations. Armed with various extreme
cases – ideal, static, and random – we now explore more sophisti-
cated heuristics.

IPC-Based Scheduling Our first feedback-based heuristic is to
use the instructions per cycle (IPC) of the out-of-order processor
to gauge the effectiveness of the current executing program. The
core tenet of this heuristic is that the out-of-order processor is the
more valuable of the two cores, and therefore a low IPC on the
out-of-order processor may indicate that another program can make
better use of that resource. Using this heuristic, the system chooses
whether to switch the program by looking at the IPC on the out-of-
order processor for the last million cycles. If the IPC falls below the
threshold, the system swaps the programs between the two cores.

To guard against the thrashing case where both programs have
low IPC on the out-of-order core, this heuristic implements an
exponential backoff technique, so that after a switch, it doubles
the amount of time it waits before attempting to switch again.
Figure 7(a) shows the results of using IPC based scheduling as the
percent distance from the ideal schedule. The graph is grouped by
backoff rate, though performance is similar in most cases, which
means that the programs do not quickly change IPC.

IPC-Delta Scheduling The next heuristic we examined is IPC-
delta scheduling, which again uses the IPC of the out-of-order pro-
cessor to decide whether the programs should be swapped. How-
ever, instead of waiting until the IPC falls below a certain thresh-
old, this heuristic examines the last two timeslices and swaps if
the IPC decreases by a certain amount between the two timeslices.
Figure 7(b) shows the performance of the IPC-delta heuristic, with
very small deltas performing the best, achieving within 10% of
ideal on average. It would be possible to do exponential backoff
with this heuristic as well, however given the small effect of the
backoff with basic IPC scheduling, we chose not to examine it fur-
ther.

Other Heuristics The heuristics presented in this section relate
to the case of one high-performance out-of-order processor and one
simpler in-order processor. However, heterogeneous systems with
different parameters may require different triggering mechanisms.
For example, a heterogeneous system with differing cache struc-
tures might require heuristics that gauge cache misses, and ensure
that the program with the larger working set runs on the processor

Precent Distance from Ideal for Backoff Scheduling

0 Backoff .5 Backoff 1.0 Backoff 1.5 Backoff 1.9 Backoff 2.0 Backoff
0

10

20

30

Pe
rc

en
t d

ist
. f

ro
m

 id
ea

l

.5 IPC .75 IPC 1.0 IPC 1.25 IPC 1.5 IPC 1.75 IPC 2.0 IPC

(a) IPC-threshold performance

.05 delta .1 delta .15 delta .2 delta .3 delta .4 delta .5 delta .75 delta 1.0 delta 1.25 delta 1.5 delta1.75 delta 2.0 delta
0

10

20

30

Pe
rc

en
t d

ist
. f

ro
m

 id
ea

l

(b) IPC-delta performance

Figure 7. IPC-delta and IPC-threshold performance on SPEC-
int2006. Larger deltas lead to a performance degradation.

with the larger cache. A similar case may occur for a pair of proces-
sors supporting slightly different instruction sets, i.e., one proces-
sor emulates floating point computations while the other handles
floating point natively. In this situation, the scheduler must identify
the frequency of floating-point instructions and reschedule accord-
ingly.

4.2 Dynamic Response to dI/dt Problems
A second class of problems that is well-suited for a reactive solution
is the case where problematic code regions can be identified by
hardware and resolved by a VEE. As a representative example, we
created a reactive software solution to enhance voltage stability,
modifying only the code that the hardware flags as problematic. In
this section, we describe the di/dt problem; we then present and
analyze our reactive cross-layer solution.

Problem Description The di/dt problem occurs when there are
dramatic periodic changes in supply current over short durations
of time. These changes can greatly affect the reliability of a pro-
cessor [5, 34]. Hardware designers have taken a conservative ap-
proach when designing the power supply systems and CPUs, there-
fore voltage emergencies are not yet a critical problem. However,
these conservative approaches are more expensive to build. The In-
ternational Technology Roadmap for Semiconductors (ITRS) lists
noise management (di/dt, ground bounce, etc.) as one of their grand
challenges for 2010 and beyond [1].

Modern processor designs complicate the di/dt problem because
they regularly adjust power consumption by deactivating idle por-
tions of the processor. However, enabling and disabling hardware
features causes fluctuations in the current pulled by the proces-
sor, which can, in turn, lead to supply voltage variations. The di/dt
problem can result in voltage threshold violations for the processor,



which can lead to timing problems, incorrect calculations, or even
reliability problems if not corrected.

Recently proposed solutions throttle on-chip resources to re-
duce di/dt to the allowed operating range of the processor. This
has the unwanted side-effect of decreasing performance of the ap-
plication as a whole, when it may be a single loop causing the
voltage emergency. We present a more lightweight yet comple-
mentary solution that only affects the section of the code caus-
ing the voltage emergency. By enabling processor feedback when-
ever the processor throttling solutions engage, the VEE can iden-
tify the section of code causing the voltage emergency. The VEE
can then permanently modify the offending code. This removes the
per-iteration performance penalty, but still provides the guarantees
of the hardware-only approach.

dI/dt Implementation To collaboratively solve the problem of
di/dt, the hardware must be modified to report the existence of volt-
age problems to the software. This is a relatively minor change be-
cause processors are already able to report high-level voltage in-
formation. With hardware that will generate a hardware trap in the
case of a voltage emergency, a VEE can then take program state
information from when the trap was generated, and use it to take
reactive measures, rewriting the application code to mitigate the
change in voltage. There are a number of ways to mitigate the volt-
age change, ranging from straight-forward nop insertion, to reim-
plementing instruction scheduling. For our experiments we chose
the simplest approach of inserting nops. This solution is based on
one that was proposed but was never implemented online [19].

For our experiments, we modified the SimpleScalar-x86 archi-
tectural simulator with Wattch [10] power monitoring extensions
to report voltage emergencies to Pin. In order to trap to Pin when a
voltage emergency occurs, SimpleScalar would have to signal Pin;
however, the current version of SimpleScalar-x86 does not support
signals. To solve this problem, we have Pin poll the hardware to see
if an emergency has occurred. Because SimpleScalar controls the
application’s memory space, and therefore Pin’s as well, Simple-
Scalar simply sets a flag at a predetermined memory location in the
event of a voltage emergency. Pin then checks this memory loca-
tion, and if a voltage emergency has occurred, Pin invalidates the
current trace and rebuilds it. When the trace is rebuilt, it is built
differently, using instruction padding to disrupt the voltage profile
of the trace and mitigate the problematic voltage swings.

To test the effectiveness of our collaborative di/dt solution,
we developed a synthetic “power virus” designed specifically to
cause voltage emergencies. The program is shown in Figure 8
and is based on a similar virus presented by Joseph et al. for
Alpha processors [23]. It consists of a single tight loop containing
instructions carefully chosen to cause the processor’s voltage to
swing dramatically and periodically. Figure 10(a) then shows the
voltage behavior representative portion of the power virus running
on SimpleScalar. As the graph shows, the virus causes the voltage
to repeatedly rise above and below the critical actuation thresholds
(+/- 3% of the nominal voltage). In the case of previous hardware-
only solutions, the actuation mechanism would have engaged on
each and every loop iteration, significantly degrading performance.

To identify and alleviate the voltage problems, our VEE layer
must instrument the code to monitor hardware indicators for power
emergencies. The code for the plug-in Pin tool is shown in Figure 9.
The Pin tool instruments backedges of the application to check
the designated flag ssEmergency. When the hardware signals an
emergency, the flag is set, and once Pin detects the change on the
next backedge it invalidates all traces associated with that address.
The next time that code region is translated, a nop is inserted
between each instruction in the trace, disrupting the voltage profile.

Problem: Power Virus
BITS32

section .data
prime: dq 100711433.0 ; constant large prime
three: dq 3.0 ; constant large prime

section .text

global _start
_start:
mov eax, [1000] ; loopcount
mov ebx, 0xaaaaaaaa
mov ecx, 0xdeadbeef
fld qword [prime]

.loop:
; series of parallelizable load operations
; (high power section)
mov ebx, [ecx]
mov ebx, [ecx]
mov ebx, [ecx]
. . .
; series of sequential arithmetic operations
; (low power section)
imul ebx, 2
imul ebx, 2
imul ebx, 2
. . .

sub eax, 1
jne .loop

mov eax, 1
mov ebx, 0
int 0x80
hlt

Figure 8. The NASM assembly code that induces voltage emer-
gencies.

However, even without the insertion of nop instructions, the ad-
dition of the instrumentation code could possibly disrupt the power
virus. To determine these effects, we plotted the behavior of a rep-
resentative portion (after Pin startup costs) of the power virus run-
ning with Pin instrumentation without any reactive response in Fig-
ure 10(b). The graph shows that the instrumentation has slightly af-
fected the period of the virus, however, its magnitude is unaffected.
That is, the virus is still causing voltage emergencies. Figure 10(c)
shows a portion of same virus, running with reactive techniques en-
abled. The reactive nop insertion mechanism eliminates the volt-
age emergencies.

The benefit of our reactive approach is that it only impacts
problematic code regions that exist and it permanently cures the
problem. The cost of the extra padding instructions is much less
than the overhead of hardware-only alternatives, where many of
the resources are scaled back on every loop iteration.

Though these two examples may seem straightforward, they
clearly demonstrate the potential of using simple hardware feed-
back channels and a hardware-aware mediation layer. Additionally,
we were able to test our design iteratively, both quantitatively and
qualitatively, without the burden of hardware design and fabrica-
tion. Though these techniques obviously cannot supplant testing
with new hardware, we are able to test and refine a variety of small
hardware/software changes to isolate those changes most likely to
elicit the most benefit, so that valuable chip design time and cost
can be saved.



Solution: Dynamic dI/dt Correction

UINT32 ssEmergency = 0; // set by underlying simulator
UINT64 nopCount = 0; // dynamic count of nop instrs

// Instruction padding routine for curing emergencies
VOID donop() { nopCount++; }
// Reads the hardware performance counter in SS-x86

BOOL CheckForEmergency() {
if (ssEmergency == 0) return FALSE;
else return TRUE;

}
// Forces Pin to regenerate the code at given address

VOID UnlinkAndInvalidate(ADDRINT ip) {
CODECACHE_InvalidateTraceAtProgramAddress(ip);

}
// Pin calls this function for every new basic block
// One of two things occur before translating code:
// a) NO emergency: inserts detection code
// on every loop edge
// b) YES emergency: inserts NOPs between
// every instruction

VOID Trace(TRACE trace, VOID *v) {
if (CheckForEmergency() == FALSE) {

for (BBL bbl=BblHead(trace); BBL_Valid(bbl); bbl++){
for (INS ins=InsHead(bbl); INS_Valid(ins); ins++){

if (INS_IsDirectBranchOrCall(ins)) {
INS_InsertIfCall(ins,IPOINT_TAKEN_BRANCH,

(AFUNPTR) CheckForEmergency,IARG_END);
INS_InsertThenCall(ins,IPOINT_TAKEN_BRANCH,

(AFUNPTR) UnlinkAndInvalidate,
IARG_INST_PTR, IARG_END);

}
}

}
}
else { // CheckForEmergency() == TRUE

for (BBL bbl=BblHead(trace); BBL_Valid(bbl); bbl++){
for (INS ins=InsHead(bbl); INS_Valid(ins); ins++){

INS_InsertCall(ins,IPOINT_AFTER,
(AFUNPTR)donop,IARG_END);

}
}
ssEmergency = 0;

}
}
int main(int argc, char * argv[]) {
PIN_Init(argc, argv);

// Register Trace as instrumentation routine
TRACE_AddInstrumentFunction(Trace, 0);

// Start the program, never returns
PIN_StartProgram();
return 0;

}

Figure 9. The C++ code for a Pin plug-in tool that detects and
corrects voltage emergencies.

5. Related Work
Systems such as Transmeta’s Code Morphing Software [14] , BOA [2],
DAISY [16], and work by Kim and Smith [24] also took the ap-
proach of co-designing hardware and virtual machine software. Our
approach differs in two major respects: first, we take an evolution-
ary approach to developing our design by exploring lightweight
changes to existing hardware; second, by taking hardware feedback
into account, we explore re-translating program code. The Trident
system [41] also explores extending hardware to trigger recompi-
lation; their work primarily considers optimizing code for perfor-
mance, whereas our approach also targets metrics such as power,
reliability, and security.

Balakrishnan et al. [7] studied the performance effects of the
asymmetry in heterogeneous chip multiprocessors (CMP). Their
results showed that in some cases, unpredictable performance due
to asymmetry could be fixed either by making the operating system

0 1000 2000 3000 4000 5000
Cycle

0.95

1

1.05

V
ol

ta
ge

Normalized Voltage Low Threshold High Threshold

(a) Power Virus on SimpleScalar

0 1000 2000 3000 4000 5000
Cycle

0.95

1

1.05

V
ol

ta
ge

Normalized Voltage Low Threshold High Threshold

(b) Power Virus on Pin with Instrumentation

0 1000 2000 3000 4000 5000
Cycle

0.95

1

1.05

V
ol

ta
ge

Normalized Voltage Low Threshold High Threshold

(c) Power Virus on Pin with Reactive NOP Insertion

Figure 10. Voltage readings for the power virus running (a) na-
tively on SimpleScalar (b) on Pin, and (c) on Pin with reactive NOP
insertion.

scheduler aware of the asymmetry or by rewriting the application.
In either case, a collaborative system such as the one presented
here would be able to make the necessary changes at run-time
without needlessly complicating the OS scheduling algorithm, or
developing hardware-specific versions of each OS.

The topic of process migration has been heavily studied in the
distributed computing community. They explore the migration of
a process from one computer to the next through typically high-
latency interfaces such as TCP/IP over Ethernet. Many of the ob-
stacles and challenges that prove prohibitive to their work are ab-
sent when considering CMPs. For example, communications over-
head is orders of magnitude lower in CMPs, since CMPs can use
processor-internal buses, whereas distributed systems must use much
higher-latency interconnects. Similarly, the problems of providing
consistent shared memory and transferring program context from
one node to another are non-trivial in the distributed context; com-



plex invalidation schema and high communication costs mean that
both these tasks incur significant overhead. By contrast, CMPs share
the same physical memory, and can in fact share a single physical
cache, meaning that both these tasks can have orders of magnitude
lower overhead in a CMP context. This feature introduces more op-
timization opportunities. Since the cost of migration is much lower,
we can migrate more frequently.

Kumar et al. [26, 27] studied assignment and migration of
threads across a heterogeneous CMP for improving throughput
and reducing power. They proposed heuristics involving large-scale
IPC changes either in a single application or absolute value over
all currently executing applications, and then required sampling all
possible matchings of processes to processors before settling on an
ideal configuration. We have shown that the problem also occurs on
x86 architecture, meanwhile we did a sensitivity study of the IPC
migration thresholds. Work by Constantinou et al. [13] suggests
that the overhead of register state migration and private cache
management is negligible if the period between migrations is at
least 160K cycles. Michaud [31] presented a method of distributing
cache lines across multiple cores and then migrating execution to
improve performance by having a larger total cache size.

The heterogeneous migration case study presented in this pa-
per implicitly attempts to perform some form of phase detection
and analysis in deciding on which core to schedule each process.
Sherwood et al. presented work on automatically detecting and pre-
dicting phase changes over large intervals [36, 37]. Dhodapkar and
Smith suggested using a hardware mechanism along with a virtual
machine monitor to detect phase changes to optimally reconfigure
hardware [15]. Our work assumes a higher-level perspective than
that of Dhodapkar and Smith in that we schedule across multiple
cores rather than altering the configuration of current hardware,
which may lead to greater flexibility as the number of available
cores increases.

There has been some work suggesting solutions to the di/dt
problem. In 1999, Toburen [38] proposed heuristics for reducing
the number of bit-flips between successive instructions in the ex-
ecution core of high performance microprocessors. In 2002, Gro-
chowski et al. [17] proposed disabling and enabling functional units
to reduce voltage variation based on a complex calculation of the
voltage. In 2003, Joseph et al. [23] extended this idea to use on-
chip voltage sensors rather than online calculations, as part of the
voltage control mechanism. Hazelwood and Brooks proposed a dy-
namic software-based solution to the di/dt problem [19]. Our work,
and that of Gupta et al. [18, 33] can be considered an extension and
implementation of that effort.

6. Future Work
Our simulation infrastructure allows us to investigate many symbi-
otic optimizations, thus our next step is to investigate solutions for
additional computing problems. For example, we are interested in
exploring how code can be dynamically rewritten to more evenly
distribute the power and thermal pressure on a processor core. In-
formation about programmatic hot spots can be provided to a VEE
by hardware-level temperature and power sensors. With this infor-
mation, the VEE can take action to relieve some of this pressure,
such as performing partial loop unrolling to take pressure off of the
branch predictor. This kind of intelligent code transformation re-
quires extensions to both hardware and software to get more accu-
rate readings about which code is adversely affecting the hardware.

Another difficult challenge we intend to explore is how to re-
duce the simulated mediation overhead by running the VEE and
simulation layers independently, rather than atop one another. By
running the VEE alongside the simulator and transferring infor-
mation laterally, we believe that we can make the overhead costs
additive, rather than multiplicative.

7. Conclusions
Collaboration between hardware and software can achieve results
that neither could realize in isolation. As processors become more
complex and as metrics of performance other than execution speed
become more important, unanticipated problems will arise which
can only be dealt with at run time. To this end, we have created a
simulation framework for exploring this design space, which gives
us the flexibility to trade off speed and accuracy for environmental
control when exploring novel collaborative designs.

We have demonstrated this suitability of reactive solutions to
two disparate problems facing system designers today. In particu-
lar, we explored process migration on a virtual heterogeneous mul-
ticore system. We were able to design and evaluate migration method-
ologies that outperform the average static decision, even without
prior knowledge of program behavior, all by taking advantage of
hardware performance counters. We were also able to demonstrate
how program knowledge and minimal modifications to commodity
hardware could lead to performance and reliability improvements
by using a reactive approach to the di/dt problem. By combining
hardware feedback with a virtualization layer in software, we were
able to target specific regions of concern and modify them to pro-
vide a permanent solution to the di/dt problem.

Overall, there is significant potential in the future of cross-layer
collaborative design. Armed with our experimental framework, we
intend to continue to develop, plan, and test the next generation
of hardware and software that can effectively work together to
improve overall system performance.

Acknowledgments
This work was made possible by the National Science Founda-
tion (CNS-0747203 and CCF-0811302), the Semiconductor Re-
search Corporation (GRC Task 1790.001), monetary awards from
Microsoft, Google, the Woodrow Wilson Foundation, and the T100
Group, and equipment and software donations from Intel.

References
[1] Int’l technology roadmap for semiconductors. Semiconductor Industry

Association, 2005.

[2] E. R. Altman, M. Gschwind, S. Sathaye, S. Kosonocky, A. Bright,
J. Fritz, P. Ledak, D. Appenzeller, C. Agricola, and Z. Filan. BOA:
The architecture of a binary translation processor. IBM Research
Report RC 21665, Dec 2000.

[3] AMD Corporation. AMD64 Architecture Programmer’s Manual,
Volume 2: System Programming. Publication #24593, SepSept 2003.

[4] T. Austin, E. Larson, and D. Ernst. Simplescalar: An infrastructure for
computer system modeling. IEEE Computer, pages 59–67, Feb 2002.

[5] D. Ayers. Microarchitectural simulation and control of di/dt-
induced power supply voltage variation. In 8th Int’l Symp. on High-
Performance Computer Architecture, pages 7–16, Cambridge, MA,
2002.

[6] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A transparent
dynamic optimization system. In ACM Conf. on Programming
Language Design and Implementation, pages 1–12, Vancouver, British
Columbia, Canada, 2000.

[7] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The impact of
performance asymmetry in emerging multicore architectures. In 32nd
Int’l Symp. on Computer Architecture, pages 506–517, Madison, WI,
2005.

[8] L. Baraz, T. Devor, O. Etzion, S. Goldenberg, A. Skaletsky, Y. Wang,
and Y. Zemach. IA-32 execution layer: A two-phase dynamic
translator designed to support IA-32 applications on itanium-based
systems. In 36th Int’l Symp. on Microarchitecture, pages 191–201,
San Diego, CA, Dec 2003.



[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In 19th ACM symposium on Operating Systems
Principles, pages 164–177, New York, NY, 2003. ACM Press.

[10] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework
for architectural-level power analysis and optimizations. In 27th
Int’l Symp. on Computer Architecture, Vancouver, British Columbia,
Canada, 2000.

[11] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A
portable programming interface for performance evaluation on
modern processors. Int’l Journal of High Performance Computing
Applications, 14(3):189–204, 2000.

[12] P. P. Bungale and C.-K. Luk. Pinos: A programmable framework for
whole-system dynamic instrumentation. In 3rd Int’l Conf. on Virtual
Execution Environments, July 2007.

[13] T. Constantinou, Y. Sazeides, P. Michaud, D. Fetis, and A. Seznec.
Performance implications of single thread migration on a chip multi-
core. SIGARCH Computer Architecture News, 33(4):80–91, 2005.

[14] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler,
A. Klaiber, and J. Mattson. The Transmeta Code Morphing Software:
Using speculation, recovery, and adaptive retranslation to address
real-life challenges. In Code Generation and Optimization, pages
15–24, San Francisco, CA, March 2003.

[15] A. Dhodapkar and J. Smith. Dynamic microarchitecture adaptation
via co-designed virtual machines. In Int’l Solid State Circuits Conf.,
San Francisco, CA, Feb 2002.

[16] K. Ebcioglu and E. Altman. DAISY: Dynamic compilation for
100% architectural compatibility. In 24th Int’l Symp. on Computer
Architecture, pages 26–37, Denver, CO, June 1997.

[17] E. Grochowski, D. Ayers, and V. Tiwari. Microarchitectural simulation
and control of di/dt-induced power supply voltage variation. In 8th
Int’l Conf. on High Performance Computer Architecture, pages 7–16,
Boston, MA, 2002.

[18] M. S. Gupta, V. J. Reddi, G. Holloway, G.-Y. Wei, and D. Brooks. An
event-guided approach to handling inductive noise in processors. In
Design, Automation, and Test in Europe Conference (DATE-09), Nice,
France, April 2009.

[19] K. Hazelwood and D. Brooks. Eliminating voltage emergencies via
microarchitectural voltage control feedback and dynamic optimiza-
tion. In Int’l Symp. on Low-Power Electronics and Design, pages
326–331, Newport Beach, CA, Aug 2004.

[20] J. L. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH
Computer Architecture News, 34(4):1–17, 2006.

[21] E. Humenay, D. Tarjan, and K. Skadron. Impact of process variations
on multi-core architectures. In 2007 Conf. on Design, Automation,
and Test in Europe (DATE), Nice, France, April 2007.

[22] Intel Corporation. IA-32 Intel R© Architecture Software Developer’s
Manual, Volume 3: System Programming Guide. Order #253668-019,
March 2006.

[23] R. Joseph, D. Brooks, and M. Martonosi. Control techniques to
eliminate voltage emergencies in high performance processors. In
9th Int’l Symp. on High-Performance Computer Architecture, pages
79–90, Anaheim, CA, 2003.

[24] H.-S. Kim and J. E. Smith. Dynamic binary translation for
accumulator-oriented architectures. In Code Generation and
Optimization, pages 25–35, San Francisco, CA, March 2003.

[25] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure execution
via program shepherding. In 11th USENIX Security Symposium, San
Francisco, Aug 2002.

[26] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M.
Tullsen. Single-ISA heterogeneous multi-core architectures: The
potential for processor power reduction. In 36th Int’l Symp. on
Microarchitecture, pages 81–93, San Diego, CA, 2003.

[27] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I.
Farkas. Single-ISA heterogeneous multi-core architectures for
multithreaded workload performance. In 31st Int’l Symp. on Computer
Architecture, pages 64–76, München, Germany, 2004.

[28] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building customized
program analysis tools with dynamic instrumentation. In ACM Conf.
on Programming Language Design and Implementation, pages 190–
200, Chicago, IL, June 2005.

[29] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner.
Simics: A full system simulation platform. 35(2):50–58, 2002.

[30] L. McVoy and C. Staelin. Lmbench: Portable tools for performance
analysis. In USENIX Annual Technical Conf., pages 279–294, San
Diego, CA, 1996.

[31] P. Michaud. Exploiting the cache capacity of a single-chip multi-core
processor with execution migration. In 10th Int’l Symp. on High
Performance Computer Architecture, pages 186–196, Madrid, Spain,
2004.

[32] J. C. Mogul and A. Borg. The effect of context switches on
cache performance. In 4th Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems, pages 75–84, Santa
Clara, CA, 1991.

[33] V. J. Reddi, M. S. Gupta, G. Holloway, M. D. Smith, G.-Y. Wei, and
D. Brooks. Voltage emergency prediction: A signature-based approach
to reducing voltage emergencies. In International Symposium on
High-Performance Computer Architecture (HPCA-15), Raleigh, NC,
February 2009.

[34] V. J. Reddi, M. S. Gupta, K. K. Rangan, S. Campanoni, G. Holloway,
M. D. Smith, G.-Y. Wei, and D. Brooks. Voltage noise: Why it’s bad,
and what to do about it. In 5th IEEE Workshop on Silicon Errors in
Logic - System Effects (SELSE), Palo Alto, CA, March 2009.

[35] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. Davidson, and M. L.
Soffa. Reconfigurable and retargetable software dynamic translation.
In Code Generation and Optimization, pages 36–47, March 2003.

[36] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. In 10th Int’l Conf. on
Architectural Support for Programming Languages and Operating
Systems, pages 45–57, San Jose, CA, 2002.

[37] T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction.
In 30th Int’l Symp. on Computer Architecture, pages 336–349, San
Diego, CA, 2003.

[38] M. C. Toburen. Power analysis and instruction scheduling for reduced
di/dt in the execution core of high-performance microprocessors.
Master’s thesis, North Carolina State University, 1999.

[39] V. Venkatachalam, C. Probst, and M. Franz. A new way of estimating
compute boundedness and its application to dynamic voltage scaling.
Int’l Journal of Embedded Systems, 1(1/2/3):64–74, 2006.

[40] M. Yourst. PTLsim users guide and reference: The anatomy of an x86-
64 out of order microprocessor. Technical report, SUNY Binghamton.

[41] W. Zhang, B. Calder, and D. M. Tullsen. An event-driven multi-
threaded dynamic optimization framework. In 14th Int’l Conf. on
Parallel Architectures and Compilation Techniques, pages 87–98, St.
Louis, Missouri, 2005.


