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ABSTRACT
The overhead of test coverage analysis is dominated by mon-
itoring the application, which is traditionally performed us-
ing instrumentation. However, instrumentation can pro-
hibitively increase the time and especially the memory over-
head of an application. As an alternative to instrumen-
tation, we explore how recent hardware advances can be
leveraged to improve the overheads of test coverage analy-
sis. These hardware advances include hardware performance
monitors and multicore technology.

In this work, we present our system, THeME, a test-
ing framework that replaces instrumentation with hardware
monitoring. THeME consists of a runtime system that takes
advantage of hardware mechanisms and multiple cores and
a static component to further extend the coverage derived
from hardware event sampling. The results show that up
to 90% of the actual coverage can be determined with less
time overhead and negligible code growth compared to in-
strumentation.

Categories and Subject Descriptors
D.2.5 [Software]: Software Engineering—Testing and De-

bugging - Monitors, Testing Tools

General Terms
Performance, Measurement, Algorithms, Experimentation

Keywords
Software testing, hardware, performance monitoring

1. INTRODUCTION
Structural testing is one of the most commonly used classes

of program testing strategies. The quality of a set of struc-
tural tests and test suites is determined using test cover-
age metrics, which are analyzed by monitoring selected pro-
gram elements reached during program execution. Unfortu-
nately, even monitoring simple structures, such as branches,
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presents a number of challenges. These challenges include
the compile time, runtime, and code-size overheads incurred
by monitoring.

The overhead of test coverage analysis is dominated by the
cost of monitoring program execution, which is generally en-
abled using code instrumentation. To instrument code, the
program is analyzed, either statically or dynamically, to de-
termine code points of interest. Each point is marked by a
probe, which is usually a jump or call to payload code that
analyzes the monitored information. Usually the code in-
serted into the executable unnecessarily remains throughout
execution, further increasing its expense. The time over-
head and code growth from instrumentation can be high,
even when monitoring simple structures. For example, the
time overhead of using instrumentation for branch testing
has been reported to be, on average, between 10% to 30%,
with code growth ranging from 60% to 90% [11, 20, 23].

In many cases, these overheads are restrictive. As an ex-
ample, it is not uncommon for regression test suites to re-
quire days or weeks to run to completion, with expensive
equipment and engineering costs associated [8, 21, 27]. If a
test suite requires 24 hours to execute, it would likely ne-
cessitate an extra 2.4 to 7.2 hours to evaluate the quality
of the test suite based on branch coverage. When monitor-
ing large scale programs or more complex structures, such
as data-flow or paths, the overall cost of monitoring grows
and can become prohibitive in time and space, especially in
resource constrained environments. Instrumentation also is
impractical for monitoring multithreaded or time-sensitive
programs, in which additional probe and payload code may
perturb normal execution.

Other software development tasks such as path profiling,
trace selection, race detection, and dynamic optimization
have also been riddled by these challenges, as they also rely
on monitoring application behavior. However, in these ar-
eas, there is an emerging trend to leverage hardware perfor-
mance monitoring mechanisms and multicore technology to
mitigate and eliminate these challenges [3, 5, 6, 7, 18, 22,
24]. For example, research by Chen et al. [6] shows that
profile information can be constructed efficiently and effec-
tively by sampling hardware events. In their work, event
monitoring incurred runtime overhead of only 2% and no
code growth compared to compiler-based instrumentation,
which suffered 10x time overhead over native execution.

Despite the success in these areas, advances in hardware
monitoring and multicore technology has not been fully ex-
ploited in software testing. Nearly all commodity desktop,
laptop, tablet, and mobile devices now available contain pro-



cessors that support hardware monitoring. Many of these
processors also include advanced hardware monitoring com-
ponents that can provide large amounts of event informa-
tion. Multicore technology is additionally now common on
such devices. Through the combination of hardware perfor-
mance monitors and multiple cores, program execution can
potentially be monitored and recorded more efficiently for
testing than when using traditional instrumentation tech-
niques.

Compared to instrumentation, the use of hardware mech-
anisms is attractive as they can perform monitoring with
very little overhead, and their use can remove the need for
instrumentation. When monitoring using hardware mecha-
nisms, a counter and mechanism need only be set up once
per core during test execution, and reading of the mecha-
nism is inexpensive. For example, Dey et al. [9] report that
the initial setup for a counter takes approximately 318µs,
and reading a counter value takes only 3.5µs on average. In
addition, using hardware performance monitors in lieu of in-
strumentation incurs no code growth and does not require
recompilation.

Hardware counters can be configured on each processor
core to increment when certain hardware events occur, pro-
viding count information, or they can be used for sampling.
When a sample is taken, performance monitoring software
records the system state including the current instruction
information, register contents, etc. Such sampled informa-
tion is extremely useful in areas such as profiling or dynamic
optimizations because the samples can be used to estimate
profiles or partial program behavior [6].

Software testing, however, relies on more exact execu-
tion information. For example, in branch testing, instru-
mentation is used to monitor all source code level branches
with which the tester is concerned and monitor only those
branches. While hardware mechanisms tracking a particular
event will observe all events of that type during program ex-
ecution, sampled data may miss certain events such as infre-
quently executed branches. Also, the use of hardware mech-
anisms implies that samples are likely to include branches
that are not associated with the test program such as those
in setup, teardown, or library code. Although recording
hardware events is essentially free, there is a cost associated
with reading the values from the hardware. Therefore, a
balance must be found between the amount of information
collected and the total overhead of sampling.

To evaluate the balance between efficiency and effective-
ness of testing using hardware performance monitors and
multicore technology, we designed a system called THeME:
Testing by Hardware Monitoring Events, which consists of
a runtime system and static components. In this work, we
explore the use of hardware mechanisms and multicore tech-
nology in branch testing, and we thoroughly evaluate the
tradeoffs of leveraging these technologies for branch monitor-
ing. We first evaluate a pure hardware approach to branch
testing. In this exploration, we investigate two ways of ac-
cessing and reading hardware mechanisms, namely through
OS polling and OS interrupts. Analysis of our techniques
demonstrates the efficiency achieved when calculating cov-
erage information by sampling hardware. Additionally, we
evaluate how performing branch testing using hardware sam-
pling affects the completeness of coverage monitoring. Next,
we analyze the effects of integrating hardware monitoring in-
formation with the compiler infrastructure, which improves

the completeness of coverage monitoring through the use of
static analysis techniques. Finally, we explore how multiple
cores can be used in conjunction with hardware monitoring
to improve the time overhead of structural testing.

We present empirical evidence that hardware monitoring
can be adapted for more efficient branch coverage analy-
sis compared to using instrumentation. Although hardware
mechanism sampling leads to lossy test coverage informa-
tion, it provides a low-overhead alternative to program in-
strumentation and can be used along with static analyses
to attain upwards of 90% of the actual code coverage infor-
mation. Hardware monitoring also requires only minor or
no alterations to the program under test, making hardware
approaches ideal in memory constrained environments, such
as tablets or mobile devices. Our techniques also enable the
testing of multithreaded and time-sensitive code.

In summary, the important contributions of this paper are
as follows:

• The design and development of THeME, a runtime
system to perform testing using hardware monitoring
mechanisms.

• Techniques to monitor branch information using hard-
ware mechanisms that incur lower overhead than in-
strumentation with negligible code growth.

• An empirical evaluation demonstrating the tradeoffs
associated with monitoring using hardware mechanisms
compared to full software-level instrumentation.

• An analysis revealing the benefits of testing using hard-
ware mechanisms on multiple cores.

• A demonstration of how the compiler infrastructure
can be used along with hardware mechanism monitor-
ing for improved test coverage.

• A discussion of the key advantages of leveraging hard-
ware advances in testing and of system software and
hardware advances that can help to better leverage
hardware mechanisms for structural testing purposes.

The remainder of this paper is organized as follows. In
Section 2, we discuss the background and details of the
hardware advances used in this work. We then describe
the THeME system and its design in Section 3. Next, in
Section 4, we explain the implementation details of the sys-
tem and demonstrate the trade-offs between efficiency and
effectiveness when monitoring using hardware sampling and
static analyses. In Sections 5, we go over the key advan-
tages that we observe when leveraging hardware advances
in testing, and in Section 6, we discuss several system soft-
ware and hardware advances that could benefit structural
testing when exploiting hardware advances. Related work
is discussed in Section 7. Finally, in Section 8, we conclude
and suggest directions for future research in this area.

2. BACKGROUND
In this section, we discuss the recent hardware advances

leveraged in this work. These include hardware counters and
multicore technology, as well as a hardware feature known
as the Last Branch Record.

Most microprocessors used in computers, tablets, and mo-
bile devices now support hardware event sampling through



Figure 1: Recording and sampling using the LBR on a 4 core

processor.

hardware counters. For example, the Intel Nehalem pro-
cessor provides the capability to track more than 2000 dif-
ferent performance counter events, and recent Linux kernel
patches provide user-level support for nearly 200 of these
counters [10]. Hardware counters can be configured to in-
crement on events such as each clock cycle, each time an
instruction retires, for every L2 cache miss, etc. When sam-
pling, the performance monitoring unit is configured to gen-
erate an interrupt whenever a hardware counter overflows,
based on a user-defined value. When the interrupt is trig-
gered, the Instruction Pointer and other register contents
are recorded. This information can identify the instruction
that caused the sample to be recorded.

Multicore technology is also now ubiquitous on commod-
ity machines. Most commercial computers ship with two or
four cores per chip, and recent mobile devices and tablets
have two cores per chip. State-of-the-art computers and
servers have twelve or more cores per chip. Often, these
cores are left idle. However, each core per processor chip
has its own set of hardware counters, performance moni-
tors, and mechanisms that can be leveraged during program
execution. In current hardware implementations, each core
can access only the hardware mechanisms associated with
that core. However, as can be seen in Figure 1, cores on a
chip have both private caches and share a cache, typically
the L2 or L3 cache, and thus can communicate with low
overhead for improved monitoring and analysis.

2.1 Branch Vector Recording
On nearly all processors, both single and multicore, there

are many hardware counters such as Cache Misses or Branch
Instructions Retired that can be taken advantage of. In
addition to these traditional hardware counters, more ad-
vanced hardware mechanisms have been introduced in recent
processors to enable debugging and precise event reporting.
In this paper, we focus on the Last Branch Record (LBR),
which is a hardware feature of the performance monitoring
unit on many modern microprocessors. The LBR was in-
tended as a profiling tool for sampling partial branch paths
in the operating system.

When the LBR is activated, the processor records a run-
ning trace of the most recent branches, interrupts, and ex-
ceptions taken by the processor. Each branch edge is repre-
sented by source and destination addresses and stored into
a pair of LBR registers. The LBR is a circular set of reg-
isters that contains the last n taken branches, where n is

dependent on the processor being used [12]. In Intel Ne-
halem processors, for example, the LBR records the last 16
branches [12]. The n branches contained in the LBR at any
point define a branch vector.

2.2 Branch Vector Sampling
The LBR is used in sampling mode in conjunction with a

hardware counter. As seen in Figure 1, when the hardware
counter generates an interrupt based on a defined interrupt
threshold, the n branches in the LBR can be accessed. Tra-
ditional hardware counters such as Instructions Retired or
CPU Cycles can only record one instruction, the single in-
struction that caused the interrupt to take place. However,
when the LBR is also enabled, a full branch vector of infor-
mation (e.g. 16 branches on recent processors) is reported
per interrupt. The branch vector recorded in the LBR regis-
ters represents a partial path of program execution through
the branches.

Figure 1 shows how a branch vector can be recorded from a
single processor into user space. The operating system first
throws an interrupt saying that a counter has overflowed
and that the LBR is ready to be read. When the user-level
program then requests the data, the operating system reads
the n LBR registers, returns the array to user space, and
continues program execution until the next counter overflow.

3. THE DESIGN OF THEME
In this research, we developed a system called THeME:

Testing by Hardware Monitoring Events, which enables us
to evaluate the potential of using a hardware approach for
structural testing. While there are many hardware mech-
anisms that can be used to monitor program behavior for
different test metrics, in this paper, we focus on mechanisms
that are appropriate for use in branch testing. Specifically,
we exploit the sample data available from the LBR.

An overview of our THeME system is shown in Figure 2.
THeME has three main components: the first is a static
program modification and analysis tool. This tool is used to
enable fall-through branch edge visibility for branch-based
hardware mechanisms. Then, once the program under test
has been modified, a simple static analysis is used to iden-
tify the branch edges in the program’s source code, as in
traditional testing techniques. The branch edges are stored
in a hash table along with information pertaining to the as-
sociated source code lines. This branch table is used as a
checklist of branches with which we are concerned and is
later used to calculate overall branch coverage. The second
component performs runtime hardware monitoring of the
program under test by sampling the LBR. The final com-
ponent performs an optional static analysis and calculates
the sampled branch coverage. The branch coverage is based
on the number of source code level branches observed com-
pared to the total number of source code level branches in
the program.

We now discuss the design of each component in more
detail.

3.1 Enabling Fall-through Visibility
Independent of sampling technique, branch-based hard-

ware mechanisms alone cannot observe when fall-through
branches have occurred, which would lead to low coverage
monitoring effectiveness. In branch testing, a tester wants
to ensure that both edges are taken through a branch. For



Figure 2: The THeME System

Figure 3: The LBR is incapable of detecting the fall-through

branch edge from 1 to 2.

example, in Figure 3, monitoring should be able to detect
both the execution of the fall-through path from 1 to 2 and
the target path from 1 to 3. While this is obvious when look-
ing at a flow graph, in the binary code, a branch is made
up of some kind of jump to a target followed by another
instruction. The LBR will report the jump from 1 to 3 but
not the fall-through from 1 to 2. Therefore, the LBR by
itself is only capable of monitoring 50% of the source level
branches.

Fall-through branch observation is possible in several ways.
One technique is to supplement the information from branch-
based monitoring with other event data. For example, the
INST_RETIRED event could be polled in addition to the LBR
to look for fall-through instruction execution. Another tech-
nique to detect fall-through branches includes a static post
mortem analysis of the program and observed information.
These techniques would require no code modification, re-
compilation, or code growth. However, because we want to
evaluate the capabilities of using the hardware mechanisms
for monitoring, we instead give the branch-based mechanism
the potential to observe the fall-through path by inserting
harmless unconditional branches along every fall-through
edge in the binary, as pictured in Figure 2 Box 1. This is
different from instrumentation, which is heavy weight and
includes both probe and payload code. Our fall-through
enabling technique adds only a single instruction along fall-
through branch edges. Using this technique, negligible code
growth is incurred.

3.2 User-level Branch Vector Access
Once the program has been modified and analyzed, it is

executed, as shown in Figure 2 Box 2. LBR monitoring
begins when the test program enters its main method, and
branch recording continues until the last instruction before

the program ends. This prevents observation of the setup
and teardown instructions executed as the program is loaded
into and taken out of memory. Samples are taken based
on the number of CPU Cycles observed during execution.
When the sample rate of cycles is reached, the branches in
the LBR are read and compared against the items in the
branch table, and observed branches are marked as taken.

There are a number of ways to access branch vector data
contained in the LBR. Many techniques in profiling, debug-
ging, and other software tasks use some form of user-level
performance monitoring API. Alternatively, a lower lever
approach using interrupts can be used.

3.2.1 Access via Polling

The simplest technique to access and read the LBR is
through a performance monitoring API and Linux’s poll
event. The test program is first spawned and executed us-
ing ptrace. Once the program has started execution suc-
cessfully, LBR reading is enabled through a high level call
to the operating system, as is the hardware counter that is
to be used to trigger sampling. The monitoring program
then repeatedly calls poll, which waits for the file descrip-
tor associated with the performance counter to contain data
that can be read, as shown below.

for(;;) {
ret = poll(pollfds, 1, -1);
if (ret < 0 && errno == EINTR)

break;
process_smpl_buf(file_descriptor);

}

While poll is an effective technique to report sets of LBR
and performance counter data, repeatedly calling poll when
no data is available causes unnecessary overhead. Thus, we
created an alternative technique that takes advantage of in-
terrupts.

3.2.2 Interrupt Driven Access

In our second technique, we replace the repetitious call
to poll with a lower level, more efficient hardware access
approach. The hardware counters and LBR are enabled in
the same way as described in Section 3.2.1. The poll calls
are replaced by an I/O signal handler associated with our
desired hardware mechanisms. The signal handler is imme-
diately triggered upon the associated performance counter’s
overflow. After performing several checks, the signal handler
reads the LBR branch vector, and each branch is processed.
The associated hardware counter then is reset and the pro-
gram is resumed. By handling the performance counter no-
tification and refreshing the counter directly from within the



monitoring tool, we expect to significantly reduce the over-
heard associated with accessing and gathering data.

3.3 Branch Coverage

Figure 4: Dominator analyses based on an observed branch.

When accessing user-level branch vectors, sampling is used.
Thus, it is possible that some executed branch data will not
be recorded. To improve the branch coverage observed us-
ing a pure hardware approach to branch testing, monitored
coverage details may be extended using compiler-based anal-
yses, depicted in Figure 2 Box 3. These analyses can be
performed offline or on a separate core during program ex-
ecution, giving priority to the application being monitored.
We first associate the branches observed by the LBR with
branches in the control flow graph representation of the pro-
gram. Dominator and post-dominator analyses are then ex-
ecuted on the control flow graph to build a dominator tree.

Within a dominator tree, a basic block b dominates ba-
sic block c if every path from the entry of the control flow
graph to basic block c contains basic block b. A basic block b

post-dominates basic block c if every path from c to the exit
of the CFG contains basic block b. For example, Figure 4
shows a control flow graph of a function in which the LBR
has observed branch 5-7. Because basic blocks 5 and 7 were
executed, blocks 1 and 2 must also have executed based on
the dominator analysis. Blocks 8 and 11 also necessarily exe-
cuted based on the post-dominator analysis. Based on these
two analyses, it is inferred that the conditional branches 1-2
and 2-5 must have executed, as well as the unconditional
branch 7-8. Note that our branch testing technique only
monitors conditional branches. However, when full branch
vectors are observed, more branch vectors may be implied.

4. EMPIRICAL EVALUATION
The primary goal of this paper’s empirical study is to eval-

uate the use of a hardware approach for structural testing
for branch coverage calculation. We implemented THeME
as described in Section 3 to measure its efficiency and effec-
tiveness in comparison to using instrumentation. The goals
of the experiments are as follows:

• Analyze the time overhead and code growth incurred
by the program modification tool.

• Identify the differences between two methods of taking
hardware samples in terms of efficiency.

• Analyze the trade-offs between efficiency and effective-
ness of calculating coverage information using a hard-
ware approach.

• Reveal benefits of testing using hardware mechanisms
on multiple cores

• Demonstrate how static analysis can be used along
with hardware mechanism monitoring for improved test
coverage

4.1 Experiment Design and Metrics
We execute THeME on an Intel Core i7 860 / 2.8 GHz

quad-core machine with 4GB of memory running Linux Ker-
nel 2.6.34. The Intel Core i7 processor was selected because
it has a LBR buffer that reports a branch vector of size 16,
the largest currently available.

We used the SPEC2006 C Integer Benchmarks as test pro-
grams for our system. Each program was compiled with de-
bugging information and with no optimization options spec-
ified. Debug information is included to link the executing
binary instructions to the source code branch edges.

We analyze our system based on the efficiency and effec-
tiveness of its branch coverage calculations. The efficiency
of our infrastructure is calculated based on the base run
times of benchmark execution reported by the execution tool
of the SPEC2006 benchmarks, runspec. All timing results
are compared to the overheads observed from execution of
full software-instrumented versions of the benchmarks. Test-
Cocoon [11] was used to generate the instrumented bench-
marks.

The effectiveness of our infrastructure is analyzed by com-
paring the branch coverage observed using THeME to the
coverage observed using full branch instrumentation. Cov-
erage is calculated by dividing the number of branch edges
observed using each technique by the total number of branch
edges in the program.

4.2 Experiments and Results
We run four sets of experiments in order to analyze 1)

the effects of our fall-through enabling program modification
tool, 2) the efficiency and effectiveness of monitoring using
hardware mechanisms on a single core, 3) the efficiency and
effectiveness of monitoring using hardware mechanisms on a
single core, and 4) the benefit of incorporating static analy-
ses in terms of effectiveness.

4.2.1 Enabling Fall-through Visibility

The first experiment analyzes the effects of the program
modification tool within THeME. We first examine the time
overhead effects on the modified program compared to full
instrumentation. Then we examine the code growth in-
curred. Table 1 lists the SPEC2006 benchmarks analyzed
and the associated time overheads considered in this pa-
per. The left side of the table shows the branch coverage
as reported through instrumentation, the native program’s
execution time, the fall-through enabled (i.e. modified) pro-
gram’s execution time, and the fully instrumented program’s
execution time when executing on the SPEC2006 test input
set. The right side of the table shows the same information
when executing on the ref input set.

Our fall-through enabling modification tool generates pro-
grams that have on average only 5% time overhead compared



Table 1: SPEC 2006 benchmark time overhead information.

test ref
Benchmark Branch Time(s) Modified Instrumentation Branch Time (s) Modified Instrumentation

Cov. Time (s) Time (s) Cov. Time (s) Time (s)
bzip2 63.49% 16.5 16.9 18.6 64.20% 1499 1514 1599
h264ref 27.53% 43.8 43.8 47.7 35.72% 1753 1786 1890
libquantum 37.79% 0.155 0.16 0.165 39.07% 1056 1178 1236
mcf 73.70% 3.66 3.86 4.08 74.01% 529 539 575
sjeng 46.29% 6.92 7.74 8.96 48.87% 1028 1162 1312

Table 2: SPEC 2006 benchmark code growth information.

Benchmark Native Mod. Instr.
Size (kB) % Increase % Increase

bzip2 260 kB 1.52 32.65
h264ref 2892 kB 0.69 18.39
libquantum 208 kB 0 20.00
mcf 128 kB 0 17.95
sjeng 592 kB 0.67 30.05

to native execution. Adding full software-level instrumenta-
tion, on the other hand, introduces a 14% time overhead on
average. In the case of sjeng, full instrumentation increases
the time overhead by nearly 30% when executing both the
ref and test inputs, whereas our tool adds only around 12%.

Table 2 shows the percent of code size increase of the
modified and instrumented programs compared to native
size. Our modifications are much more lightweight than tra-
ditional instrumentation probes and payloads because ours
consist of only unconditional jumps and no payloads. In our
benchmarks, full branch instrumentation results in code size
increases ranging from 18% to 32%. Our tool, however, gen-
erates programs that are on average only 0.5% larger than
the native code.

4.2.2 Testing on a Single Core

For the next set of experiments, we implement the two
techniques described in Sections 3.2.1 and 3.2.2. There are a
number of ways to access hardware mechanisms such as user-
level APIs like OProfile [15], PAPI [4], and Perfmon2 [10].
However, none of these yet support LBR reading. We in-
stead use a user-level tool, libpfm4, and its kernel-level in-
terface, perfevents [10]. Because the current perfevents and
libpfm4 APIs do not provide an interface to the LBR, we
modified perfevents at the kernel level to include LBR sup-
port using a proposed patch [10]. We also patched libpfm to
allow it to take advantage of the underlying kernel modifica-
tions. These APIs give us the ability to setup, teardown, and
read hardware performance monitors and counters. We now
analyze our two techniques for accessing the LBR based on
efficiency, and then we examine the code coverage obtained
by sampling the LBR at various rates.

Access via Polling- Efficiency: Figure 5 shows the time
overhead of branch testing when accessing the LBR using the
polling approach relative to full software-level instrumenta-
tion. The results for running on the test inputs of the SPEC
benchmarks are displayed. As expected, the repeated calls
to poll when no data is available causes unnecessary over-
head. At sampling rates of 10 and 50 million, the polling
approach improves time overhead slightly compared to the

libquantum mcf sjeng

Pe
rc

en
t t

im
e 

ov
er

he
ad

Sample periods per benchmark

Percent Time Overhead Using Polling Approach on Test Inputs

500K
1M
5M
10M
50M

  −10%
  0%

  10%
  20%
  30%
  40%
  50%
  60%

bzip2 h264ref

Figure 5: Time overhead for LBR sampling accessed using polling

relative to full instrumentation on test inputs.
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Figure 6: Time overhead for LBR sampling accessed using an

interrupt-driven approach relative to full instrumentation on test
inputs.

use of full instrumentation, performing with 12% less over-
head than instrumentation in the case of sjeng. However,
as sampling is performed more frequently, the cost due to
repeatedly polling quickly rises. For example, sampling the
LBR every 500K CPU cycles for h264ref results in 51% time
overhead over instrumentation.

Interrupt Driven Access- Efficiency: Figure 6 shows
the time overhead of branch testing when accessing the LBR
using the interrupt-driven approach relative to full software-
level instrumentation. Using the interrupt-driven approach
for access substantially improves the time overhead of gath-
ering branch vectors compared to the polling approach re-
sults depicted in Figure 5. At sample rates of five, ten,
and fifty million, the time overhead of branch testing is im-
proved over instrumentation for all benchmarks other than
libquantum. This is because libquantum only executes for
0.155 seconds, as seen in Table 1, and its percent time over-
head is greatly impacted by any amount of noise. Sjeng ’s
time overhead, however, can be reduced by 13% compared
to instrumentation.
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The time overhead reported for sampling using the LBR
does include the time overhead incurred by the program
modification. Thus, using one of the alternative methods
of detecting fall-through branches described in Section 3.1
would further improve the time overheads described here.

To better understand the effects of sampling the LBR on
time overhead and coverage, we next evaluate the time over-
head and branch coverage measured when reading the LBR
every 500 thousand, 1 million, 5 million, 10 million, and
50 million CPU cycles while executing the ref inputs of
the SPEC 2006 benchmarks. Each benchmark executes an
average of 19.55 minutes, as shown in Table 1. The time
overhead of executing larger programs with LBR sampling
increases when sampling at smaller rates such as 500 thou-
sand. This is potentially due to the operating system be-
coming overloaded with interrupts at lower sampling rates.
At higher rates (e.g. 5 million, 10 million, 50 million), the
time overhead incurred shown in Figure 7 is consistent with
the time overhead when executing on the test inputs.

Effectiveness: On average, 76% of the coverage reported
by instrumentation is observed when sampling the LBR ev-
ery 500 thousand CPU cycles, as seen in Figure 8. The
percent of coverage reported was nearly the same for each
benchmark when using the polling or interrupt-based tech-
niques. Sjeng achieves 82.61% of the coverage reported when
monitoring by instrumentation, although the time overhead
at that rate is 21.57% worse than instrumentation. However,
at a sample rate of 50 million, sjeng still achieves 70.15% of
the coverage reported using instrumentation while execut-
ing 12% faster than instrumentation. At a sample rate of 50
million, the average percent of coverage reported by instru-
mentation is reduced to 54%, but with a 6% improvement
with regard to time.

4.2.3 Testing across Multiple Cores

We next observe the effect of monitoring test execution
on multiple cores. Our multicore experiments focus on the
two of the five SPEC2006 benchmarks tested in this research
that include multiple inputs in the ref test set. Each input is
executed on a separate core, and the coverage results were
aggregated across cores as each test execution completed.
The same sample rate was used on each core. Also note
that the same procedure was followed when monitoring with
hardware and with instrumentation. The reference input
set of bzip2 includes six inputs, and h264ref includes three.
Because our experiments are run on a quad core machine,

Figure 8: Coverage observed using LBR sampling via the

interrupt-driven approach on ref inputs compared to instrumen-

tation.
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Figure 9: Time overhead for LBR sampling over multiple cores

compared to using instrumentation on multiple cores.

we executed only the first four inputs to bzip2.
As shown in Figure 9, the time overhead of monitoring the

execution of the first four inputs of bzip2 using the LBR was
4% to 14% less than than when using instrumentation. By
removing instrumentation, the time overhead of executing
test inputs on each core is improved, enabling greater time
savings than when executing on a single core. As expected,
the percent of actual coverage observed was the same as
when executing on a single core, shown in Figure 8.

Unlike the overhead incurred by monitoring bzip2, the
time overhead for h264ref using the LBR was greater than
that of using instrumentation at sample rates of 500 thou-
sand and one million. The timing results for h264ref are
only slightly lower compared to sampling and executing on
a single core. This is due to the fact that one of h264ref ’s in-
puts executes for approximately 82% of the total execution
time of the three inputs. Thus, the savings from execut-
ing the other two inputs on separate cores is not enough to
substantially reduce the overall time overhead of monitoring
h264ref using multiple cores versus a single core.

These experiments demonstrate that the time overhead
of monitoring across multiple cores, relative to using in-
strumentation on multiple cores, incurs lower time overhead
than when monitoring the LBR on a single core, relative to
using instrumentation on a single core. Therefore, branch
coverage analysis of multithreaded programs that execute
on multiple cores will experience similar benefits to those of
sequential or multithreaded programs executing on a single
core. When the workload is evenly divided between multiple
cores, we expect to observe time overhead results similar to
those of bzip2 in Figure 9.



4.2.4 Improving Coverage at High Sample Rates

In our final experiments, we demonstrate how the static
analyses described in Section 3.3 can be used along with
hardware mechanism monitoring for improved test coverage.
Our dominator analyses were executed using the LLVM com-
piler infrastructure [13]. By incorporating these two analy-
ses, the percent of actual coverage observed was improved
from an average of 76% to 83% across all benchmarks at a
sample rate of 500 thousand, as shown in Figure 8. At a
rate of 50 million CPU cycles, the average percent of actual
coverage is improved to 62.32% from 54% without domina-
tor analyses. For sjeng, the dominator analysis improved
coverage by only 1% on average across all rates. However,
in mcf, the dominator analysis improved coverage by 9% on
average. Mcf achieves 90% of instrumentation’s test cover-
age with a sampling rate of 500 thousand and 72% with a
sampling rate of 50 million. The results show that supple-
menting LBR samples with information from simple static
analyses that are already performed by the compiler can po-
tentially greatly improve coverage results depending on the
program design.

5. HARDWARE MONITORING BENEFITS
From the experiment results, we see that the THeME sys-

tem successfully enables a low overhead but effective branch
testing technique for single and multithreaded programs.
Used in conjunction with static analyses, LBR monitoring
achieved up to 90% of the branch coverage observed using
instrumentation with reduced time overhead and negligible
memory overhead.

An approximation of coverage can be useful in a num-
ber of scenarios. One example is when testing on resource-
constrained devices where the addition of instrumentation
may be prohibitive in terms of time, memory, or power con-
sumption. This technique provides a way to test on the
devices themselves. Another scenario in which coverage loss
is acceptable is in software tasks that only require a coverage
estimate. For example, in regression test suite prioritization
techniques, coverage is traditionally used to estimate fault-
finding ability. THeME can be used to estimate fault-finding
ability in an efficient way. Finally, while this work focuses
on sampling at a constant rate throughout execution, the
LBR can be turned on and off for different sections of a
program based on the task at hand. Alternatively, the sam-
pling rate can be tuned depending on what portion of the
program is executing. For example, at points of concern, the
rate of sampling can be increased to provide more accurate
coverage estimations. Our system can additionally support
applications such as data flow coverage, predicate coverage,
and remote debugging.

Leveraging hardware mechanisms over using instrumenta-
tion has several additional advantages. The main advantage
of leveraging hardware mechanisms rather than using instru-
mentation is with regard to the time overhead and lack of
code growth. Both of these overheads can reduce the ability
to test programs thoroughly, particularly on resource con-
strained devices such as tablets or mobile phones for which
software generally is tested using emulators. Nearly all of
these devices now include processors that have many ac-
cessible hardware counters and monitors. For example, the
iPhone 3GS, Nokia n900, Samsung Galaxy Nexus, iPad2,
Motorola XOOM, and the Amazon Kindle Fire all use ARM

Cortex-A8 or A9 processors, which have more than fifty ac-
cessible hardware counters that can be utilized and are ac-
cessible at the kernel and user levels. These monitors include
tracking of cpu cycles, branches retired, data read/writes,
and more [10, 15]. Other processors used in related devices
similarly have a wide array of accessible hardware counters
that can be used to enable testing on the devices themselves.

Another key advantage of using hardware mechanisms
over instrumentation has to do with what events can be mon-
itored. The use of instrumentation is inflexible in that only
that which is instrumented can be monitored. To improve
understanding of program execution, more instrumentation
must be added, further increasing the time overhead and
code growth of monitoring. Instrumentation traditionally
must be added into a program’s source code or binary. Hard-
ware mechanisms, however, can be used to monitor multiple
events at both the user and kernel levels. Thus, instead
of analyzing only a section of program execution, hardware
mechanisms can also report events that occur outside the
source such as in library calls and external routines, grant-
ing a much fuller picture of program execution with relation
to interconnected executing programs/libraries and the sys-
tem.

6. DISCUSSION
In this paper, we have described several methods used to

improve the efficiency and effectiveness of our branch moni-
toring techniques. However, there are a number of promising
opportunities to advance hardware performance monitoring
technology at the hardware, kernel, and software levels that
could further improve our access schemes.

6.1 Elimination of OS Shepherding
In current systems, the kernel is required to shepherd

all functions related to configuring, accessing, and reading
hardware mechanisms. Requiring the operating system’s in-
volvement in all of these functions comes at a cost that is sig-
nificantly higher than is necessary. At the lowest level, com-
pletion of these operations requires either reading or writ-
ing registers on the processor core, which is highly efficient
by nature. However, when each operation is performed via
the operating system, there are a number of added sources
of overhead. These include an added system call to enter
the privileged kernel mode, the saving of context by spilling
user-level state to memory, and restoring this state when
execution is returned to the user-level application.

For many of the traditional applications that use hardware
monitoring, this kernel-level usage model is sufficient. Gen-
erally, hardware counters and mechanisms are only set up
and torn down at the beginning and end of an application’s
execution. Often, the monitored counter is left to increment
until the end of the application’s execution, at which point,
it is read. Thus, kernel involvement is required only twice.
In other monitoring techniques, hardware mechanisms can
be accessed and read infrequently during program execu-
tion [18, 19]. However, because test coverage analysis re-
quires more frequent monitoring, requiring OS involvement
on each sample severely effects the time overhead of anal-
ysis. Allowing counters to be accessed directly from user
mode, would result in a significant reduction in the cost of
accessing the hardware mechanisms [26].

There are two ways to achieve user control of hardware
mechanisms. One requires hardware modification, while the



Figure 10: Moving private performance monitoring units to a

global space to enable Satellite Monitoring.

other can be done using current hardware. The first ap-
proach is to allow the operating system to control the access
permissions of hardware mechanisms directly by adding a
simple register that can be used to specify execution modes
that have direct access. While the overhead in the chip’s
die area to support this added permissions mode would be
negligible, hardware modification would be required. The
second approach is to have the kernel not set the mode of the
processor back to user mode when execution returns to the
application of interest. This technique would only require
modifying the OS code, but it would result in a security
hole that can be exploited by malicious programs.

6.2 Satellite Monitoring
Another opportunity to improve hardware monitoring ef-

ficiency is to enable what we call satellite monitoring. Cur-
rently, hardware monitoring information can only be col-
lected from the core hosting the application being moni-
tored. This necessitates that the program be interrupted to
collect the needed information. However, allowing hardware
monitoring information to be accessed from any core would
require minimal hardware modification. It would require
moving each core’s performance monitoring unit (PMU),
which controls hardware monitoring ability, into the “un-
core.”

Figure 10 illustrates moving each private PMU to the
global uncore area. Making the aggregated PMU univer-
sally accessible would require an added core id assigned to
each global PMU and added bus lines from each core. This
approach would allow the monitoring and analysis of the ap-
plication from a core separate from those hosting the appli-
cation’s threads, allowing the application to be unperturbed
throughout execution. Using this approach would allow us
to combine the advantages of multicore with those of per-
formance monitoring technology.

6.3 Improving Effectiveness Through Instru-
mentation

The effectiveness of our techniques could also potentially
be improved by inserting a small amount of software-level in-
strumentation into the application. Samples from hardware
mechanisms are much more likely to observe instructions
that occur along frequently executed paths. Instructions
that are only hit occasionally, however, may not be seen.
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Figure 11: Percent of coverage observed when selectively instru-

menting branches compared to instrumentation.

Ideally instrumentation would be added only to branches
that are unlikely to be observed in LBR samples, and it
would be inserted dynamically or prior to executing the test
suite. However, identifying these locations is challenging.
Without prior knowledge of program execution or profile
information of the application, it is unclear where instru-
mentation should be inserted. If instrumentation is added
unnecessarily, the overhead improvements from leveraging
the LBR will be reduced. On the other hand, a conservative
approach may have little impact on improving efficiency.

Figure 11 shows the coverage results of selectively instru-
menting the benchmark applications when prior knowledge
of execution, as reported by the LBR, is available. For each
benchmark, instrumentation is added along any branch edge
that was not observed by the LBR with a sampling rate of
500 thousand. Then the application is executed a second
time to calculate the coverage obtained from both hardware
and instrumentation. As is shown in Figure 11, at a sample
rate of 500 thousand, nearly complete coverage information
is observed in all cases. At a sample rate of 50 million CPU
cycles, an average of 80% of instrumentation’s test coverage
is achieved.

These results are promising in terms of effectiveness. How-
ever, for a hybrid approach to be applicable for structural
testing, we should assume that there is no prior analysis
information available for the application and that the test
suite only needs to be executed once to calculate coverage.

7. RELATED WORK
Much existing work exists that leverages hardware perfor-

mance monitoring support for program counter sampling or
event tracking is used for optimization, profiling, and debug-
ging. To our knowledge, hardware performance monitoring
has not previously been applied to branch testing techniques.

In our prior work [26], we discuss some of our prelimi-
nary efforts in exploiting hardware mechanisms for coverage
monitoring, and a naive approach to LBR sampling is an-
alyzed for efficiency. However, access techniques, the use
of multiple cores, or effectiveness is not evaluated. In this
paper, we explain the design of THeME and analyze the ef-
fects of accessing the LBR for coverage monitoring in terms
of efficiency and effectiveness using different sampling rates
over single/multiple cores. System improvements for effec-
tiveness are also analyzed.

The work by Shye et al. [25] is most closely related to our
research regarding using hardware mechanisms for monitor-
ing. Their technique calculates basic block coverage, rather
than branch edge coverage, using a combination of static



analysis and Branch Trace Buffer (BTB) samples for the
purposes of debugging. The BTB, available on the Itanium-
2, is much like the LBR in that it is a circular buffer that
stores the instruction and target addresses of branches exe-
cuted. However, the BTB holds only four branches. In their
work, after gathering all branch vector information, each
vector is mapped to a partial path to calculate basic block
coverage. Using this technique, they observe on average 47%
of actual number of covered basic blocks using a sampling pe-
riod of 100K with a performance overhead of approximately
25%. To improve coverage precision, they demonstrate the
coverage increase when sampling is supplemented by a dom-
inator analysis. Also, they perform aggregated runs, which
is undesirable when testing, to try to gather more complete
data, which is undesirable when testing.

The LBR is more commonly available on commodity ma-
chines and contains the last sixteen executed branches. This
allows for more consecutive branch information to be ob-
served. By using the LBR, we are able to gather more sam-
ples per period than if using the BTB, which enables us to
achieve higher quality coverage data at lower sampling rates.
We also implement more sophisticated sampling techniques
and use multicore technology to improve the quality of our
branch coverage approach.

Following the work of Shye et al. [25], Tran et al. [28]
use specialized hardware to improve executed branch gath-
ering. Using this hardware, they are able to achieve nearly
100% coverage with only 8% to 12% overhead. However,
the hardware used is specialized, and the benchmarks are
not standardized.

Hardware mechanisms have been successfully applied out-
side of testing and debugging for low overhead profiling of
microarchitectural events. While hardware counters have
been used in areas such as cache profiling [14], they have
also proven useful for path profiling [1]. In work by Azimi
et al. [3], a technique to use limited performance counters
to simultaneously profile multiple events using sampling for
performance analysis is introduced. Recent work by Ra-
masamy et al. [22] uses retired instruction events to dynam-
ically calculate edge frequency estimates for profiling with
a time overhead of less than 2% and no size increase. Mars
and Hundt [18] and Chen et al. [7] use hardware performance
monitors to aggressively tune dynamic optimizations. Yil-
maz and Porter [29] also recently applied hardware mech-
anisms to distinguish failed executions from successful exe-
cutions at a fraction of the runtime overhead cost of using
software-based execution data. Finally, Sheng et al. [24] cre-
ated a novel race detection tool that samples memory traces
by sampling hardware mechanisms rather than using inva-
sive instrumentation.

Sampling has also been used in software tasks, but with-
out the use of hardware mechanisms, to improve efficiency.
In work by Arnold and Ryder [2], instrumentation sampling
is used to reduce the overhead of using complete sampling
for profile collection. Their framework switches between in-
strumented and non-instrumented code by placing a sample
condition on all method entries and backedges. A sample
condition is checked, potentially causing the tool to execute
fully instrumented code, based on a trigger mechanism. Us-
ing this combination of instrumented and non-instrumented
code resulted in above 90% accurate profiles with 6% over-
head.

Lightweight instrumentation combined with sampling of

program executions has also been used for statistical bug
isolation [16, 17]. Although these works do not focus on sam-
pling techniques or applications of hardware, they demon-
strate how instrumentation and sampling can be used to-
gether to produce highly accurate but low overhead results.

8. CONCLUSION
The work in this paper demonstrates that hardware mech-

anisms and multicore technology can be adapted for use in
efficient and effective branch coverage analysis. We devel-
oped a runtime system that performs branch coverage anal-
ysis by monitoring hardware mechanisms on single and mul-
tiple cores. Monitoring program execution using hardware
mechanisms was up to 11.13% faster in our tests compared
to using instrumentation, but it does not provide complete
coverage information. To improve coverage, we addition-
ally perform a compiler analysis to extend the amount of
coverage derived from each sample. The results show up to
90% of the actual code coverage can be determined with less
time overhead and negligible code growth compared to using
instrumentation.

Because these hardware approaches require only minor
or no alterations to the program under test and incur low
time overhead, they are ideal in resource constrained envi-
ronments where testing generally cannot be performed with-
out emulation. For this reason, they can also be applied to
enable the testing of time-sensitive or multithreaded code.

In future work, we intend to combine hardware sampling
with dynamic instrumentation to improve the effectiveness
of our monitoring techniques. We also intend to imple-
ment THeME on resource constrained environments, such
as tablets or smart phones. We are also interested in ap-
plying our hardware monitoring schemes to other coverage
metrics for sequential and multithreaded programs.
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