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Abstract

Due to the complexity and the massive scale of mod-

ern warehouse scale computers (WSCs), it is challenging

to quantify the performance impact of individual microar-

chitectural properties and the potential optimization ben-

efits in the production environment. As a result of these

challenges, there is currently a lack of understanding of the

microarchitecture-workload interaction, leaving potentially

significant performance on the table.

This paper argues for a two-phase performance analy-

sis methodology for optimizing WSCs that combines both

an in-production investigation and an experimental load-

testing study. To demonstrate the effectiveness of this two-

phase approach, and to illustrate the challenges, method-

ologies and opportunities in optimizing modern WSCs, this

paper investigates the impact of non-uniform memory ac-

cess (NUMA) for several Google’s key web-service work-

loads in large-scale production WSCs. Leveraging a newly-

designed metric and continuous large-scale profiling in

live datacenters, our production analysis demonstrates that

NUMA has a significant impact (10-20%) on two important

web-services: Gmail backend and web-search frontend.

Our carefully designed load-test further reveals surprising

tradeoffs between optimizing for NUMA performance and

reducing cache contention.

1 Introduction

As much of the world’s computation continues to move

into the cloud, the computing demand on the class of dat-

acenters recently coined as “warehouse scale computers”

(WSCs) [12] rises. As such, it becomes increasingly im-

portant that the performance and utilization of the machines

housed in WSCs are maximized. However, inefficiencies

and missed performance opportunities remain rampant in

modern WSCs. Although Google has architected and de-

ployed one of the largest and most advanced datacenter in-

frastructures in the world, we observe it is not free from

inefficiencies and missed opportunities.

At the high level, this problem stems from a lack of

understanding of the interaction between our web-service

workloads and the underlying machine architectures housed

in our WSCs. This outcome is the natural result of the de-

sign philosophy of abstracting the underlying computing re-

sources in WSCs as homogeneous across various idiosyn-

cratic microarchitectural and system designs. Concretely, a

WSC is viewed as a collection of thousands of cores, ter-

abytes of main memory, petabytes of disk space, etc., with-

out an explicit notion of microarchitectural resources and

features such as on-chip caches, non-uniform memory ac-

cess, off-chip bandwidth, etc. Evolving WSC designs to

recognize and optimize for these microarchitectural proper-

ties may provide large performance and utilization advan-

tages. However, investigating the opportunity cost of opti-

mizing for these microarchitectural properties in production

is a challenge in itself, and methodologies to accomplish

this type of analysis are few.

[Challenges] Ideally, we aim to study the interaction

between workloads and architecture as it relates to the

scheduling of jobs to machines, and the individual threads

of a job to the cores across sockets of a given machine. We

are interested in studying the interaction in the production

environment. However, unlike the benchmarking or load-

testing of individual applications in a controlled environ-

ment, it is difficult to link microarchitectural properties or

effects to individual applications or execution scenarios in

production for a number of reasons.

1. At the scale and complexity of production execution,
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performance factors are intertwined. When collecting

performance measurements in production, it is the in-

teraction of these factors that are captured, making it

quite challenging to investigate the performance im-

pact of each individual factor.

2. In addition, all of the factors impacting a performance

measurement may not be known, and can change spon-

taneously, such as load or user behavior.

3. Further exacerbating this challenge is the fact that suf-

ficient but low-overhead instrumentation to character-

ize and collect various performance effects must be

designed and deployed in the WSC to adequately di-

agnose and decompose these effects.

In practice, production measurements are often noisy

with large and sometimes seemingly inexplicable perfor-

mance swings. The compounding factors responsible for

these swings make it difficult to reason about individual ef-

fects on individual applications. This inability to isolate fac-

tors for scrutiny is one of the major challenges facing WSC

architects. For example, upon investigating the performance

of numerous instances of Gmail’s backend server, we ob-

serve around a 4x range in average request latency during a

week’s time. Note that, for this measurement, we only col-

lect performance information for instances of Gmail run-

ning across a number of identically configured machines

in a single cluster with similar user activity profiles. It is

overwhelmingly challenging to diagnose and attribute this

performance swing to individual microarchitectural factors.

Effects such as the contention for cache/bandwidth with

various corunning applications on a server, non-uniform

memory accesses (NUMA), and I/O interference among

other factors all carry implications on the effectiveness of

the policies used for cluster-level scheduling, machine-level

resource management, and the execution configurations of

the Gmail servers. Other factors not explicitly measured

in this particular Gmail study, such as load imbalance and

fluctuation, user accounts migrations, fault tolerance mech-

anisms (master and slave copy flips), and even datacenter

maintenance, may also be responsible for these large perfor-

mance swings, further complicating the investigation. This

example illustrates that, when investigating performance ef-

fects and anomalies in a production environment, it is dif-

ficult to tease out individual factors and study their respec-

tive performance impacts. As a result of the challenge of

estimating the benefit a particular change or optimization

will produce, architects and engineers may resort to sim-

ply implementing and deploying a solution before fully un-

derstanding the benefit. The downside to this approach is

that implementation and deployment are costly, and only

the clearly promising ideas can be entertained.

[Contributions] In this work, we argue for a two-part

performance analysis and characterization methodology for

investigations at the WSC scale. We illustrate the oppor-

tunities, challenges, methodologies and future directions in

identifying and architecting for performance opportunities

in modern WSCs by conducting an investigation of how

several widely used services in Google’s WSCs are affected

by NUMA. Our methodology combines the following two

parts:

• An in-production cluster-level investigation to quan-

tify the potential benefit of managing NUMA. We de-

signed a novel metric for NUMA locality that allows us

to deploy a low-overhead large-scale profiling in pro-

duction. We then relied on statistical methods to ana-

lyze the noisy production profiles to correlate NUMA

behaviors with the responsible performance swings,

teasing out the impact of other factors.

• An experimental load-testing approach at the single-

server level to gain a more in-depth understanding of

application level characteristics and the interaction be-

tween NUMA and other microarchitectural properties.

While the production analysis sheds light on the per-

formance opportunities in a real-world setting with the

existence of various other compounding performance

factors, the single-node load-testing allows us to fur-

ther establish the distinction between correlation and

causality to hone in on the performance effects as well

as the interaction between NUMA and other perfor-

mance factors.

This paper focuses on a potentially significant opportu-

nity for improving performance and efficiency in WSCs,

namely, the explicit consideration of non-uniform mem-

ory access (NUMA) when executing jobs in WSCs. Un-

derstanding the impact of NUMA on large-scale commer-

cial web-service workloads provides a potentially signifi-

cant performance opportunity and is critical as NUMA de-

signs are dominant in today’s server markets. There has

been a wealth of prior research regarding NUMA-related

scheduling approaches [1, 4, 5, 9, 18–20, 27, 28]. However,

in contrast to NUMA on a single machine, or the treatment

of a cluster of distributed shared memory seen as a single

NUMA computing unit, new implications are introduced at

the scale of thousands of NUMA machines constituting a

single WSC. Due to the challenge of characterizing the in-

teraction between an individual microarchitectural property

and application performance in production WSCs, the im-

pact of NUMA on large-scale datacenter applications re-

mains unknown. And at the scale of modern WSCs, it re-

mains unclear whether the underlying system platforms are

effectively managing NUMA resources to maximize perfor-

mance and utilization.

[Results] Our production analysis results demonstrate

that a sizable performance opportunity exist in large-scale

WSCs as NUMA has a significant performance impact on



datacenter applications in production (10-20%). Our load-

test confirms the production results in general. Moreover,

the load-test experiments reveal surprising results that in

some scenarios, more remote memory accesses can outper-

form more local accesses significantly (by up to 12%) due

to the interaction and tradeoffs between NUMA locality and

cache sharing. To the best of our knowledge, this is the first

work to investigate the interaction between NUMA locality

and cache sharing/contention using large-scale datacenter

applications in production environment and demonstrates

some counter-intuitive insights.

The rest of the paper is organized as follows. Section 2

presents our study in production WSCs. Section 3 presents

our study using single node load-test. Section 4 discusses

our methodology and gained insights. Section 5 presents

related work and Section 6 concludes.

2 Impact of NUMA: Production Cluster-

Level Study

This section presents our cluster-level study in produc-

tion WSCs to quantify the impact of NUMA on large-scale

datacenter applications. We first design a metric to quan-

tify the amount and the average distance of remote accesses

for a job (a running instance of an application), namely,

the CPU-memory locality score or NUMA score. This sim-

ple metric allows us to perform lightweight and continu-

ous profiling of the CPU-memory locality for all jobs in a

large-scale production environment. In addition to the lo-

cality score, we also monitor and sample the performance

of each job, including its cycles per instruction (CPI) and its

application-specific performance metrics such as request la-

tency. Lastly, we conduct correlation analysis based on the

collected production samples to investigate the relationship

between CPU-memory locality and the application perfor-

mance to quantify the performance impact of NUMA.

2.1 Quantifying CPU-Memory Locality

To quantify the CPU-memory locality of an individual

job, we must capture its runtime CPU and memory usage

across different NUMA nodes on a machine. An example of

such NUMA machine is shown in Figure 1. To capture the

CPU usage of a job, we simply aggregate the OS exported

per-CPU usage statistics for each job. To calculate per-

node memory usage for each job, ideally we want to count

memory accesses among all NUMA nodes using hardware

performance counters. However, it is challenging to break

down those counters on a per-CPU basis (i.e. some coun-

ters are counting for a group of CPUs that are siblings in the

same domain) and accurately attribute them to concurrently

running jobs on the same machine. Therefore, we use each

job’s allocated memory page numbers and locations instead,

which are exported by the kernel, to approximate per-node

memory usage. The advantage of this approximation is that

it is lightweight for online profiling with low overhead. We

then normalize per-node CPU-memory usage such that they

sum up to 1 over all NUMA nodes. Let C[1..n] and M [1..n]
respectively denote normalized per-node CPU and memory

usage for a job on a n-node machine, and D(i, j) denotes

distance between two nodes i and j. The CPU-memory lo-

cality score (or NUMA score) of a job can be calculated as

below:

Score =

n∑

i=1

n∑

j=1

C[i] ·M [j] ·
D(i, i)

D(i, j)
(1)

The node distance D(i, j) is a machine-dependent table

which can be populated before hand. In our evaluation, we

use ACPI (Advanced Configuration and Power Innterface)

defined NUMA distance [17] for D(i, j). Specifically, a

node to itself has distance 10, 1-hop away node pair has

distance 20, 2-hop away node pair has distance 30. The lo-

cality score is between 0 and 1. We deploy the profiling

mechanism in production to periodically update and store

the CPU-memory locality score of all jobs.

2.2 Impact of NUMA in Production

Leveraging the locality score as described earlier,

we conduct our study using two large-scale applica-

tions: Gmail backend server and websearch

frontend in production. Both are important applications

in our WSCs. For example, Gmail is one of the biggest

email services in the world. It is also one of the top web-

services that consume an enormous amount of resources

in our production WSCs. Improving its back-end server

performance is critical for improving user experience and

reducing cost in production. In addition to profiling the

CPU-memory locality score (Equation 1) of each Gmail

backend server job, we also sample the performance

of each job for our correlation analysis. As we mentioned

earlier, one challenge for studying the performance impact

of NUMA in production is the existence and influence of

other performance factors in the complex production en-

vironment, such as heterogeneous machines, user migra-

tion, datacenter maintenance, uneven and fluctuating load,

as well as co-location with other applications. For example,

Gmail backend server jobs are run in various data-

centers across the globe on several types of machine plat-

forms that are from different vendors and different genera-

tions. The load for Gmail constantly fluctuates. Although

user accounts migration among machines and datacenters

across the globe is conducted regularly for load balancing,

the load still may not be evenly distributed across machines

within a cluster or across datacenters. In addition, Gmail

backend server jobs are not run in dedicated clusters.
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Figure 2. Percentage of Gmail backend server

jobs within various locality score ranges.

Therefore, each job may be co-located with other applica-

tions on a multicore server. To minimize the influence of

these factors, we collect a large amount of samples of hun-

dreds of Gmail server jobs at a fine granularity every day for

a few months from identically-configured AMD Barcelona

platforms in one production cluster. This AMD Barcelona

platform is shown in Figure 1, on which, four nodes are

asymmetrically connected using bi-directional HyperTrans-

port.

[NUMA Score Distribution] We first investigate the

percentage of Gmail backend server jobs that are

having remote memory accesses. Figure 2 presents the dis-

tribution of jobs in different CPU-memory locality score

(NUMA score) ranges. The locality score of each job on

each machine is sampled periodically (every 5 mins) on

AMD Barcelona in one production cluster. This figure sum-

marizes the sampling results for every Monday in a three-

month span (23/05 to 08/08). Each day, around 65k samples

are collected. On our AMD Barcelona platforms (Figure 1),

the NUMA score ranges from 0.33 (all memory accesses

are 2-hops away) to 1 (all accesses are in the local mem-

ory node). Figure 2 shows that NUMA score distribution

fluctuates. On May 23rd, all jobs are having 100% remote

accesses. The situation improves until June 13rd, when all

samples have locality score higher than 0.66, and then it de-

teriorates again. This fluctuation may be due to job restarts,

machine restarts, kernel updates, other high priority jobs get

scheduled to the machines, etc. But in general, on average,

for a significant amount (often more than 50%) of jobs, all

memory accesses are at least 1 hop away.

[Correlating NUMA Score and CPI] To investigate

if better memory locality necessarily indicates better per-

formance and to quantify the amount of the performance

swing due to local/remote memory accesses, we sam-

ples the Gmail backend server job’s cycles per

instructions (CPI) and correlate a job’s CPI with its local-

ity score. We use CPI for as our performance metric be-

cause 1) we observe that in our production clusters, most

latency-sensitive applications’ average CPI measurements

are fairly consistent across tasks and are well correlated

with the application-level behavior and performance; 2) it

can be sampled with very little overhead in production. Fig-

ures 3 and 4 present the results of the correlation analysis of

all samples collected on two randomly selected Mondays.

The x-axis is the NUMA score bin, and the y-axis shows the

average normalized CPI of all samples that belong to that

NUMA score range. The error bars show the standard de-

viations. These two figures show that the impact of NUMA

on performance (CPI) of Gmail backend server is

quite significant. In Figure 3, the CPI is dropping from

around 1.15x (at score 0.5) to around 1x (at score 1). It

is a 15% difference. Although the standard deviation is

not small due to the influence of other performance fac-

tors, the trend is clear. In Figure 4, the average normal-

ized CPI drops from 1.13x (at score 0.5) to 1x (score 1),

a 14% reduction. This shows that for Gmail backend,

in general, the more local accesses (higher locality score),

the better the CPI performance (lower CPI). In addition to

Gmail on AMD Barcelona, we also conducted similar study

for Web-search frontend on Intel Westmere servers.

The results are presented in Figure 5. Our Intel Westmere

platform is a dual-socket Xeon X5660 NUMA machine,

shown in Figure 9. Each chip has its own integrated mem-

ory controller and buses connecting to memory. Processors

are connected through Intel QuickPath interconnect (QPI).

Similar to Gmail, we observe a significant performance im-

provement when CPU-memory locality improves: on aver-

age the CPI drops from 1.20x to 1x when the locality score

improves from 0.5 to 1.

[Correlating NUMA Score and Application Perfor-

mance] In addition to CPI, we also correlate each Gmail

backend server job’s NUMA score with its user-



.8X 

.9X 

1.X 

1.1X 

1.2X 

1.3X 

1.4X 

0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1 

A
v
e
ra
g
e
 N
o
rm

a
li
ze
d
 C
P
I 

CPU‐memory Locality Score 

Figure 3. Gmail backend

server on 05/30. Bet-

ter NUMA score correlates

with lower CPI.

.8X 

.9X 

1.X 

1.1X 

1.2X 

1.3X 

1.4X 

0.4  0.5  0.6  0.7  0.8  0.9  1  1.1 

A
v
e
ra
g
e
 N
o
rm

a
li
ze
d
 C
P
I 

CPU‐Memory Locality Score 

Figure 4. Gmail backend

server on 06/20 - NUMA

score and CPI.

.9X 

1.X 

1.1X 

1.2X 

1.3X 

1.4X 

0.4  0.5  0.6  0.7  0.8  0.9  1  1.1 

A
v
e
ra
g
e
 n
o
rm

a
li
ze
d
 C
P
I 

CPU‐memory Locality Score 

Figure 5. Web-search Fron-
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CPI.
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specified performance metrics. Three important perfor-

mance metrics for Gmail backend server that we

investigated are CPU utilization, CPU time/request and

request latency (focusing on user requests to list email

threads).

Figures 6 - 8 present the average performance of all jobs

at each NUMA score range. The error bars show the stan-

dard deviations. The samples are collected on one Mon-

day for all Gmail backend server jobs running on all AMD

Barcelona in the same production cluster. CPU utilization

is sampled every 1 minute. CPU time/request and request

latency are sampled every 2 minutes. Figure 6 shows that

CPU utilization improves when the amount of local memory

accesses increases. The normalized CPU utilization drops

from 1.5x (at score 0.3) scenario to 1.07x (at score 1), indi-

cating 40% more CPU time is required for the same amount

of work when most memory accesses are remote (score 0.3).

Figures 7 and 8 also show similar correlations but the data

are less conclusive because of the measurement noise. The

standard deviations are significant especially when the lo-

cality score is in [0.4, 0.6) and [0.9-1) ranges. This may be

due to the fact that user requests latency often has a signifi-

cant performance swing during a single day even within the

same cluster because of other performance factors including

load changes.

[Summary] Our experiment results demonstrate that re-

mote memory accesses have a significant impact (10-20%)

on the performance (CPI and CPU utilization) of two large-

scale applications (Gmail backend and Web-search

frontend in production WSCs. However, due to the in-

fluence of other performance factors such as load fluctua-

tion, our results for two other performance metrics (request

latency and CPU efficiency) are fairly noisy and less con-

clusive. In the next section, we will conduct further investi-

gations using single node load-test. More discussion of the

results is presented after the load-test experiments in Sec-

tion 4.

3 Impact of NUMA: Single Node Load Test

To further confirm and quantify the NUMA impact ob-

served in production, we conducted single-node load-tests

for several key Google applications. With carefully de-

signed controlled experiments, the load-test also allows us

investigate at a fine granularity how NUMA locality inter-

acts with other microarchitectural factors on a commodity

server. Such interaction study is very challenging, if not

intractable, on the production cluster level.

One interesting interaction this work focuses on is the

tradeoffs between memory access locality and the im-

pact of cache sharing/contention on a CMP machine,

including when multiple applications are running on the

same machine simultaneously. Prior work [33] has recently

demonstrated the significant performance impact from shar-

ing memory subsystems such as last level caches and mem-

ory bandwidth on multicore machines. For large-scale data-

center applications, there can be both a sizable performance

benefit from properly sharing caches to facilitate data shar-

ing, and a potentially significant performance degradation

from improperly sharing and contending for caches and

memory bandwidth. However, neither recent work on cache

contention or prior work on NUMA takes the interaction

between memory locality and cache contention/sharing into

consideration. The tradeoffs between optimizing NUMA

performance by clustering threads close to the memory

nodes to increase the amount of local accesses and optimiz-

ing for cache performance by spreading threads to reduce

the cache contention remain unclear.

Table 1 presents the applications studied in our load-test

as well as their performance metrics. A load generator is set

up to feed the queries, collected from production WSCs, to

these applications. The performance presented in this sec-

tion is the peak load performance of each application after

the initialization phase, and the performance is fairly consis-

tent (within 1% difference) between runs. Our experimen-

tal platform is the same Intel Westmere used in the previous

section shown in Figure 9.

In our study, we conducted both solo and co-run experi-

ments. Six running scenarios (solo scenarios 1-3 and co-run

scenarios 4-6), shown in Figure 9, are evaluated for each ap-

plication. Each application is configured to have 6 threads.

In this figure, “X” denotes the threads of the application

of interest, “M-X” denotes where the memory of X is allo-

cated. In the co-run scenarios, “Y” denotes the co-running

application. In scenario 1, 100% of the “X” memory ac-

cesses are local. In scenario 3, 100% of the memory ac-

cesses are remote. Therefore the performance difference be-

tween these two scenarios for an application demonstrates

the impact of NUMA when the application is running alone.

In scenario 2, 50% of the memory accesses are remote. Also

in this scenario, 6 threads of “X” are spread across 2 sock-

ets using 2 last level caches (LLCs) instead of clustering to

1 shared cache as in scenarios 1 and 2. Scenarios 4-6 are

similar to scenarios 1-3 except that application “Y” now oc-

cupies the rest of the cores.

Figures 10 - 12 present our results. In each figure, the

y-axis presents the performance for each Google applica-

tion in 6 running scenarios. The performance is normalized

by the application’s performance in scenario 1. The x-axis

presents whether the application is running alone (solo), and

when it is not, its co-running applications.

[Solo] The first cluster of three bars in each graph shows

each application’s solo performance in scenarios 1-3. The

difference between the 1st and the 3rd bars in this cluster

demonstrates the performance impact of NUMA. In gen-

eral, each application is affected by the increase of re-



workload description metric

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text

documents and “explain” them with meaningful clusters.

throughput

bigtable storage software for massive amount of data average r/w latency

search-frontend-

render

Web search frontend server, collect results from many backends

and assembles html for user.

user time (secs)

Table 1. Datacenter Applications
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Figure 11. Normalized performance of

Bigtable
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Figure 12. Normalized performance of

Web-search frontend render

mote accesses. For example, cluster-docs has a 12%

performance degradation when all accesses are remote, as

shown by the first cluster of bars in Figure 10. However,

Bigtable (Figure 11) stands out to be a curious case,

whose performance for 100% remote accesses is better than

50% remote accesses. This may be due to the fact that

Bigtable benefits from sharing cache among its own sib-

ling threads. As reported in recent work [33] that Bigtable

has a large amount of data sharing (confirmed by its perfor-

mance counter profiles) and thus its performance benefits

from sharing the last level cache among its threads. Thus

when it cannot have 100% local accesses, interestingly, it

may prefer to cluster its threads to a remote node (1 shared

cache) than spreading them across sockets (2 shared caches)

for partial local accesses.

Another interesting case is cluster-docs (Fig-

ure 10), whose performance degradation for 50% local ac-

cesses comparing to 100% local accesses is quite insignif-

icant (1-2%). However, the 0% local accesses case has

a significant performance impact. This is because that

cluster-docs’ threads contend for cache space [33].

Therefore, although spreading its threads (scenario 2) in-

creases remote accesses, it also increases cache space, alle-

viating the performance degradation.

[Corun] The 2nd-4th clusters of bars in each figure

demonstrate each application’s performance in scenario 4-6



with 3 different corunners. Each cluster presents a differ-

ent corunner shown as the x-axis. For cluster docs

(Figure 10) and bigtable (Figure 11), the application

performance is similar when running with other applica-

tions (the 2nd to the 4th clusters of bars) as when run-

ning alone (the 1st cluster of bars). Figure 12 shows

that search-frontend-render’s best running sce-

nario changes as the co-runner changes. This indicates

that the tradeoff between NUMA and cache contention for

search-frontend-render depends on which other

applicatoin(s) it is running with. When running alone or

running with frontend-render, it prefers to maximize

the amount of local accesses. However, when running with

bigtable or cluster-docs, it prefers scenario 5 (run-

ning on a different socket from its corunner) to scenario 6

(sharing caches with corunner), despite the fact that sce-

nario 5 provides 50% local accesses rather than 0% in sce-

nario 6. In this case, cache contention causes more perfor-

mance degradation than 50% remote accesses. Note that

in previous section, our analysis indicates that the perfor-

mance of search-frontend in production is correlated

with the NUMA score, indicating the more local accesses

the better performance. And interestingly, our load-test

shows that search-frontend-render, a component

of search-frontend, sometimes may prefer remote ac-

cesses to cache contention.

In summary, our load-test experiments confirm that in

general the more local memory accesses, the better the per-

formance (up to 15% performance swing due to NUMA).

However, surprisingly, the load-test also demonstrates that

this conclusion does not always hold true. This is due to the

interaction between NUMA and cache sharing/contention.

4 Summary and Discussion

[Results Summary and Insights] Both our production

WSC analysis and load-test experiments show that the per-

formance impact of NUMA is significant for large scale

web-service applications on modern multicore servers.

In our study, the performance swing due to NUMA is up to

15% on AMD Barcelona for Gmail backend and 20% on In-

tel Westmere for Web-search frontend. Using the load-test,

we also observed that on multicore multisocket machines,

there is often a tradeoff between optimizing NUMA per-

formance by clustering threads close to the memory nodes

to increase the amount of local accesses and optimizing

for cache performance by spreading threads to reduce the

cache contention. For example, bigtable benefits from

cache sharing and would prefer 100 % remote accesses to

50% remote. Search-frontend prefers spreading the

threads to multiple caches to reduce cache contention and

thus also prefers 100 % remote accesses to 50% remote.

In conclusion, surprisingly, some running scenarios with

more remote memory accesses may outperform scenar-

ios with more local accesses due to an increased amount

of cache contention for the latter, especially when 100%

local accesses cannot be guaranteed. This tradeoff be-

tween NUMA and cache sharing/contention varies for

different applications and when the application’s corun-

ner changes. The tradeoff also depends on the remote

access penalty and the impact of cache contention on a

given machine platform. On our Intel Westmere, more of-

ten, NUMA has a more significant impact than cache con-

tention. This may be due to the fact that this platform has a

fairly large shared cache while the remote access latency is

as large as 1.73x of local latency.

Previous work demonstrates the impact of cache and

memory bandwidth contention for large scale WSC ap-

plications on machines with uniform memory accesses

(UMA) and proposes contention-aware adaptive thread

mapping [33]. In this work, we show that remote memory

accesses have a significant performance impact on NUMA

machines for these applications. And different from UMA

machines, remote access latency is often a more dominating

impact than cache contention on NUMA machines. This in-

dicates that a simple NUMA-aware scheduling can already

yield sizable benefits in production for those platforms.

Based on our findings, NUMA-aware thread mapping is

implemented and in the deployment process in our produc-

tion WSCs. Considering both contention and NUMA may

provide further performance benefit. However the optimal

mapping is highly dependent on the applications and their

co-runners. This indicates additional benefit for adaptive

thread mapping at the cost of added implementation com-

plexity.

[Methodology Discussion] In this work, we emphasize

the importance of establishing an investigative methodology

that incorporates both in production analysis and controlled

load-test experimentation when investigating and quantify-

ing the interaction between microarchitectural features and

large-scale datacenter applications. Only using one of these

approaches is often not sufficient for drawing meaningful

conclusions.

Live production analysis avoids the challenges of setting

up representative loads and replicating all aspects of the

real production environment in a small-scale test environ-

ment. However, performance analysis in production WSCs

is challenging as it requires automatic and lightweight mon-

itoring of large scale systems and careful correlation and

analysis of noisy data. On the other hand, while load-tests

allows us to conduct fine grain and controlled studies as we

can deliberately vary one or multiple performance factors

while keeping other factors identical to observe the perfor-

mance impact, designing a load-test that replicates produc-

tion behavior is difficult and sometimes intractable. This

work advocates a coarse production study as a first step to



identify evidence of a performance opportunity, followed by

finer load-test studies to isolate and pinpoint the important

factors related to the opportunity.

5 Related Work

A tremendous amount of research effort has been de-

voted to investigating the impact of NUMA on shared mem-

ory multiprocessors for various applications [4, 18, 27, 28]

and designing approaches to optimizing data placement and

OS scheduling for NUMA machines [1, 5, 8, 9, 19, 20, 31].

However, to the best of our knowledge, the impact of

NUMA on modern large-scale datacenter applications has

not been investigated and thus remains unclear. Also, most

of the studies are conducted in a benchmark environment

instead of a large-scale production environment. In addi-

tion, the above work does not focus on multicore architec-

tures or take cache contention into account. As multicore,

multichip servers are becoming widely used, especially as

the number of processor packages increases, it is becoming

necessary to revisit the impact of NUMA on the modern

CMPs for some emerging workloads. Some recent work

has measured NUMA-related performance in the state-of-

the-art multicores using carefully designed synthetic bench-

marks [11, 26]. On the other hand, there is a wealth of

research related to alleviating contention in memory sub-

systems including cache and bandwidth on current multi-

cores [7, 10, 15, 25, 29, 32–35]. Very recently, researchers

start to investigate the tradeoffs between improving NUMA

performance and reducing cache contention [3, 22]. In ad-

dition, related to constructing, scheduling and optimizing

datacenters and WSCs, several prior work presents the chal-

lenges and proposed solutions [2,6,12–14,16,21,23,24,30].

6 Conclusion

This paper illustrates the opportunities, challenges and

methodologies in identifying and architecting for perfor-

mance opportunities in modern WSCs, especially as it re-

lates to scheduling and thread management, through an in-

vestigation case study of how several important datacenter

applications are affected by NUMA. Leveraging our newly-

desgined CPU-memory locality metric and the large-scale

profiling system in production, we conduct correlation anal-

ysis to quantify the NUMA impact on several web-services

including Gmail backend servers in production WSCs. Our

results show that NUMA locality is critical to the perfor-

mance of datacenter applications and a simple NUMA-

aware scheduling can yield sizable benefits. In addition to

this finding in our production study, our load-test further

reveals the interesting performance tradeoffs between opti-

mizing for NUMA and reducing cache contention.
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