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ABSTRACT
As the class of datacenters recently coined as warehouse
scale computers (WSCs) continues to leverage commodity
multicore processors with increasing core counts, there is a
growing need to consolidate various workloads on these ma-
chines to fully utilize their computation power. However, it
is well known that when multiple applications are co-located
on a multicore machine, contention for shared memory re-
sources can cause severe cross-core performance interference.
To ensure that the quality of service (QoS) of user-facing
applications does not suffer from performance interference,
WSC operators resort to disallowing co-location of latency-
sensitive applications with other applications. This policy
translates to low machine utilization and millions of dollars
wasted in WSCs.

This paper presents QoS-Compile, the first compilation ap-
proach that statically manipulates application contentious-
ness to enable the co-location of applications with varying
QoS requirements, and as a result, can greatly improve ma-
chine utilization. Our technique first pinpoints an applica-
tion’s code regions that tend to cause contention and per-
formance interference. QoS-Compile then transforms those
regions to reduce their contentious nature. In essence, to
co-locate applications of different QoS priorities, our compi-
lation technique uses pessimizing transformations to throt-
tle down the memory access rate of the contentious regions
in low priority applications to reduce their interference to
high priority applications. Our evaluation using synthetic
benchmarks, SPEC benchmarks and large-scale Google ap-
plications show that QoS-Compile can greatly reduce con-
tention, improve QoS of applications, and improve machine
utilization. Our experiments show that our technique im-
proves applications’ QoS performance by 21% and machine
utilization by 36% on average.

1. INTRODUCTION
As more of today’s computing moves into the cloud, the
emerging class of datacenters recently coined as modern
warehouse scale computers [3] (WSCs) continues to embrace

commodity multicore processors as the dominating plat-
form [2, 3]. In currently available multicore designs, much
of the memory sub-system is shared. These shared com-
ponents include on-chip caches, data prefetchers, the mem-
ory bus, memory controllers, and underlying interconnect.
When multiple applications are co-running on a multicore
platform, contention for these shared resources often cause
a significant amount of performance interference [7, 23, 40].
This interference proves particularly problematic to large-
scale web service applications as it may prevent these appli-
cations from providing satisfactory quality of service (QoS).
Throughout this work, QoS is defined using each applica-
tion’s performance metric as specified in its service level
agreement (SLA) (e.g., a job’s QoS level of 95% corresponds
to 95% of the performance when an entire machine is dedi-
cated to that job).

Mitigating the impact of contention on an application’s QoS
and enforcing the relative QoS priorities of co-running ap-
plications, while maximizing machine utilization, remains a
key challenge in modern warehouse scale computers. On one
hand, in order to reduce machine and operational cost, it is
essential for datecenters to consolidate various workloads on
multicore servers to improve machine utilization [28]. On the
other hand, warehouse scale computer workloads are com-
posed of diverse applications with varying QoS requirements
and priorities. Key applications, usually those that are user-
facing and provide interactive service such as search, mail
and maps, are latency sensitive and have fairly strict QoS
requirements. Other applications such as backup service and
file compression are batch applications that are not latency
sensitive and have a lower QoS priority. When co-locating
applications on a multicore platform without an effective
QoS mechanism, the QoS of high priority applications may
suffer unacceptable amounts of degradation [22, 34]. Also,
high priority applications may even suffer more QoS degra-
dation than low priority applications, resulting in unaccept-
able priority inversion. As a result, modern warehouse scale
computers often resort to disallowing co-location of appli-
cations of a high QoS priority with any other applications,
which translates to low machine utilization at the cost of
millions of dollars [3]. This over-provisioning of compute re-
sources is one of the major reasons the utilization in modern
WSCs remains low, recently reported to be around 20% [24].

[Goal] The goal of this work (summarized in Figure 1) is
to enable the direct manipulation of the contentiousness of
low priority applications to ensure the QoS of a higher pri-
ority co-runner. Figures 1 (a) and (b) show the current
options available to WSC operators. Figure 1 (a) shows the
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       Low Utilization,  Peak QoS

(b) Allow Colocation. 
      High Utilization but significant 

QoS degradation

(c) Our Goal: Allow “Safe” Colocation, 
High Utilization, Acceptable QoS

Figure 1: Motivation and Goal

impact of disallowing co-location. Although both low and
high priority applications achieve a QoS of 100%, two ma-
chines are used. Figure 1 (b) shows the impact of simply
allowing co-location. Both applications are co-located on
one machine; however the QoS of the high priority appli-
cation suffers greatly. We also have QoS priority inversion
in this example. The goal of our approach is presented in
Figure 1 (c). With the capability of dampening an appli-
cation’s contentiousness, we can reduce the interference of
the low priority application to improve the QoS of the co-
running high priority application. In this case, co-location
can be allowed while achieving satisfactory QoS.

Although there has been much research attention on the
problem of contention on multicore processors, there are
currently no general software solutions for achieving the
QoS management and enforcement of QoS priorities as
described in Figure 1. Most of the prior research fo-
cuses on either novel architecture [6, 8, 9, 11] or schedul-
ing [1, 4, 7, 12, 13, 17, 36, 40]. Although the hardware solu-
tions have shown promising results using simulations, they
cannot be applied to multicore platforms that are already
in production or to be deployed in the near future. Mean-
while, although contention-aware scheduling may improve
the overall performance or fairness of a multiprogrammed
workload composed of a mixture of high contention and low
contention applications, its effectiveness is dependent on the
composition of the workload and it does not provide direct
manipulation of the contentious nature of an application. In
this work, we aim to provide a mechanism to trade a small
amount of QoS of low priority applications to enable more
“safe” co-locations and thus improve machine utilization in
the WSC.

There are two key insights of our approach. Firstly, WSCs
typically house a known set of long running applications,
such as web search and maps, running for weeks and months
at a time. A cluster-level scheduler maps multiple applica-
tions to each individual machine, and thus the co-location
persists for this period until a job finishes running. The var-
ious QoS priorities of these applications are known through-
out the lifetime of the WSC. In addition, binaries of these
applications are available and the profiling can be performed

continuously both in production and in test settings. Within
this environment, a compilation approach is particularly use-
ful for tailoring the binaries of these applications to “play
nice” together. Secondly, in the era of multicores and the
emerging computing domain of WSCs, the objectives of
compiler optimization ought to be multifaceted. Simply op-
timizing each application for its own individual performance
irrespective of the surrounding execution environment may
not be ideal. In this work, we argue for the additional objec-
tive of optimizing for an application’s “niceness,” to reduce
its potential interference to its co-running applications.

In this work, we present QoS-Compile, the first compila-
tion approach to mitigating contention and QoS degradation
for improved utilization in modern WSCs. The basic idea of
QoS-Compile is firstly, to identify code regions that aggres-
sively demand memory resources and may cause resource
contention; and secondly, transform their code layouts to
reduce their contentiousness thus reducing its interference
to the QoS of its co-runners. To identify contentious code
regions, we establish a model using performance counters
and a regression analysis to score the contentiousness of a
given sequence of executed code. A profiling run uses this
model to pinpoint the static code regions that are most con-
tentious. QoS-Compile then reduces the contentiousness of
an application by throttling down the memory request rate
of only the contentious regions. When no such regions are
detected, our rate reduction transformations are not applied.
This rate reduction in low priority applications improves the
QoS of high-priority applications and enforces their relative
priorities. QoS-Compile also provides a mechanism for users
to control the tradeoffs between QoS and machine utilization
by controlling the amount of rate reduction.

To the best of our knowledge, this paper is the first
to address the QoS challenges caused by contention for
multi-programmed workloads using compilation techniques.
Specifically, this paper makes the following contributions:

• We present a prediction model and profiling analysis
to identify code regions that may cause contention and
performance interference. This allows us to target our
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Figure 2: QoS-Compile Overview

compilation techniques only to the pinpointed code re-
gions.

• We present two compiler techniques that dampen a
code region’s contentiousness and the potential per-
formance interference it can cause to co-runners.

• We present the design of QoS-Compile and discuss
key design decisions impacting the effectiveness of
compiler-based dampening of memory pressure.

• We evaluate QoS-Compile using microbenchmarks,
SPEC benchmarks and Google applications on several
commodity multicore platforms and demonstrate its
effectiveness.

Our experiments show that QoS-Compile can effectively pin-
point an application’s contentious code regions, reduce the
interference it causes to co-running applications and thus
improve the QoS of its co-runners. In our experimentation,
we find that QoS-Compile can improve the QoS of high pri-
ority co-running applications by 21% and also improve the
machine utilization by 36% on average.

The rest of the paper is organized as follows: Section 2
presents the overview of QoS-Compile. Section 3 presents
the profiling technique to identify contentious code regions.
Section 4 presents the compilation techniques to reduce
contention. Section 5 presents the evaluation. Section 6
presents prior work and Section 7 concludes.

2. QOS-COMPILE OVERVIEW
QoS-Compile consists of two steps. First, the application
is profiled to identify its contentious code regions. Second,
transformations are applied to these regions to reduce their
contentiousness.

[Identifying Contentious Regions] Resource contention
is only manifested during runtime, and as a result, a static
code analysis to identify such code regions may not be fea-
sible. Our technique uses a profiling analysis to characterize
the memory resources usage of an application when it is run-
ning alone. The intuition is that if a code region aggressively
uses shared memory resources (shared caches and memory
bandwidth, etc) when executing, this region may interfere

with a co-runner that is sensitive to contention. To pre-
dict a code region’s contentiousness, we established a perfor-
mance monitoring unit (PMU) based prediction model via
regression. As Figure 2 shows, our profiler dynamically sam-
ples PMUs when an application is executing, estimates the
contentiousness of code regions using the prediction model,
and selects code regions that are above a certain contention
threshold. Being able to pinpoint just the regions respon-
sible for contention is a key benefit of QoS-Compile as we
only throttle down the memory access rate of these regions.
Applications may have short bursts of contentiousness or be
contentious only during certain phases. Our compiler trans-
formations are applied only to the code that is responsible
for these bursts or phases.

[Compiling for “Niceness”] After identifying the con-
tentious code regions, QoS-Compile then specializes the code
layout of these regions to reduce their contentious nature,
as shown in Figure 2. QoS-Compile is essentially a soft-
ware rate-based technique as it throttles down the memory
request rate of a low priority application, reducing the re-
sulting pressure on the memory subsystem and allowing the
neighboring high priority applications to consume more of
these resources. In this work, we develop two transforma-
tions for memory request rate reduction: padding and nap
insertion. Using these two transformations, QoS-Compile
provides a wide range of throttling granularities. These gran-
ularities range from intermittent bursts of just a few instruc-
tions before a brief pause, to thousands of instructions before
each longer nap. Our padding transformation provides fine
granularity throttling while nap insertion provides coarser
granularities. Both of these transformations include param-
eters for adjusting the amount of rate reduction, which in
turn controls the amount of interference and QoS degrada-
tion suffered by co-runners. This tunability is important for
achieving the desirable balance between QoS and machine
utilization.

[Using QoS Compile in a Modern WSC] In modern
WSCs, high priority latency-sensitive jobs, such as web-
search and maps, are run on machines for weeks and months
at a time. These jobs often use a fraction of the cores on
a single machine. However, to protect their QoS, the co-
location of other jobs on these machines is often disallowed.
QoS-Compile can be used, on demand, to compile low pri-
ority batch jobs, such as video encoding/decoding and com-
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pression, to enable their co-location on these underutilized
machine resources. QoS-Compile can also be composed with
a number of multi-versioning schemes [21] to enable its rate
reduction transformations only when co-running with a high
priority application.

3. IDENTIFY CONTENTIOUS REGIONS
In this section, we present the profiling analysis used to iden-
tify contentious code regions. The core component of our
analysis is a model for the dynamic scoring of sequences of
executed code. First we discuss how we constructed the
model. We then describe how this model is used during a
profiling run to identify the static code regions that are most
contentious.

3.1 Modeling Contentiousness
[General Model] We use a linear model to combine the
impact of contention in multiple shared resources, including
last level cache (LLC), memory bandwidth and prefetchers.
The contentiousness of a dynamically executed code region
is determined by the amount of pressure the region puts on
the shared memory subsystem. Thus, it can be predicted
based on usage of shared resources, shown as the following
equation,

C = a1 × LLC usage + b1 × BW usage + c1 × Pref usage, (1)

where C is contention score, BW is bandwidth and Pref is
prefetchers.

Each code region may have a different combination of cache,
bandwidth and prefetch usage. How contentious each code
region is relative to other regions depends on the relative
importance between cache, bandwidth and prefetcher con-
tention. The relative importance is reflected as coefficients
a1, b1 and c1.

[Leveraging PMUs] Modern architectures provide numer-
ous performance counters for various aspects of the microar-
chitecture. Our second step is to identify the appropriate
performance monitoring units (PMUs) to estimate the terms
in Equation 1.

BW usage: It is fairly easy to quantify and measure band-
width usage using PMUs. For example, we can use the num-
ber of cache lines the last level cache brings in from memory
per second.

LLC usage: It is challenging to measure cache usage using
PMUs. PMUs can provide information on the cache access
frequency and the cache miss rate, but currently they do
not provide information on the cache footprint or occupancy.
To approximate LLC usage, we measure how much data is
fetched from the shared cache and not the memory for a
given interval.

Prefetcher usage: Not all architectures provide perfor-
mance counters for all prefetchers. However, the main im-
pact of prefetchers is reflected as increased bandwidth and
cache usage. Thus, prefetcher usage can be estimated using
cache and memory bandwidth usage.

Guided by the above insights, we identify the appropriate
PMUs on the Intel Core i7 (Nehalem). On this platform, we
identify the number of cache lines the last level cache brings

Shared Cache

L2 L2 L2 L2

Core Core Core Core

Remaining Memory Subsystem

Application

LLC Lines In 

(contentiousness)

L2 Lines In

(sensitivity)

Figure 3: PMUs used for predicting contentiousness

in per millisecond (LLCLinesIn/ms), as shown in Figure 3,
to capture the aggregate pressure an application puts on
the bandwidth. We identify (L2LinesIn - L3LinesIn)/ms
to estimate the shared L3 cache usage. It reports the rate
of data being fetched into private caches from the shared
cache. Because both L3LinesIn and L2LinesIn include the
prefetchers’ traffic, we do not need an extra PMU to measure
the prefetcher usage. Using the above PMUs, Equation 1
becomes:

C = a1×(L2LinesIn rate−L3LinesIn rate)+b1×L3LinesIn rate
(2)

where C is contention score.

[Regression] After identifying the appropriate PMUs, we
use multiple regression to determine the coefficients in Equa-
tion 2. We use the SmashBench suite (Table 1), developed
in Google, to train our model. SmashBench is composed
of contentious kernels that span a spectrum of contentious
memory access patterns and working set sizes. We measure
each kernel’s contentiousness using the average performance
degradation it causes to other kernels within the suite when
co-running. Using the measured contentiousness and the
measured PMUs profile, including the average L2LinesIn/ms
and L3LinesIn/ms, we then conduct regression analysis to
determine the model coefficients (Equation 1). The regres-
sion result is:

C = 1.663× (L2LinesIn/ns− L3LinesIn/ns)

+ 8.890× L3LinesIn/ns+ 0.044 (3)

The p value for (L2LinesIn/ns - L3LinesIn/ns) is 0.018,
5.11e-07 for L3LinesIn/ns, and 2.015e-06 for the entire re-
gression. All are smaller than 0.5, indicating statistically
significant effects. The R-squared is 0.8876, indicating a
strong fit. The coefficients show the relative importance be-
tween the bandwidth usage and the LLC usage, indicating
that memory bandwidth contention has a more dominating
effect.

The regression results show that our model combines the
contention of multiple resources and is highly indicative of
the performance interference a code region may cause. The
prediction accuracy of the model is evaluated in Section 5.

3.2 Identifying Code Regions
Identifying code regions based on the PMU model is fairly
straightforward, and involves correlating PMU information
with its corresponding source code. There are a number
of approaches for conducting the correlation. In this work,
we use a simple approach. We first record the application’s
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Benchmark Footprint Description

bst 4mb, 8mb,
50mb

random accessing a binary search
tree

naive 4mb, 8mb,
50mb

random accessing an array

er-naive 4mb, 8mb,
50mb

fast random accessing an array

blockie small,
medium,
large

a number of large 3D arrays. A
portion of one array is continu-
ously copied to another.

sledge small,
medium,
large

two large arrays, copies data
back and forth between arrays
with this sledgehammer pattern.

Table 1: Contention Benchmarks Suite: Smash-
Bench

PMU statistics (L2 and L3 lines in rate) every 1ms. Mean-
while, we record the number of instructions executed in ev-
ery sample interval. These serve as markers in the dynamic
instruction trace for the sequence of instructions that are
responsible for the PMU data. We use the collected PMU
profile and Equation 3 to calculate a contention score for
every 1ms instruction interval. We then use a PIN [20] tool
to replay the execution. Using the recorded interval markers
we analyze the set of source level basic blocks that comprise
the 1ms interval. We select the hottest set of basic blocks of
that region, typically comprising more than 90% coverage
of the interval, and assign these blocks the corresponding
contentiousness score that was produced by our model.

4. COMPILER TRANSFORMATIONS

FOR RATE REDUCTION
QoS-Compile provides two compilation techniques, padding
and nap insertion, for both fine-grain and coarse-grain mem-
ory request rate reduction. In this section, we describe both
of these techniques and discuss the tradeoffs between them.

4.1 Padding
Our padding transformation inserts non-memory instruc-
tions between memory instructions in a contentious code
region. These instructions consume CPU cycles but do not
issue memory requests. Therefore, in essence, they limit
the amount of memory requests issued in a given time in-
terval. When the amount of padding increases, the code
region’s pressure on the memory subsystem decreases. We
implement padding by inserting no operation instructions
(nop) in contentious code regions at the basic block level
using MAO [10]. Padding provides a fine grain mechanism
for reducing a code region’s execution rate, memory request
rate, and its interference to co-runners. Inserting these nops
artificially inflicts a slowdown that can be as small as the
number of cycles consumed by a single nop.

Application specific and microarchitecture specific factors
need to be considered when deciding a sensible padding pol-
icy for a given interference reduction goal. The application
specific factors include:

1. The code region’s memory characteristics. The con-
tentious level of a code region affects the amount of
padding needed. The more contentious, the more
padding needed. In addition, many memory character-
istics such as the footprint affect the latency of mem-

ory instructions, which in turn affects the amount of
padding needed. We discuss more about this effect
shortly.

2. Binary instruction characteristics. The instruction
mix, for example, the ratio of memory instructions
(loads, etc) versus other instructions (CPU instruc-
tions) also needs to be considered. For a given amount
of instructions, the more dense memory instructions
are, the more padding may be required to reduce the
pressure they cause to the memory system.

In addition, microarchitecture specific factors include:

1. How nops are executed on the architecture;

2. The memory hierarchy design and the access latencies
for different levels in the memory hierarchy.

Many of the above factors essentially affect the memory la-
tency of instructions, which is important when deciding a
padding policy for a given interference reduction goal. This
is mostly because that an application can be stalled on the
memory instructions when the data is being fetched. Dur-
ing this period, nops may not have an effect on slowing down
the application execution rate or memory request rate be-
cause the program is already stalled. For example, a load

may take hundreds of cycles to complete. When stalled on
a use, a large amount of nops after this load may be use-
less for rate reduction. Therefore, each nop, depending on
where it is inserted and the latency of memory instructions
before it, may have a different impact on the memory re-
quest rate. This makes it difficult to accurately predict the
rate reduction effect for a padding policy.

There are two main parameters for padding: granularity
and thickness. Padding granularity is how often to pad
(for example, every 3 instructions) and the thickness is how
much nops to insert at every insertion point. In this paper,
given a list of contentious basic blocks identified by the QoS-
Compile’s profiler, we instrument padding at the beginning
of each basic block. If a basic block contains more instruc-
tions than the specified padding granularity, we instrument
within the basic block as well. The amount of padding in-
serted is determined by the thickness parameter. Generally,
as discussed, the more dense memory instructions are, the
longer latency they incur, the thicker padding is needed.

4.2 Nap Insertion
Our nap insertion technique inserts intermittent sleep to
contentious code regions. Putting a contentious code region
to epochal short “nap” mode reduces the pressure it puts
on the memory subsystem and the interference it can cause
to its co-runners. Similar to padding, two important pa-
rameters for nap insertions are granularity (how often the
contentious code should nap) and nap duration (how long
a nap interval should be, which is similar to padding thick-
ness). However, comparing to padding, nap insertion is a
much coarser-grain rate control as naps can occur for mil-
liseconds at a time.

Another difference between nap insertion and padding is
that, while padding indirectly controls the execution rate
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by inserting instructions to prolong the execution time, nap
insertion on the other hand, directly controls the time allot-
ted between naps and the duration of the nap, thus having
a more accurate and predictable rate reduction control than
padding. To estimate the effect of nap insertion on mem-
ory request or execution rate reduction, we use the following
equation:

Rexecution =
nap granularity

nap granularity + nap duration
(4)

where nap granularity is the duration of the execution in-
terval between inserted naps and nap duration is the length
of a nap. Given the execution rate Rexecution of a low prior-
ity application, L, we can estimate the improved QoS of its
high priority co-runner, H. We denote H’s improved QoS
using QoSimprd co−run:

QoSimprd co−run = 1− (1−QoSorig co−run)× Rexecution (5)

whereQoSimprd co−run andQoSorig co−run are both normal-
ized by H’s QoS when running alone, and QoSorig co−run

is H’s QoS when co-running with the original L;
QoSimprd co−run is H’s QoS when co-running with the nap-
ping L. Padding can also use Equation 5 to predict the
improved QoS when padded code region is reducing to a
certain execution rate Rexecution. However, as we discuss
later, because of the coarse grain control, nap insertion is
less skewed by the cooldown/ warmup effect.

Algorithm 1: Nap Insertion Algorithm

Input : Binary, nap granularity, nap duration

Output: Binary with inserted nap

1 instrument a global variable counter;
2 foreach BasicBlock in Binary do

3 if (BasicBlock.contention score > contention threshold) and
(BasicBlock.coverage > coverage threshold) then

4 InstrumentNap(BasicBlock, nap granularity,
nap duration);

5 end

6 end

Algorithm 2: InstrumentNap

Input : BasicBlock, nap granularity, nap duration

Output: BasicBlock with inserted nap

1 At the beginning of the BasicBlock, instrument the following code:
counter + +;

2 if (counter > counter threshold) then

3 cur time← read time stamp register ;
4 if (cur time− pre time >= nap granularity) then

5 sleep(nap duration);
6 prev time← read time stamp register ;
7 counter ← 0;

8 end

9 end

The main algorithm to conduct nap insertion is presented in
Algorithm 1 and the instrumentation function is presented
in Algorithm 2. The nap is only inserted to top basic blocks
which are above a contention score threshold and are above
a certain execution time coverage. The contention score of
each basic block is generated by our profiling approach in
Section 3. To reduce the overhead of checking the time
stamp, we also use a counter to keep track of how many
times the selected contentious basic blocks are executed and
only to check the elapsed execution time when the counter
is above a threshold.

4.3 Understanding Cooldown and Warmup
When applying a given amount of rate reduction to a code
region, it may seem intuitive that it should provide the same
amount of the interference reduction to a given co-runner.
However, the granularity at which the intermittent rate re-
duction is conducted indeed matters. This is because of the
memory pressure cooldown and cache warmup effect. Again,
we use L to denote a low priority application to which we
conduct padding or nap insertion, and H to denote a high
QoS priority application whose QoS we are aiming to im-
prove. When padding or a nap just starts to throttle down
memory requests, it would take a while for L’s pressure on
the memory subsystem to cool down, especially if the data
are residing below the cache. The memory system will still
be serving L’s requests issued before the padding or nap
for a short period of time. Meanwhile, it takes a while
for H to warm up the cache to achieve its optimal perfor-
mance when it is running alone. We call this period the
cooldown/warmup window. During this window, the yield-
ing of shared resources is not instant and may negatively
impact the effectiveness of the rate reduction mechanism.
This effect may not be negligible, especially for padding,
because padding happens at a fine granularity (a number
of cycles or ns). However, the severity of this window may
be greatly reduced for nap insertion because nap insertion
can be at a coarser granularity. In Evaluation (Section 5),
we will further investigate the interaction of nap granularity
and this cooldown/warmup effect.

5. EVALUATION
In this section, we first evaluate the effectiveness of our
prediction model and profiling technique in identifying con-
tentious code regions. We then evaluate the application of
our padding and nap insertion compiler transformations to
reduce the contentiousness of an application and improve its
co-runner’s QoS. We then investigate the impact of leverag-
ing QoS-Compile to improve utilization using both SPEC
benchmarks and Google applications.

5.1 Setup and Methodology
Our evaluation is conducted on two platforms:

• Intel Nehalem. Intel Core i7 920 Quad Core with
2.67GHZ processors, 8MB last level cache shared by
four cores and 4GB memory. This platform runs Linux
2.6.29.6 and GCC 4.4.6.

• Intel Clovertown. A dual socket Intel Clovertown
(Xeon E5345). Each socket has 4 cores. Each 2 cores
on the same socket are sharing a 4MB 16 way last level
cache (L2). This platform runs Linux kernel version
2.6.26 and a customized GCC 4.4.3.

The workloads used in our evaluation include the Smash-
Bench contentious kernel suite (summarized in Table 1),
SPEC CPU2006, and large-scale Google applications such
as websearch. SmashBench and SPEC experiments are con-
ducted on the Intel Nehalem configuration and the Google
experiments are conducted on production servers hosting the
Intel Clovertown configuration. Each benchmark is com-
piled using GCC at the O2 level. All SPEC applications are
run using ref inputs. Each experiment was conducted three
times to calculate the average performance. SmashBench,
SPEC and Google benchmark runs are fairly stable with a
variance of 1% or less between runs.
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Figure 8: Bst8mb’s degradation when running with
sphinx. The higher, the more degradation. Figure
7 trends similarly with this figure, indicating the
profiler is identifying the correct contentious code
regions.

5.2 Model for Code Region Identification
The key component of the profiling system is the PMU
model used to correlate the memory subsystem activity of a
code region to its contentious nature and potential for caus-
ing interference.

[Model Accuracy] To evaluate the accuracy of our PMU
model (Equation 3), we compare our PMUmodel’s predicted
contentiousness of SPEC benchmarks with their real mea-
sured contentiousness. We profile each benchmark’s PMUs
(L2LinesIn rate and L3LinesIn rate), and calculate the pre-
dicted contentiousness using Equation 3 with the acquired
PMU profiles. The prediction is then compared against
each benchmark’s observed contentiousness, measured as the
average performance degradation it causes to a set of co-
runners.

As a baseline, we compare our predictive model to state of
the art estimators proposed by prior work [40]. Figure 4
and 5 show the results when using LLC miss rate and LLC
reference rate to predict applications’ contentiousness. The
correlation coefficients (R) are 0.47 and 0.28, respectively,
showing that neither LLC miss rate nor LLC reference rate
alone can accurately indicate application contentiousness.
Figure 6 presents our prediction results compared to the
real measured contentiousness for SPEC CPU2006 bench-
marks. Recall that our model is trained using a different set

of benchmarks (e.g., SmashBench) and here we evaluate it
on SPEC. For SPEC, the prediction’s linear correlation co-
efficient R is 0.91, indicating that our prediction model can
accurately score contentiousness.

[Pinpointing Code Regions] To evaluate the effective-
ness of pinpointing the contentious code regions using our
PMU model, we compare benchmarks’ PMU model results
with the degradation they cause to their co-runners. Fig-
ure 7 presents sphinx’s contention score calculated using its
performance counter profile when it is running alone, based
on Equation 3. The x-axis is time. Here sphinx is using
ref input. The y-axis is the contention score using PMU
model of sphinx’s execution phases. Figure 7 shows that
sphinx is not evenly contentious through the entire execu-
tion, but, instead, there are several phases (humps in the
figure) that are more contentious than the rest. Figure 8
presents bst8mb’s degradation when running with sphinx.
This figure also presents the entire execution of sphinx using
ref input. Comparison between Figure 7 and 8 shows that
PMU contention score correctly identifies execution phases
that are contentious (e.g cause more degradation to a co-
runner). The execution phases with higher PMU contention
score (humps in Figure 7 are consistent with the higher
degradation (humps in Figure 8).
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.2x 

.3x 

.4x 

.5x 

.6x 

.7x 

.8x 

.9x 

1.x 

.2x  .4x  .6x  .8x  1.x  1.2x 

b
st
5
0
m
b
 Q
o
S
 

sledge_l execu3on rate 

Nap: 1ms 

Nap: 10ms 

Padding: 5 instr 
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nap for bst50mb.

5.3 Compiler Transformations
In this section, we evaluate the two transformations used in
QoS-Compile, padding and nap insertion, using the Smash-
Bench suite. This evaluation focuses on the effectiveness of
our transformations for improving a co-running application’s
QoS. We applied our transformations to the whole program
of the contentious kernels without the use of the model to
identify specific regions. All experiments in this section were
conducted on the Intel Nehalem described in Section 5.1.

In Figures 9, 10, and 11 we show the QoS (in terms of
execution rate) impact of allowing pairwise co-location of
sledge_l (sledge large) with 6 co-runners when lever-
aging QoS compile. The dashed line shows the QoS of
sledge_l and the solid lines shows the QoS of each of the
6 corunners when colocated with sledge_l. In these ex-
periments, sledge_l is assumed to be our low priority ap-
plications while each of its 6 co-runners are assumed to be
high priority. The x-axis shows various settings for padding
and nap insertion. Figure 9 presents the results of apply-
ing padding to sledge_l, and Figures 10 and 11 show the
results when applying nap insertion to sledge_l.

Figure 9 shows that, as the padding thickness increases,
sledge’s execution rate decreases, and the QoS of blockie
and bst improves. For example, when running with the
original sledge_l, blockie_l’s normalized QoS is 0.6x of
its solo optimal QoS. After we apply padding to sledge_l,
blockie_l’s QoS is improved to almost 0.9x , which is a 50%
improvement. An interesting observation is that the amount

of improvement is not the same for various co-runners. For
example, bst8mb’s normalized QoS when running with the
original sledge_l is 0.35x, almost 3 times slower than when
it is running alone. However after applying padding, its QoS
is only improved to 0.5x. Another interesting observation is
that the amount of interference reduction and QoS improve-
ment slows down as padding thickness increases. The im-
provement is more significant around padding thickness 30
to 50, but for some benchmarks the improvement plateaus
after 50. This indicates a potentially diminishing return of
increasing padding thickness beyond a certain point.

Figures 10 and 11 show the results when applying nap in-
sertion to sledge_l. The difference between these two fig-
ures is the napping granularity. Figure 10’s granularity is
1ms, meaning that nap is inserted every 1ms of the exe-
cution. The x-axis shows the nap duration, ranging from
no nap at all to 2 ms nap every 1ms of execution. Fig-
ure 11 shows the results when the nap granularity is 10ms.
These figures demonstrate the effectiveness of nap inser-
tion: as nap duration increases, co-runner’s QoS improves.
Comparing Figure 10 and Figure 11 also demonstrates the
impact of the nap granularity. Interestingly, napping ev-
ery 10ms performs significantly better than napping every
1ms for several co-runners. For example, for bst8mb, when
running with sledge_l_nap_10ms_20ms (nap 10 ms every
20ms), its normalized QoS is above 0.7x of its solo opti-
mal QoS, compared to only 0.5x when it is running with
sledge_l_nap_1ms_2ms. This improvement is consistent
with the cooldown and warmup effect.
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Figure 15: SPEC benchmark’s performance when it
is co-located with the original lbm, lbm with nap
insertion (10ms, 10ms) and nap insertion (10ms,
20ms), normalized by each benchmark’s perfor-
mance when it is running alone

Figures 12, 13 and 14 further illustrate the different impact
of padding and nap with various configurations. In each fig-
ure, the x-axis shows the sledge_l’s normalized execution
rate. The y-axis shows its co-runners’ normalized QoS. In
each figure, we plot three lines showing the effect of three
compilation techniques, padding, nap 1ms and nap 10ms.
From these figures we can compare, with the same reduced
execution rate for sledge_l, which technique achieves the
best QoS improvement. Figures 12 and 14 show that nap
and padding perform similarly for bst4mb and bst50mb as
the three lines are very close to each other. However, Fig-
ure 13 shows that nap 10ms performs significantly better
than the other two. For example, when sledge_l is run-
ning at 0.4x (40% of its original execution speed), nap 10ms
improves bst8mb’s QoS to 0.65x compared to only 0.4x for
both padding and nap 1ms. This result is consistent with
the cooldown and warmup discussion in Section 4.2. Longer
padding or napping granularity allows co-runners to warm
up the cache and achieve better QoS performance. Since the
experimental platform has a 8MB last level cache, among
bst4mb, bst8mb and bst50mb, bst8mb is the most cache con-
tentious benchmark, and therefore benefit the most from
longer nap granularity. We also observe similar results
when applying padding and nap insertion to other synthetic
benchmarks, which are not shown here.

5.4 QoS-Compile: Put it All Together
In this section, we evaluate QoS-Compile, the combination
of profiling to identify contentious code regions and compila-
tion techniques to dampen contentiousness and improve the
QoS of co-runners. The goal of this evaluation is to study
the effectiveness of QoS-Compile in 1) improving the QoS
of high priority applications when running with low priority
applications; and 2) improving machine utilization, mean-
ing that the low priority applications can still reasonably
utilize the machine under the constraints of maintaining the
QoS of high priority applications at a satisfactory level. We
conduct this series of experiments using 8 memory-intensive
benchmarks from SPEC CPU 2006 on the Intel Nehalem de-
scribed in Section 5.1. Our evaluation in Section 5.3 shows
that nap insertion performs better than padding. As such,
we focus on nap insertion in this section.

[Application level] For each benchmark, we first profiled
to sample its PMUs and calculated its contention score us-
ing our PMU model (Equation 3). We then identified its
code regions (basic blocks) with contention scores that are
above a specified threshold. In our experimentation, we used
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Figure 17: Gained Utilization when allow co-
location.

0.3 as the threshold. We conducted nap insertion to those
basic blocks using the algorithm presented in Section 4.2.
To evaluate QoS-Compile’s effectiveness, we conducted pair-
wise co-run experiments to co-locate a benchmark, presumed
to be our low priority application, with 7 other benchmarks,
presumed to be the high priority application, and measured
the QoS degradation due to its interference.

Figures 15 and 16 present results for lbm and milc. Fig-
ure 15 shows the normalized performance of each SPEC
benchmark when it is running with lbm. The x-axis shows
each benchmark presumed to be the high priority co-runner.
The y-axis shows its normalized performance. The higher
the bars, the better. For each co-runner benchmark, a clus-
ter of three bars show its performance when it is running
with lbm, with lbm_10_10 (lbm is napping 10ms every 10
ms) and with lbm_10_20, normalized by its performance
when it is running alone. These 7 co-runner benchmarks
are the memory-intensive SPEC benchmarks. We did not
present results for other CPU bound SPEC benchmarks be-
cause in general they do not suffer degradation from mem-
ory resource contention. These figures demonstrate the ef-
fectiveness of QoS-Compile. QoS-Compile greatly improves
lbm’s “niceness”: reducing lbm’s interference to its co-runner
and improving co-runner’s QoS performance. For example,
mcf’s QoS is improved 22%, from only 0.74x of its solo opti-
mal QoS when it is running with the original lbm to above
0.9x of the optimal when it is running with the napping
lbm. In general, every benchmark’s QoS when running with
lbm_10_20 is above 90% of the solo optimal QoS. Figure 16
presents similar results for milc.

Because QoS-Compile can greatly improve QoS, it provides
opportunities for warehouse scale computers to allow co-
location knowing that using QoS-Compile, the QoS degra-
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dation of the co-located high priority application would be
within an acceptable threshold (10%, for example). Fig-
ure 17 shows the gained machine utilization when allowing
co-location facilitated by QoS-Compile. Utilization is mea-
sured using lbm_nap’s normalized performance (execution
rate normalized by the original lbm performance when it
is running alone). For example, 48% gained utilization for
napping lbm_10_10 indicates that lbm is running at 48% of
its original execution rate. That is, as opposed to disal-
lowing co-location to ensure the QoS of the high priority
application, using QoS-Compile, we allow 48% additional
computation while protecting the QoS of its co-runner.

As we mentioned previously in Section 1, without QoS-
Compile, WSC operators currently have only two options, ei-
ther allow co-location and suffer a significant QoS penalty or
disallow co-location and suffer a utilization penalty. As these
figures together demonstrate, QoS-Compile allows users to
trade a small amount of QoS to improve machine utilization.
In this experiment, we allow 10% QoS degradation, and in
return, gain 40% of utilization of the extra otherwise idle
core. Changing the nap granularity and nap interval pro-
vides a knob that can be used to tune the tradeoff between
QoS degradation and the amount of utilization gained. The
more QoS degradation headroom, the more utilization.

[Phase level] QoS-Compile not only reduces the overall
average QoS degradation, it also pinpoints the contentious
regions and mitigates the QoS degradation those regions can
cause when executing. This makes QoS-Compile also suit-
able for applications that only have phases of contention.
To further evaluate QoS-Compile’s effectiveness in pinpoint-
ing and managing the contentious phases, we sample the
performance of co-runners throughout the entire execution
to observe their performance variability due to interfer-
ence. Figure 18 presents bst8mb’s performance (instruction-
s/ms) when it is running with the original sphinx, com-
pared to its performance when running with napping sphinx

(sphinx_10_10, napping 10ms every 10ms). The x-axis
shows time. We sample the entire execution of sphinx with
ref input. The y-axis is bst8mb’s performance. Bst8mb is
a contentious kernel and when it is running alone it has
quite stable performance. Therefore the performance vari-
ability shown in the figure is purely due to interference from
sphinx. As the figure shows, during the early half of the exe-
cution, original sphinx causes significant performance degra-
dation to bst8mb, demonstrated by the low IPS during the
first 400 samples. QoS-Compile correctly identifies the con-
tentious phase and improves the bst8mb’s IPS greatly. For
the later half of the execution, the QoS-Compile also iden-
tifies bst8mb’s performance valleys and improves it greatly.
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5.5 Google Applications
To evaluate our compilation technique’s effectiveness in im-
proving co-runner’s QoS, we also conducted experiments
using several large-scale warehouse scale computer applica-
tions. The experimental platform is an Intel Clovertown ma-
chine used in production (as described in Section 5.1). The
production applications are presented in Table 2. The QoS
metric for each application is the application-specific perfor-
mance metric in its internal SLA, also presented in Table 2.
The load for each application is a trace of large amount of
real world queries in production WSCs. A load generator
was set up to feed the queries to these applications. The
performance shown is applications’ stable behavior after the
initialization phase, and the performance is stable between
runs. Figure 19 and Figure 20 present results. In these
experiments, each Google application is co-located with 2
threads of SmashBench benchmarks. Figure 19 presents
Google applications’ QoS when co-located with sledge_l.
The x-axis shows each Google application. And the y-axis
is each application’s normalized performance. Each applica-
tion’s QoS are measured in 3 running scenarios presented as
a cluster of three bars: when it is co-located with 2 threads
of original sledge_l, with 2 threads of napping sledge that
naps 10ms every 10ms, and with sledge that naps 20ms
every 10ms. Each application’s QoS performance is normal-
ized to its performance when it is running alone. Figure 20
presents Google application’s QoS performance when co-
located with a cache contentious benchmark, er-naive4mb.
Figure 19 and Figure 20 demonstrate that nap insertion is ef-
fective in improving an application’s “niceness” and improv-
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workload description metric

websearch Websearch scoring and retrieval (QPS) queries
per sec

cluster-docs Unsupervised Bayesian clustering tool to take keywords or text documents
and ”explain” them with meaningful clusters.

throughput

cluster-keywords Unsupervised Bayesian clustering tool to take keywords or text documents
and ”explain” them with meaningful clusters.

throughput

goog-retrieval Web indexing query latency
(ms)

maps-detect-face Face detection for streetview automatic face blurring user time (secs)
maps-detect-lp OCR and text extraction from streetview user time (secs)
maps-stitch Image stitching for streetview user time (secs)

Table 2: Production Warehouse Scale Computer Applications

ing its co-running Google applications’ QoS. For example,
nap insertion improves websearch’s QoS from 0.77x to 0.9x
when running with sledge_l, and from 0.68x to 0.87x when
running with er-naive4mb. QoS-Compile can improve QoS
significantly and provides warehouse scale computer opera-
tors with flexibility of allowing co-location with a slight hit
on QoS. For example, if warehouse scale computer scheduler
specifies that 0.9x of the optimal peak QoS is an accept-
able threshold for websearch, with QoS-Compile, we can
allow co-location of websearch with other co-runner such as
sledge_l to improve the machine utilization. Without QoS-
Compile, 0.65x of its solo QoS when running with the orig-
inal sledge_l may be too significant to allow co-location,
and thus leaving the machine under-utilized.

6. RELATED WORK
[Hardware Approaches] Hardware techniques such as
cache and bandwidth partitioning and source throttling to
improve performance and fairness on multicores have re-
ceived much research attention [6, 16, 19, 26, 27, 33]. In ad-
dition, hardware platforms that enforce QoS priorities are
proposed [8, 11]. These studies have shown promising fu-
ture directions for hardware designers; however they require
hardware changes and are not yet available in commodity
chips. Herdirch et al. [9] and Zhang et al. [38] use clock mod-
ulation and core-specific dynamic voltage scaling to throttle
down the execution to improve performance fairness or the
performance of high priority applications. However, these
techniques do not isolate contentious code regions and do
not mitigate the effects of the cooldown/warmup window.

[Contention-aware Scheduling] An important software
approach to mitigating contention is contention aware
scheduling [1,4,7,13,17,25,36,40]. Scheduling techniques de-
cide what applications should be co-running together to im-
prove performance or performance isolation. In contrast to
scheduling, the effectiveness of our compiler approach does
not depend on having a balanced mix of high-contention
and low-contention applications since we directly manipu-
late the contentiousness of an application to improve QoS.
Even when the majority of the applications in the workload
are contentious, our approach remains effective. In addi-
tion, our approach is complimentary to scheduling as it can
be used after cluster-level scheduling decisions are already
made (co-running applications on the same machine are de-
cided), but the QoS goal for latency-sensitive applications is
not met. In addition, our compiler approach provides tun-
ability for adjusting the amount of rate reduction, which in
turn controls the amount of interference and QoS degrada-
tion. This tunability is particularly useful in datacenters

as it facilitates operators to achieve the desirable balance
between QoS and machine utilization.

One important component for contention-aware scheduling
is the indicators for application contention characteristics.
This is related to our prediction model to identify con-
tentious code regions. Most prior work uses last level cache
miss rate or reference rate as an indicator of how contentious
an application is [17, 40], which we have shown is less accu-
rate than our prediction model. Our PMU-based approach
is also more lightweight than techniques that profile foot-
print or reuse distance to predict applications’ contention
nature [13, 35]. Techniques that study the interaction be-
tween threads within a multithreaded application by dy-
namic instrumentation is also proposed [39].

[Other Software Approaches] Software solutions to re-
duce cache contention using page coloring/remapping have
been proposed [5, 18, 31]. Most page coloring methods re-
quire significant modifications to the kernel and the knowl-
edge of the cache design details, which are often highly
guarded industry secrets. Recently, Mars et al. [23] propose
a software runtime that detects and responds to contention
online. Their technique shutters an application’s execution
to detect contention, while our approach first identifies con-
tentious code regions and then applies static compilation
techniques to those regions.

Researchers recently have started to explore using code
transformations and restructuring to improve cache sharing
and reduce contention on multicores [14, 15, 32, 37]. Most
such research focuses on compilation techniques to improve
cache sharing for a multi-threaded application. Our ap-
proach does not address the cache sharing and contention
among sibling threads of an application. Instead, we are
proposing compilation techniques that manipulate how ap-
plications interact with each other in terms of contending
for the memory resources. Methods to reduce cache pol-
lution by compiler-directed use of non-temporal move in-
structions [29] and non-temporal prefetch instructions are
also proposed [30]. These techniques apply to a subset of
contentious code that have special characteristics while our
approach is more general and does not make special assump-
tions of the contentious code regions.

7. CONCLUSION
In this paper, we have presented QoS-Compile, the first
compilation approach that statically manipulates applica-
tion contentiousness to enable the co-location of applica-
tions with varying QoS requirements, and as a result, can
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greatly improve machine utilization. Using a novel predic-
tion model, QoS-Compile first pinpoints an application’s
contentious code regions that tend to cause performance in-
terference. QoS-Compile then transforms those regions to
reduce their contentious level. In this work we have shown
that binary code transformations to throttle down the exe-
cution rate and the memory access rate of the contentious
regions in low priority applications is an effective approach
to reduce their interference to high priority applications.
Through our experimentation, we find that QoS-Compile
improves applications’ QoS performance by 21% and ma-
chine utilization 36% on average. In the era of multicores
and the emerging computing domain of WSCs, the objec-
tives of compiler optimization ought to be multifaceted. In
this work, we argue for the additional objective of optimiz-
ing for an application’s “niceness,” to reduce its potential
interference to its co-running applications.
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