Contentiousness vs. Sensitivity: Improving Contention
Aware Runtime Systems on Multicore Architectures

Lingjia Tang
University of Virginia
[t8f@cs.virginia.edu

ABSTRACT

Runtime systems to mitigate memory resource contention
problems on multicore processors have recently attracted
much research attention. One critical component of these
runtimes is the indicators to rank and classify applications
based on their contention characteristics. However, although
there has been significant research effort, application con-
tention characteristics remain not well understood and indi-
cators have not been thoroughly evaluated.

In this paper we performed a thorough study of appli-
cations’ contention characteristics to develop better indica-
tors to improve contention-aware runtime systems. The con-
tention characteristics are composed of an application’s con-
tentiousness, and its sensitivity to contention. We show that
contentiousness and sensitivity are not strongly correlated,
and contrary to prior work, a single indicator is not adequate
to predict both. Also, while prior work argues that last level
cache miss rate is one of the best indicators to predict an ap-
plication’s contention characteristics, we show that depend-
ing on the workloads, it can often be misleading. We then
present prediction models that consider contention in vari-
ous memory resources. Our regression analysis establishes
an accurate model to predict application contentiousness.
The analysis also demonstrates that performance counters
alone may not be sufficient to accurately predict applica-
tion sensitivity to contention. Our evaluation using SPEC
CPU2006 benchmarks shows that when predicting an ap-
plication’s contentiousness, the linear correlation coefficient
R? of our predictor and the real measured contentiousness is
0.834, as opposed to 0.224 when using last level cache miss
rate.

Categories and Subject Descriptors

D.1.3 [Programming Techniques|: Concurrent Program-
ming—parallel programming; D.3.4 [Programming Lan-
guages|: Processors—run-time environments, compilers, op-
timization, debuggers; D.4.8 [Operating Systems]: Per-
formance—measurements, monitors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EXADAPT ’11 June 5, 2011, San Jose, California, USA.

Copyright 2011 ACM 978-1-4503-0708-6/11/06 ...$10.00.

Jason Mars
University of Virginia
jom5x@cs.virginia.edu

Mary Lou Soffa
University of Virginia
soffa@cs.virginia.edu

General Terms

Performance, Design, Algorithms, Experimentation

Keywords

contention aware runtimes, contentiousness vs sensitivity,
memory subsystems, multicore processors, scheduling

1. INTRODUCTION

Multicore processors have become pervasive and can be
found in a variety of computing domains, from the most
basic desktop computers to the most sophisticated high per-
formance datacenters. With each new generation of archi-
tectures, more cores are being added to a single die. In
currently available multicore designs, much of the memory
sub-system is shared. These shared components include on-
chip caches, the memory bus, memory controllers, under-
lying interconnect and even on-chip data prefetchers. For
such architectures equipped with multiple processing cores,
contention for shared resources significantly aggravates the
existing memory wall problem and restricts the performance
benefit of multicore processors.

There has been a significant research effort to mitigate
the effects of contention using software runtime solutions.
Techniques have been developed that perform runtime con-
tention detection and execution control [17] and online job
scheduling [13, 29, 11, 2, 27]. To most effectively design
these runtime systems, there are two important underlying
research challenges.

[Challenge 1] It is important to have an in-depth under-
standing of application contention characteristics, including
an application’s contentiousness, which is the potential per-
formance degradation it can cause to its co-runners, and an
application’s sensitivity to contention, which is the poten-
tial degradation it can suffer from its co-runners. In prior
work, there have been conflicting conclusions about the re-
lationship between an application’s contentiousness and its
sensitivity to contention. Some prior works [26, 29] ar-
gue that there is a clear distinction between an applica-
tion’s contentiousness and contention sensitivity, while other
works [11, 15] conclude that an application’s contentiousness
and sensitivity are strongly correlated for most applications
and thus can be represented and estimated using a unified
model. To address this disagreement, we perform thorough
investigation of the contentiousness and sensitivity of gen-
eral purpose applications on current systems.

[Challenge 2] Contention aware runtimes use indicators
for application contention characteristics to predict the po-

tential performance degradation that may occur due to con-
tention or detect contention as it occurs. Prior works use an
application’s last level cache (LLC) miss rate as an indicator
to detect contention or to predict applications’ contention
characteristics in order to classify the applications [17, 13,
29] . In fact, LLC miss rate is argued to be one of the most
precise indicators for contention aware scheduling [29]. How-
ever, to the best of our knowledge, no prior work has thor-
oughly investigated how to use microarchitectural events
to best construct indicators for an application’s contention
characteristics. It remains unclear that LLC miss rate is the
best performance monitor based indicator for all workloads.
In particular, its accuracy for memory intensive workloads
has not been thoroughly evaluated.

[Contributions] The specific contributions of this paper
are as follows.

1. We investigate application contention characteristics
through systematic experiments on latest multicore
hardware and show that although contentiousness and
contention sensitivity are consistent characteristics of
an application on a given platform, they are not strongly
correlated.

2. We explore the effectiveness of using LL.C miss rate as
an indicator for either contentiousness or contention
sensitivity and find that it can sometimes be mislead-
ing for both. One key insight of our work is that since

contentiousness and contention sensitivity are not strongly

correlated, no single indicator can accurately predict
both.

3. We construct two models that combine usages of mul-
tiple memory resources including LL.C, memory band-
width and prefetchers to indicate an application’s con-
tention characteristics. Our insights are firstly, un-
derstanding contention characteristics require a holis-
tic view of the entire memory subsystem. Secondly,
a good indicator for an application’s contentiousness
must capture the pressure an application puts on the
shared resources; meanwhile, a good indicator for an
application’s sensitivity must capture its reliance on
the shared memory resources. And for many memory
resources, pressure and reliance are very different.

4. We select appropriate performance counters that can
capture the usage of various memory resources. We
then use regression analysis on a synthetic benchmark
suite to establish an accurate model to predict an ap-
plication’s contentiousness. Regression also demon-
strates that performance counters alone may not be
sufficient to accurately predict an application’s sensi-
tivity to contention. Evaluation using SPEC CPU2006
benchmarks shows that when predicting an applica-
tion’s contentiousness, our predictor is much more ac-
curate. The linear correlation coefficient R? of our pre-
dictor and the real measured contentiousness is 0.834,
as opposed to 0.224 when using last level cache miss
rate.

The rest of the paper is organized as follows. In Section 2
we present a thorough investigation in both application con-
tentiousness and contention sensitivity. We then investigate
the effectiveness of using last level cache misses to predict
both contentiousness and contention sensitivity in Section 3.

Next, we present our prediction models and regression analy-
sis for predicting contention characteristics in Section 4. We
then evaluate our predictor for an application’s contentious-
ness using SPEC CPU2006 benchmarks in Section 5. We
present related work in Section 6, and finally conclude in
Section 7.

2. CONTENTIOUSNESS VS. SENSITIVITY

In this section we present formal definitions of both con-
tentiousness and contention sensitivity, and then investigate
key questions about the nature of each and how they relate.

2.1 Definition

On current multicore processors, an application’s contentious-

ness is defined as the potential performance degradation it
can cause to co-running application(s) due to its heavy de-
mand on shared resources. On the other hand, an applica-
tion’s sensitivity to contention is defined by its potential to
suffer performance degradation from the interference caused
by its contentious co-runners.

As demonstrated in previous work [11], an application A’s
sensitivity is formally defined using the following formula,

IPCA(solo) - IPCA(co—run)
IPCA(solo)

9Sensitivitys = (1)

where IPC g(s010) is A’s IPC when it is running alone and
IPC 4(co—run) is the statistical expectation of the A’s IPC
when it co-runs with random co-runners. We extend this
definition to include A’s contentiousness as,

[PCB%(SDZO) - IPCBi(co—runA)
IPCBi(.solo)

9Contentiousnessa = (2)

where A’s contentiousness is quantified as the statistical
expectation of the IPC degradation A causes to its random
co-runner.

We can estimate Sensitivitya and Contentiousnessa by
co-locating A with various co-runners B;, and take the av-
erage of A’s measured contentiousness and contention sen-
sitivity. A’s sensitivity to corunner B; can be defined as,

IPCA(SDZO) - IPCA(cofrunBi)
[PCA(solo)

9Sensitivity s(co—runp) =

3)

and the A’s average measured sensitivity is,

> SensitivityA(cofrunBi)

n

(4)

Similarly, we can define A’s contentiousness when it is
co-running with B; and its average contentiousness as,

IPCBi(solo) - IPCi(cof'runA)

9Sensitivity s(avg) =

9Contentiousness s(co—runpg.) = PG
‘ B, (solo)

()

> Contentiousness a(co—run g)
k3

9Contentiousness A(avg) =
n

(6)
In this work we use Equation 4 to estimate sensitivitya,
and Equation 6 to estimate contentiousnessa.

2.2 Contentiousness and Sensitivity

In this section we address two important questions about
an application’s contentiousness and sensitivity to contention.

- N | BM o
= ESLIBQUANTUM —
g 5% EmMILC R
g : EEMmCF

g 0% EESOPLEX

5 20% SPHINX

£ 1 OMNETPP —
‘é 15% XALAN —
5 “%-avg.

.
s -m.a..-‘:’.fl-
S ®
A
&

Figure 1:
application across x-axis.

Contentiousness. Each bar shows the performance degradation of a corunner caused by the

N BM

40%

ESLIBQUANTUM

35%

EEMILC

30% L

EEMCF

£ 25%

[EHSOPLEX

SPHINX
OMNETPP

E20% PRt AL
LR | T
10% JE s

5% H 8
0% -

XALAN
* ¥ +avg. sensitivity

N & NS
@ 2
o S

Figure 2: Sensitivity. Each bar shows the performance degradation of the application across x-axis caused

by each of the 8 different corunners.

We first investigated whether contention characteristics (both
contentiousness and sensitivity to contention) are consistent
characteristics of an application. We define consistent as,
for a given machine, the relative ordering between all appli-
cations’ contentiousness and sensitivity in general does not
change across different co-runners.

Secondly, we investigated the correlation between an ap-
plication’s contentiousness and its sensitivity to contention.
An important observation is that both an application’s con-
tentiousness, and its sensitivity to contention, involve the
usage of shared resources. One intuition is that contentious
applications may also be sensitive to contention and vice
versa. Prior work has had conflicting conclusions about the
relations between an application’s contentiousness and con-
tention sensitivity. There are four possible outcomes. An
application can be 1) contentious and sensitive; 2) not con-
tentious and insensitive; 3) contentious but not sensitive;
and 4) not contentious but sensitive. Among these four out-
comes, Jiang et al. [11, 15] conclude that typical applica-
tions’ contentiousness and sensitivity are strongly correlated
and should be classified as either contentious and sensitive,
or not contentious and insensitive. Xie et al. [26] on the other
hand, argue the existence of applications that are not con-
tentious but sensitive. Meanwhile, other recent works [29,
13] argue that a contentious application that has high cache
misses is likely to be very sensitive as well.

2.3 Experiment Design, Results and Insights

To evaluate these issues, we have performed a series of ex-
periments using 18 benchmarks of SPEC CPU2006 bench-
marks suite. These benchmarks represent a diverse range
of application workloads and memory behaviors, including
different working set sizes, cache misses, and offcore traffic.
All experiments were conducted on Intel Core i7 920 (Ne-
halem) Quad Core with 2.67GHZ processors, 8MB last level
cache shared by four cores and 4GB memory. For each ex-
periment, we selected two of the 18 benchmarks, co-located

them on neighboring two cores, and measured each bench-
mark’s contentiousness and sensitivity in each experiment
using Equation 3 and Equation 5. We then calculated each
benchmark’s average contentiousness and sensitivity using
Equation 4 and Equation 6. We conducted exhaustive co-
running of all possible co-running pairs, which is a total of
162 (18%18) co-running experiments executed to completion
on ref inputs. Each experiment was conducted three times
to calculate the average. Note that SPEC runs are fairly
stable and there is little variance between runs.

2.3.1 Contentiousness

Figure 1 presents our benchmarks’ contentiousness. This
contentiousness is calculated using Equation 5, which in-
dicates the performance degradation each of the 18 bench-
marks causes to its co-runner. The 18 benchmarks are shown
on the x-axis. For each of the 18 benchmarks, we show its
measured contentiousness when it is co-running with each of
the eight most contentious co-runners respectively. Each bar
represents a co-runner. Only 8 corunners are shown in the
figure because of the space limit. The dotted line shows the
average contentiousness of each benchmark, computed by
averaging each benchmark’s 18 contentiousness values across
18 co-runners using Equation 6. The 18 benchmarks on the
x-axis are then sorted by their average contentiousness. The
line graph for average contentiousness shows a general de-
scending trend.

Figure 1 demonstrates that contentiousness is a consistent
characteristic of an application. The relative order of bench-
marks’ contentiousness stays fairly consistent regardless of
which co-runner is present. For example, when comparing
each benchmark’s contentiousness when it is co-running with
1bm, shown by the first bar for each 18 benchmark, we no-
tice that the contentiousness of 18 benchmarks are almost
all in descending order along the y-axis mirroring the dotted
line. This also applies to all other co-runners as well. The

35%

30%
25%
20%
15%
Ml M
Qoé\
&
N
&
&

DOavg. contentiousness

B avg. sensitivity

-
a9
X R

Contentiousness and Sensitivity
9
X

& $ \\ <& é & & SRS NS
& © ,é» @ & & & & K 8&0 €5 “Q‘\\ 'D(&o@
o QQ« 4}

Figure 3: Average Contentiousness vs. Sensitivity

graph also shows that 1bm is the most contentious bench-
mark among the 18 benchmarks.

2.3.2 Sensitivity

Similar to Figure 1, Figure 2 shows the sensitivity to con-
tention of each of the 18 benchmarks when co-located with
the most contentious applications. This sensitivity is cal-
culated using Equation 3, indicating how much degradation
the eight co-runners cause to each of the 18 benchmarks.
These 18 benchmarks are sorted according to their average
sensitivity, calculated using Equation 4. Similar to Figure 1,
this figure shows that sensitivity is also consistent for each
application. Although the descending trend is not as consis-
tent as Figure 1, the general trend is strong.

2.3.3 Contentiousness vs. Sensitivity

In Figure 3, we juxtapose contentiousness and sensitivity.
In this graph, for each application across the x-axis, the first
bar shows the average contentiousness of this application
with the eighteen co-runners presented in Figures 1 and 2.
The second bar shows each benchmark’s average sensitivity
to the same set of co-runners. Figure 3 clearly demonstrates
a large disparity between application contentiousness and
sensitivity. As shown in the figure, applications such as 1bm
and libquantum are highly contentious and only mildly sen-
sitive, while other applications such as omnetpp and xalan
are highly sensitive, and slightly contentious. Also notice
that, in Figures 1 and 2, the sorted ordering of the 18 bench-
marks (x-axis) are almost completely different. In fact, the
correlation coefficient between contentiousness and sensitiv-
ity using linear regression is 0.48, which further shows they
are not strongly correlated.

To summarize, through our experimentation we find,

1. Contentiousness and sensitivity are an application’s
consistent characteristics. Figure 1 shows that appli-
cations with higher contentiousness tend to be consis-
tently more contentious regardless of co-runners. This
general trend also applies to sensitivity, as shown in
Figure 2.

2. Contentiousness and sensitivity of general purpose ap-
plications are not strongly correlated as shown in Fig-
ure 3. While we do not observe applications that are
only sensitive or only contentious, four outcomes oc-
cur in practice; applications can be 1) contentious and
sensitive; 2) not contentious and insensitive; 3) con-
tentious but not highly sensitive; 4) not highly con-
tentious but sensitive.

We present analysis as why contentiousness and sensitiv-
ity are different in Section 4.1. Section 4.2.2 also presents

more experimental data on a different set of benchmarks
to demonstrate the difference between contentiousness and
sensitivity.

3. LLC MISSES AS AN INDICATOR?

The ability to predict application contention characteris-
tics is important for contention aware runtime systems. In
this paper we focus on indicators using performance mon-
itoring units (PMUs). Last level cache (LLC) miss rate is
one of the most commonly used indicators of an applica-
tion’s contentiousness and is used to classify applications to
achieve sensible co-scheduling decisions [29, 13] and detect
contention online [17]. In this section we evaluate the ef-
fectiveness of using last level cache misses to indicate an
application’s level of contentiousness and sensitivity to con-
tention.

Both LLC miss rate, the number of misses for a given
amount of time, and miss ratio, the number of misses for
a given number of instructions, have been used by prior
work to perform contention aware scheduling. To evalu-
ate whether LLC miss rate or ratio is a good indicator for
an application’s contentiousness, we measure LLC miss rate
and miss ratio for the 18 SPEC2006 benchmarks used in Sec-
tion 2, and compare each benchmark’s rate and ratio against
the average degradation it causes to its co-runners. We also
compare each benchmark’s miss rate and ratio to the average
degradation it suffers due to contention to evaluate if LLC
miss is a good indicator for sensitivity. Experiment set up
is as described in Section 2.3. Both the LLC miss rate and
ratio are collected when each benchmark is running alone
using pfmon [6].

Figures 4 and 5 compare the average contentiousness and
sensitivity of the benchmarks with their LLC misses per
million instructions. Figures 6 and 7 compare the average
contentiousness and sensitivity with LLC misses per mil-
lisecond. In these four figures, each bar shows the average
contentiousness or sensitivity of each application as mea-
sured from our experimentation in Section 2. The dotted
line shows the each benchmark’s LLC miss rate or ratio. We
use line graphs to better demonstrate the difference between
the trend of LLC misses and each application’s contentious-
ness or sensitivity. The left y-axis shows the contentiousness
and sensitivity, respectively, and the right y-axis shows the
LLC misses rate and ratio.

These figures demonstrate two key observations. The first
observation is that LLC miss rate and ratio are good in-
dicators to distinguish CPU-bound applications and
memory-bound applications. Applications that are shown
to the right of each figure, such as hmmer, sjeng, and povray
are CPU bound applications. They tend to have little con-
tentiousness or sensitivity to contention, and this is accu-
rately predicted by their extremely low cache miss rate/ratio.
This insight indicates that a contention aware runtime sys-
tem that uses LLC misses to predict performance degrada-
tion or detect contention may be quite effective for work-
loads that contain a balanced mix of CPU bound appli-
cations and memory bound applications, as co-scheduling
CPU bound and memory bound applications does indeed
minimize contention effectively. The scheduler would simply
have to pair low LLC miss benchmarks (e.g, povray) with
high LLC misses benchmarks (e.g milc). Also contention
may not occur when CPU bound applications are executing
and thus using LLC miss rate can fairly effectively detect

- 16000
* [Avg. Contentiousness - 14000 E

3% X 5 k<

§25% R ++Xe++ LLC misses/million instr | 12000 2

g : t - 10000 @

3 20% A F

3 HAS - 8000 §

S 15% ¥ H

g : ' L 6000

+ B ;

S1o% T I I : 4000 E
o I I : - 2000 &
0% -0 N ELELEKN 0 “E’

-
Eeg ¥ ESESECEs3E28T -
£EEEEE%EM‘;EE$3§§§§
2 g 98 T Egs<cgwge
& a w £ c = = e
=] = g
Tg o Q o

Figure 4: LLC miss ratio vs. average contentious-
ness

35% X 35000
30% i [Avg. Contentiousness|. 30000
@
2
g 25% «+Xe++ LLC misses/ms - 25000 g
v . ~
3 20% t 20000 &
-]]
S 15% 15000 ‘€
£ Q
S 10% 10000 =

5% 5000

libquantum S ——

0%

soplex "3t
mcf — .
o

£ e 0 X QX gLror=gcw>0T
= EaEo s e © G c®
5 £ £ N © e e
S5 E c8E®EEEEI TS E
s 2% © £ T @2 c

@ c Qo
€5 < = o

= Q)

Dg o

Figure 6: LLC miss rate vs. average contentiousness

when contention is not occuring. This observation may ex-
plain the good results in prior work.

The second key observation is that LLC cache miss rate
and ratio are not good at predicting the degree of
contentiousness and sensitivity for memory bound
applications. This is demonstrated by the mismatch be-
tween the dotted line and bars for benchmarks to the left of
each figure. These benchmarks exhibit various levels of con-
tentiousness and sensitivity ranging from 5% to 35% for con-
tentiousness and 20% for sensitivity). However using LLC
miss rate and ratio gives little indication of the magnitude
of the contentiousness or sensitivity. For example, in Fig-
ure 4 and Figure 6, 1bm and libquantum are the two most
contentious benchmarks, yet their LLC misses rate and ra-
tio are quite low. In Figure 5 and 7, sphinx is shown to be
one of the most sensitive benchmarks, yet its LLC miss rate
and ratio are almost negligible. From these observations, we
conclude that LLC miss rate or ratio is not a good indicator
for predicting the magnitude of contentiousness and sensi-
tivity of a memory bound application, and therefore is not
suitable for scheduling workloads that are memory bound
biased (containing more memory bound applications than
cpu bound) or detecting the severity of contention among
such workloads.

Section 4.2.1 presents more details on why LLC miss rate
is not a good indicator for contentiousness or sensitivity.

4. PREDICTING CONTENTION CHARAC-
TERISTICS

In this section we construct models to indicate contention
characteristics prediction for all types of workloads including

25% 16000

X B Avg. Sensitivity c
14000.2
20% X i illion | E
J !.LCtMISSeS/IT\I”IOn F 12000 2
3 instr
> . [
:g 159 1 10000.S
_E [8000
G 10%
g 6 [6000

5% 3

——
lom bl
N
o
o
o

IS
o
o
o
LLC misses/million inst

0% l!!xxx 0
= O X X X 5 O Q O C - g T > = =
5 L EL =
aca 2 = S80S 85cd & o
ESESEEESE®DEESEESED
235 6CS Sowcs @3 e
EA2c3 el a £
& o o
5 s 3
= Q

Figure 5: LLC miss ratio vs. average sensitivity

25% 35000
B Avg. Sensitivity | 30000
20% "
I I <+ ¥+ LLC Misses/ms | 25000 £
I IR 7
15% i - 20000

misses,

- 15000 1

10% -

Sensitivity

LLC

[10000

5%

[5000

0% AT e S ‘l'\‘!‘%‘X‘X"X 0
4= O X X Xx o o O .Cc = o = =
UQ.CEEEt_g;ng:g-g%w,—u
ELEo53E23®SRodGSESD

c2Qec o o c O ET
€ g 3 5 &<
o © T
[}
xX 9o

Figure 7: LLC miss rate vs. average sensitivity

memory bound workloads. One of the key insights of this
work is that because an application’s contentiousness and its
sensitivity to contention are two distinct characteristics, we
need separate predictors for each. Also, based on the results
presented in Section 3, we conclude that contention also oc-
curs in other shared components in the memory subsystem
in addition to last level caches. Therefore, understanding
the contention characteristics of an application requires a
holistic view of the memory subsystem and a comprehen-
sive predictor must capture how an application uses and re-
lies on the shared resources beyond last level cache such as
memory bandwidth, the effect of data prefetchers, memory
controllers, etc.

In this section, we first construct general models to es-
timate an application’s contention characteristics that take
sharing of multiple memory components into consideration.
We then select PMUs that can reflect application’s activity
in regard to these shared memory components. Finally, we
determine the detailed prediction models using regression
analysis between an application’s selected PMUs profile and
its contention characteristics.

4.1 Modeling Contentiousness and Sensitiv-
ity

Why are applications’ contentiousness and sensi-
tivity are different?

The fundamental difference between contentiousness and
sensitivity is that contentiousness reflects how much pres-
sure an application puts on the shared resources; meanwhile,
application sensitivity to contention reflects an application’s
reliance on the shared memory resources. Last level caches
and prefetchers are both essentially performance optimiza-

tion mechanisms whose effectiveness is depending on ap-
plication’s data reuse patterns, therefore for these two re-
sources, there is a difference between an application’s pres-
sure and reliance on them. Pressure is directly linked to
how much the shared resource (LLC or prefetcher) an appli-
cation is using; while reliance is how much an application’s
progress is benefiting from using the shared resource.

For example, an application’s working set may occupy a
great amount of LLC space but the application may not rely
on or benefit much from the LLC because it does not reuse
its data residing in the LLC. Meanwhile, another application
that has good locality characteristics may occupy the same
amount of LLC space and its performance is highly depend-
ing on the LLC because it is taking advantage of the LLC
for its reused data. Another example is that an application
can issue a large amount of prefetching requests but may
not benefit or only benefit slightly from these requests. In
this case, the application is heavily using but not depending
on the prefetcher. For other components such as memory
bandwidth, pressure and reliance can be more correlated.

To model an application’s contention characteristics, we
use a linear model to combine the effect of shared resources,

including the last level cache, memory bandwidth and prefetcher.

We also consider contentiousness and sensitivity to contention
separately.

Contentiousness An application’s contentiousness is de-
termined by the amount of pressure it puts on the shared
memory subsystem. Thus it can be directly predicted using
the application’s usage of the shared resources.

C = a1 X LLC_usage + by X BW_usage + ¢1 X Pref_usage, (7)

where C' stands for contentiousness, BW is bandwidth and
Pref is prefetcher. It is easy to quantify and measure the
bandwidth usage. However, it is difficult to quantify cache
usage because it is multifaceted. For example, both the
cache access frequency and the footprint in the cache are
important reflects a dimension of the cache usage.

Each application may have a different amount of cache,

bandwidth and prefetch usages. For example, a cache-intensive

application whose working set is similar to the size of the
LLC has a heavy LLC usage and probably little bandwidth
usage. Streaming applications may have little to medium
cache usage but heavy bandwidth usage. How contentious
these applications are relative to each other depends on the
relative importance between the cache contention and the
bandwidth contention. Note that the goal of the prediction
model is to rank the relative contentiousness of a group of ap-
plications to make scheduling decisions, instead of predicting
the exact average contentiousness or the exact performance
degradation. Therefore identifying the relative importance
of contention in shared caches, bandwidth and prefetchers,
reflected as coefficients a1, b1 and ci, is one of the main ob-
jectives of the modeling. The next section will present the
regression analysis for determining coefficients of the model.
It is worth noting that a1, b1, c¢1 are architecture specific.

Sensitivity A good prediction model for sensitivity should
capture how much the application is relying on the shared
memory system. However, this is much more challenging
than predicting contentiousness.

S =az Xx LLC_usage + bas x BW _usage + c2 X Pref_usage, (8)

To capture the difference between contentiousness and sensi-
tivity, we use difference coefficients (e.g, a1 vs. a2). In addi-

tion to being architecture-specific, coefficients asz, b2 and ca
are also application specific. This is because, as we discussed
earlier, even with the same amount of resource usage, how
much an application relies on the shared resources is differ-
ent. And it is heavily depending on how applications reuse
data.

4.2 Approximation using PMUs

In this section, we identify performance counters (PMUs)
to estimate the usage of memory resources including LL.C
and memory bandwidth. We then profile a set of synthetic
benchmarks to collect the selected performance counters as
well as the contention characteristics of these benchmarks
on a real architecture. Using performance counter profiles
to estimate resource usages in Equation 7 and 8, we can use
regression analysis to determine coefficients of the models.
The platform we use in this section is a quad-core Intel Core
i7 described in Section 2.3.

4.2.1 PMUs for Memory Resource Usage

Contentiousness On our Intel Core i7 platform, we iden-
tify the number of cache lines the last level cache brings
in per millisecond (LLC Lines In/ms), as shown in Fig-
ure 8, to measure the memory bandwidth usage. This is
because that LLC lines in rate can better capture the ac-
tual aggregate pressure an application is putting on the
bandwidth than LLC miss rate or ratio because it includes
prefetchers’ effect on the bandwidth. We identify (L2LinesIn
- L3LinesIn)/ms to estimate the shared cache (L3) usage.
(L2LinesIn - L3LinesIn) rate shows how much data is used
in an interval that is coming from only L3 and not the
DRAM. However, unlike using L3LinesIn/ms to estimate
the bandwidth usage, (L2LinesIn - L3LinesIn) rate is an ap-
proximation of the L3 cache usage. As we discussed, both
the cache footprint and the access frequency are dimensions
of the cache usage. Bigger footprint and higher access fre-
quency indicate more pressure on the cache. (L2LinesIn -
L3LinesIn) rate only reflects the frequency but may not fully
reflect the application’s footprint in the L3 cache because
PMUs do not reflect the amount of data reuse. However,
we will show that this is a sufficient approximation when
indicating contentiousness. Prefetcher usage is manifested
in both cache and bandwidth usage. The main impact of
prefetchers is the increased bandwidth and the cache space
the prefetched data occupy. Because both L3LinesIn and
L2LinesIn include the prefetchers’ traffic, we do not need an
extra PMU to measure the prefetcher usage. Although we
use an Intel Core i7 platform here, the reasoning of select-
ing PMUs should be general for other multicores. Using the
above PMUs, Equation 7 becomes:

C = ay x (L2LinesIn_rate— L3LinesIn_rate)+by x L3LinesIn_rate
(9)

Why LLC miss rate is not a good indicator for con-
tentiousness? Our experiments in Section 3 show that solo
LLC miss rate and ratio do not accurately indicate an appli-
cation’s level of contentiousness. There are two main reasons
that our model (Equation 9) can be more accurate. Firstly,
LLC miss rate does not fully reflect the contention for the
memory bandwidth or prefetcher. LLC miss rate or ratio, as
an architectural performance monitoring event on most plat-
forms, does not capture the prefetching bandwidth, which
often consumes a large portion of the memory bandwidth
on modern architectures. Secondly, LLC miss rate and ratio

L2 Lines In Application
Core | Core | | Core | | Core |
) [2 [e][=~

: [[[
7 Shared Cache /
]

A A
| HEH =S

Remaining Memory Subsystem

Figure 8: PMUs used for predicting contention charac-

teristics

also cannot accurately capture cache contentiousness of an
application. An application can have a working set that fits
in the L3 cache. The application can frequently access its
working set without incurring many cache misses. However,
since it is heavily using the shared cache, it can be very
cache contentious when colocated and causing cache misses
to its co-runners. LLC miss rate cannot accurately predict
cache-intensive applications’ contentiousness but (L2LinesIn
- L3LinesIn) rate can.

Sensitivity We use the same PMUs to estimate the re-
liance an application has on the shared resources and to
predict the application’s sensitivity to contention.

S = ag x (L2LinesIn_rate — L3LinesIn_rate)+ bz X L3Lines1n,7gat§
10

As we mentioned in Section 4.1, as and b2 are application-
specific coefficients that are related to how an application
reuses its data. However, due to the limitation of current
available PMUs on most hardware, we cannot accurately
measure data reuse. Therefore, the goal of the regression
analysis for the sensitivity model is to investigate whether
these application specific factors are not negligible when pre-
dicting an application’s sensitivity.

Why LLC miss rate is not a good indicator for
sensitivity ? As we discussed in the previous section, LLC
miss rate does not always reflect the reliance an applica-
tion has on LLC or the rest of the shared memory system.
First, an application can be highly relying on the LLC, oc-
cupying large portion of the LLC and frequently accessing
it without incurring LLC misses. This type of applications
actually may be highly sensitive. However, the LLC miss
rate does not reflect that. Secondly, multiple shared mem-
ory components also need to be considered for sensitivity
to contention. For example, sensitivity to bandwidth con-
tention is not considered previously. Streaming applications
are considered to be contentious but not necessarily sensi-
tive because they are already having cache misses when it is
running alone. So it would seem that co-running with other
applications would not make the situation worse. However,
they are highly sensitive to memory bandwidth contention
although not to cache contention. These applications also
may not have high LLC miss rates.

4.2.2 Regression to Determine Coefficients

In this section, we use multiple regression to determine
the coefficients in Equation 9 and 10. The goal of the re-
gression analysis is to firstly test that whether there is a

LLC Lines In

120%

B Avg. Contentiousness
100% Avg. Sensitivity
80%
60%
40%
20% l] {I
NI N NI 0 > o >

0%

Al O
S S 3 o S o € P D& S
FEFFLELFLESETE &
AR L& O
& & L&
Q'

Figure 9: Average contentiousness and sensi-
tivity of synthetic benchmarks

Table 1: Synthetic Benchmarks

Benchmark] Footprint | Description |

bst 4mb, 8mb, | random accessing a binary search
50mb tree

naive 4mb, 8mb, | random accessing an array
50mb

er-naive 4mb, 8mb, | fast random accessing an array
50mb

blockie small, a number of large 3D arrays. A

medium, portion of one array is continu-
large ously copied to another.

sledge small, two large arrays, copies data
medium, back and forth between arrays
large with this sledgehammer pattern.

strong correlation between an application’s resource usage
and its contention characteristics; and secondly to determine
the relative importance of contention in various resources.

Synthetic Benchmarks To conduct regression analysis,
we collect PMU profiles and contention characteristics of a
suite of synthetic benchmarks. Table 1 presents our syn-
thetic benchmarks. Bst, naive, blockie and sledge are
from the contention benchmark suite developed by Mars et
al. [15]. The benchmarks are memory intensive applications
with various memory access patterns. They are run using
3 different inputs with different working set sizes to stress
different memory resources. The only difference between
naive and er-naive is that er-naive uses a much faster
random number generator. The goal is to test how con-
tention characteristics would change when an application’s
cache access frequency increases but everything else remains
the same. Figure 9 presents each benchmark’s average con-
tention characteristics calculated using Equation 4 and 6.
As the figure shows, the benchmark suite presents a fairly
wide range of contentiousness and sensitivity. Also this fig-
ure again demonstrates that an application’s contentious-
ness and sensitivity are not strongly correlated.

Regression We conduct multiple linear regression on Equa-
tion 9 using each benchmark’s L2LinesIn rate, L3LinesIn
rate and average C (contentiousness), shown in Figure 9.
The regression result for contentiousness is:

C =1.663 x (L2LinesIn/ns — L3LinesIn/ns)
+ 8.890 x L3LinesIn/ns + 0.044 (11)

The p value for (L2LinesIn/ns - L3LinesIn/ns) is 0.018;

1 3 1 100000 1 200000
0.9 » 09 1 = Contentiousness 90000 09 - :C"”‘e”“"”s"e“ - 180000
[4 4 L2-L3LinesIn = s
$ 08 o 08 ~-LLCLNESIN o 80000 g 08 ' X 160000 2
< 07 °* 307 -/ -+ 70000 8 é 0.7 ’ \ I 140000
E ’ ° 206 I '\ 60000 Z 206 R 120000 Z
€ 06 § 05 ' {1 s0000 @ § 05 '+ 100000 &'
E 0.5 S - S04 4‘#} -+ 20000 & 204 -+ so000 Z
S s 1 13 |
003 30000 © 0 03 60000
3% . . °© | 2 ERSRIPN B!
b+ 03 0.2 /l \I 20000 0.2 N I,\ 40000
B o o1) 4 10000 o1 -] 20000
Foot 4 I LT NN TELE
0.1 L] 00000000000 Q<NMm 000000000000 CaM®m
EEEEEEEEETTR LSS EEEEEEEEETTL SO
558558558225k EEEEEEEEER S ey
0 ‘ ‘ ‘ ‘ ‘ 5323833835338 8% FE2YEEReSE I8
292552882228 w @@ 2255253228280 W@
0 02 0.4 06 0.8 1 d2gcggeas R E R
Measured Avg. C iousness T C Y%
Figure 10: Regression Result for Figure 11: Benchmarks’ aver- Figure 12: Benchmarks’ aver-
Contentiousness using L2 Lines in age contentiousness vs. their age contentiousness vs. their

and L3 Lines in L3LinesIn/ms

for L3LinesIn/ns, 5.11e-07; for the entire regression, 2.015e-
06; all smaller than 0.5, indicating statistically significant ef-
fects. The R-squared is 0.8876, indicating a strong fit. The
coefficients show the relative importance between the band-
width usage and the LLC usage, indicating that memory
bandwidth contention has a more dominating effect.

Figure 10 presents benchmarks’ predicted contentiousness
values using the regression model (Equation 11) comparing
against the measured actual average contentiousness. Fig-
ure 11 shows that for most benchmarks, L3LinesIn_rate can
be very indicative of an application’s contentiousness. Ap-
plications with high L3LInesIn_rate are in general causing
more performance degradation to its co-runners. This is
true except for a few benchmarks including er-naive4dmb,
er-naive8mb, bst4mb and bst8mb. Those benchmarks have
minimum L3LInesIn_rate but they have medium levels of
contentiousness. This is because they are contentious for
the shared cache instead of contentious for the bandwidth.
Figure 12 shows that these benchmarks all have a medium to

high (L2LInesIn - L3LinesIn) rate, indicating that (L2LInesIn

- L3LinesIn) rate can capture their potential cache con-
tentiousness. It is not as accurate as to predicting band-
width contention because as we mentioned, cache usage is
more difficult to capture using PMUs. Note that their con-
tentiousness level is mild comparing to benchmarks such as
blockie and sledge. This is consistent with the regression
results that bandwidth usage has a much higher coefficient
than cache usage.

However, regression for Equation 10 cannot establish a lin-
ear model for sensitivity, indicating that application-specific
factors such as locality play a non-negligible role in decid-
ing applications’ sensitivity and PMU alone may not be a
good candidate for an accurate prediction model. It is worth
noting that predicting sensitivity is challenging using other
approaches too. Reuse distance profile can capture the ap-
plication’s locality characteristics. However, most works [29,
11] using reuse distance profile only consider contention in
the last level cache, and it may be difficult to simulate and
combine the contention effect in various other resources such
as sophisticated prefetchers. Omne promising approach is
through direct empirical measurement instead of indirect
PMU indicators. Cipe, proposed by Mars et al. [16], em-
pirically measures application’s sensitivity in a controlled
synthesized environment.

Summary In summary, an application’s contentious-

(L2LinesIn/ms-L3LinesIn/ms).

ness is determined by the pressure the application places
on the shared memory subsystem. On the Intel Core i7,
a combination of L2LinesIn and L3LinesIn rate is a bet-
ter indicator of contention characteristics instead of LLC
misses. One key insight is, because the fundamental differ-
ence between an application’s contentiousness and sensitiv-
ity to contention (e.g, contentiousness is directly related to
resource usage but sensitivity is related to the dependence
on the resource), it is easier to predict an application’s con-
tentiousness using PMUs. However, PMU alone may not be
sufficient for an accurate sensitivity prediction. In addition,
because of the complexity of the memory system design on
modern multicore architectures, a good predictor for con-
tentiousness needs to fully reflect the aggregate usage of a
number of resources including shared caches, memory band-
width, prefetchers, etc.

S. EVALUATION

In this section, we evaluate our prediction model for appli-
cation’s contentiousness (Equation 11) using SPEC CPU2006
benchmarks. All experiments are conducted on quad-core
Intel Core i7 described in Section 2.3. Each benchmark’s
contentiousness is measured as described in Section 2.3.1,
shown in Figure 3. We also measure each benchmark’s solo
L2LinesIn_rate and L3LinesIn_rate. Using the PMU pro-
files, we calculate the predicted contentiousness using Equa-
tion 11.

Figure 13 presents our prediction results compared to the
real measured contentiousness for SPEC CPU2006 bench-
marks. The linear correlation coefficient R is 0.91, indicat-
ing our prediction is highly correlated with the real measured
contentiousness. Note that we are not predicting the actual
value of contentiousness because most contention-aware run-
time systems only need to rank applications according to
their contentiousness levels. For example, to make schedul-
ing decisions, the scheduler ranks applications, and then co-
locate highly contentious applications with applications that
are not so contentious. The strong correlation (0.91) demon-
strates that our prediction model can successfully rank and
classify the contentiousness levels of applications and thus
can greatly improve scheduling decisions. Figure 14 shows
the prediction results using LLC miss rate. Figure 15 shows
the prediction results using LLC reference rate. Zhuravlev et
al. [29] proposes using LLC reference rate to predict an ap-
plication’s intensity (contentiousness). The correlation co-

0.9
0.8
0.7

0.5
0.4
0.3
0.2
0.1

Predicted C using LINESIN

R?=0.83427

0 0.1 0.2 0.3 0.4

Measured Avg. Contentiousness

Figure 13: Predicted contentious-
ness using our model is highly
correlated with the real measured

35000

30000

25000

20000

L3_Miss Rate
*

*
A4

. R2=0.2238

0 0.05 0.1 0.15 0.2 0.25 03 035

Measured Avg. Contentiousness

Figure 14: L3 Miss Rate is not
strongly correlated with the real
contentiousness

80000

70000

60000

-]
2
s 50000
c
O 40000
&, 30000 rS—
) .
20000 >
10000 1= " *
¢ R*=0.07632
0 "c
0 0.1 0.2 0.3 0.4
Measured Avg. Contentiousness
Figure 15: L3 Reference rate

is not strongly correlted with the
real contentiousness

contentiousness for SPEC bench-
marks

efficients R are 0.47 and 0.28, respectively, showing that
neither LL.C miss rate or LLC reference rate can accurately
indicate application contentiousness.

Our evaluation shows that our prediction model can in-
dicate applications’ contentiousness much more accurately
than the state of the art LLC miss rate indicator. And our
contentiousness model can improve contention-aware run-
time solutions that base on PMU indicators for contention
characteristics.

6. RELATED WORK

There has been a wealth of research on the challenge of
shared resource contention on multicore processors. Con-
tention aware runtime systems have been proposed to miti-
gate the effect of contention [17, 13, 29, 11, 2, 18, 27]. Jiang
et al. develop a locality model to predict co-running appli-
cations’ degradation and use the model for co-scheduling to
reduce performance degradation and unfairness [11]. Zhu-
ravlev et al. demonstrate that cache contention is not the
dominant cause for performance degradation of co-running
applications on CMPs; contention that happens in many
components of the memory sub-system all contributes to
the performance degradation. They also conclude that last
level cache miss ratio is one of the best predictor for co-
running applications’ performance degradation [29]. Jiang
et al. and Tian et al. study the theoretical complexity of
co-scheduling and provide approximate algorithms [10, 25].
Also, there has been a number of contention aware schedul-
ing schemes proposed that guarantee fairness and Quality-
of-Service for multiprogrammed and multithreaded applica-
tions [13, 7, 1]. Fedorova et al. use cache model prediction to
enhance the OS scheduler to provide performance isolation
by allocating CPU resources according to contention inter-
ference [7]. Hardware techniques and related algorithms to
enable cache management such as cache partitioning and
memory scheduler have been proposed [24, 12, 21, 19, 4].
Iyer et al. proposed a QoS-enabled memory architecture for
CMP platforms to allocate memory resources such as cache
and memory bandwidth [9]. Other hardware solutions have
been developed to guarantee fairness and QoS [20, 22, 14,
8]. Related to novel cache designs and architectural support,
analytical models to predict the impact of cache sharing are
also proposed by Chandra et al. [3]. In addition to new

hardware cache management, other approaches manage the
shared cache through the OS [23, 5, 7, 28].

7. CONCLUSION

In this paper we performed a thorough study of contention
characteristics to develop an improved predictor for con-
tention aware runtime systems. We studied the two as-
pects of an application’s contention characteristics: an ap-
plication’s contentiousness, e.g the amount of degradation it
tends to cause to its co-runners due to its demand on shared
resources, and an application’s sensitivity, e.g the amount
of degradation the application is likely to suffer due to co-
running with contentious applications. Our study found that
although these two characteristics are consistent to each ap-
plication, they are not strongly correlated for general pur-
pose applications. We also found that although last level
cache miss rate is a commonly perceived good indicator for
application contention characteristic, it could often be mis-
leading. Based on the findings and insights, we then present
prediction models that comprehensively consider contention
in various memory resources. Our regression analysis estab-
lishes an accurate model to predict application contentious-
ness. Further evaluation using SPEC CPU2006 benchmarks
shows that our predictor outforms the state-of-art PMU in-
dicators.

8. REFERENCES

[1] M. Banikazemi, D. Poff, and B. Abali. PAM: a novel
performance/power aware meta-scheduler for
multi-core systems. In SC' ’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, 2008.

[2] M. Bhadauria and S. McKee. An approach to
resource-aware co-scheduling for cmps. ICS ’10:
Proceedings of the 24th ACM International Conference
on Supercomputing, Jun 2010.

[3] D. Chandra, F. Guo, S. Kim, and Y. Solihin.
Predicting Inter-Thread Cache Contention on a Chip
Multi-Processor Architecture. In HPCA ’05:
Proceedings of the 11th International Symposium on
High-Performance Computer Architecture, 2005.

[4] J. Chang and G. S. Sohi. Cooperative cache
partitioning for chip multiprocessors. In ICS ’07:

[10]

[15]

[16]

Proceedings of the 21st annual international
conference on Supercomputing, 2007.

S. Cho and L. Jin. Managing Distributed, Shared L2
Caches through OS-Level Page Allocation. MICRO
39: Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, 2006.
S. Eranian. What can performance counters do for
memory subsystem analysis? Proceedings of the 2008
ACM SIGPLAN workshop on Memory systems
performance and correctness: held in conjunction with
the Thirteenth International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS’08), pages 26-30, 2008.
A. Fedorova, M. Seltzer, and M. D. Smith. Improving
Performance Isolation on Chip Multiprocessors via an
Operating System Scheduler. In PACT 07:
Proceedings of the 16th International Conference on
Parallel Architecture and Compilation Techniques,
2007.

A. Herdrich, R. Illikkal, R. Iyer, D. Newell,

V. Chadha, and J. Moses. Rate-based QoS techniques
for cache/memory in CMP platforms. In ICS "09:
Proceedings of the 23rd international conference on
Supercomputing, 2009.

R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni,

D. Newell, Y. Solihin, L. Hsu, and S. Reinhardt. QoS
policies and architecture for cache/memory in CMP
platforms. In ACM SIGMETRICS Performance
FEvaluation Review, volume 35, 2007.

Y. Jiang, X. Shen, J. Chen, and R. Tripathi. Analysis
and approximation of optimal co-scheduling on chip
multiprocessors. In PACT ’08: Proceedings of the 17th
international conference on Parallel architectures and
compilation techniques, 2008.

Y. Jiang, K. Tian, and X. Shen. Combining locality
analysis with online proactive job co-scheduling in
chip multiprocessors. High Performance Embedded
Architectures and Compilers, page 2015A52157 2010.
S. Kim, D. Chandra, and Y. Solihin. Fair Cache
Sharing and Partitioning in a Chip Multiprocessor
Architecture. In PACT ’04: Proceedings of the 13th
International Conference on Parallel Architectures and
Compilation Techniques, 2004.

R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn.
Using OS Observations to Improve Performance in
Multicore Systems. IEEE Micro, 28(3), 2008.

J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and

P. Sadayappan. Gaining Insights into Multicore Cache
Partitioning: Bridging the Gap between Simulation
and Real Systems. In The IEEE 14th International
Symposium on High Performance Computer
Architecture, pages 367-378, 2008.

J. Mars and M. L. Soffa. Synthesizing Contention. In
Workshop on Binary Instrumentation and
Applications, 2009.

J. Mars, L. Tang, and M. L. Soffa. Directly
characterizing cross core interference through
contention synthesis. In Proceedings of the 6th
International Conference on High Performance and
Embedded Architectures and Compilers, HIPEAC ’11,
pages 167-176, New York, NY, USA, 2011. ACM.

(17]

(18]

(19]

20]

(21]

(22]

23]

24]

(25]

[26]

27]

(28]

29]

J. Mars, N. Vachharajani, R. Hundt, and M. Soffa.
Contention aware execution: online contention

detection and response. CGO ’10: Proceedings of the
8th annual IEEE/ACM international symposium on
Code generation and optimization, Apr 2010.

A. Merkel, J. Stoess, and F. Bellosa.
Resource-conscious scheduling for energy efficiency on
multicore processors. EuroSys '10: Proceedings of the
5th European conference on Computer systems, Apr
2010.

K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E.
Smith. Fair Queuing Memory Systems. In MICRO 39:
Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, 2006.
K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual
private caches. ISCA ’07: Proceedings of the 3/th
annual international symposium on Computer
architecture, 35(2), 2007.

M. K. Qureshi and Y. N. Patt. Utility-Based Cache
Partitioning: A Low-Overhead, High-Performance,
Runtime Mechanism to Partition Shared Caches.
MICRO 89: Proceedings of the 39th Annual
IEEE/ACM International Symposium on
Microarchitecture, 2006.

N. Rafique, W.-T. Lim, and M. Thottethodi.
Architectural support for operating system-driven
CMP cache management. PACT ’06: Proceedings of
the 15th international conference on Parallel
architectures and compilation techniques, 2006.

L. Soares, D. Tam, and M. Stumm. Reducing the
harmful effects of last-level cache polluters with an
OS-level, software-only pollute buffer. In MICRO ’08:
Proceedings of the 2008 41st IEEE/ACM International
Symposium on Microarchitecture, 2008.

G. E. Suh, S. Devadas, and L. Rudolph. A New
Memory Monitoring Scheme for Memory-Aware
Scheduling and Partitioning. In HPCA ’02:
Proceedings of the 8th International Symposium on
High-Performance Computer Architecture, 2002.

K. Tian, Y. Jiang, and X. Shen. A study on optimally
co-scheduling jobs of different lengths on chip
multiprocessors. In CF ’09: Proceedings of the 6th
ACM conference on Computing frontiers, 2009.

Y. Xie and G. H. Loh. Dynamic Classification of
Program Memory Behaviors in CMPs. In The 2nd
Workshop on Chip Multiprocessor Memory Systems
and Interconnects, 2008.

D. Xu, C. Wu, and P. Yew. On mitigating memory
bandwidth contention through bandwidth-aware
scheduling. ... of the 19th international conference on
..., Dec 2010.

X. Zhang, S. Dwarkadas, and K. Shen. Towards
practical page coloring-based multicore cache
management. FuroSys ’09: Proceedings of the 4th
ACM FEuropean conference on Computer systems,
20009.

S. Zhuravlev, S. Blagodurov, and A. Fedorova.
Addressing shared resource contention in multicore
processors via scheduling. In ASPLOS ’10:
Proceedings of the fifteenth edition of ASPLOS on
Architectural support for programming languages and
operating systems, volume 38, 2010.

	 Introduction
	 Contentiousness vs. Sensitivity
	 Definition
	 Contentiousness and Sensitivity
	 Experiment Design, Results and Insights
	 Contentiousness
	 Sensitivity
	 Contentiousness vs. Sensitivity

	 LLC Misses as an Indicator?
	 Predicting Contention Characteristics
	 Modeling Contentiousness and Sensitivity
	 Approximation using PMUs
	 PMUs for Memory Resource Usage
	 Regression to Determine Coefficients

	 Evaluation
	 Related Work
	 Conclusion
	References

