
Exploiting Hardware Advances for Software Testing and
Debugging (NIER Track)

Mary Lou Soffa
University of Virginia

soffa@cs.virginia.edu

Kristen R. Walcott
University of Virginia

walcott@cs.virginia.edu

Jason Mars
University of Virginia

jom5x@cs.virginia.edu

ABSTRACT

Despite the emerging ubiquity of hardware monitoring mech-
anisms and prior research work in other fields, the applica-
bility and usefulness of hardware monitoring mechanisms
have not been fully scrutinized for software engineering.

In this work, we identify several recently developed hard-
ware mechanisms that lend themselves well to structural test
coverage analysis and automated fault localization and ex-
plore their potential. We discuss key factors impacting the
applicability of hardware monitoring mechanism for these
software engineering tasks, present novel online analyses lever-
aging these mechanisms, and provide preliminary results
demonstrating the promise of this emerging hardware.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Monitors, Testing tools; D.3.4 [Programming Languages]:
Processors—run-time environments, optimization, debuggers

General Terms

Performance, Measurement, Algorithms, Experimentation

Keywords

Branch testing, fault localization, performance monitoring

1. INTRODUCTION
Structural testing and fault localization are extremely im-

portant components of the software development process [9,
14]. In structural testing, the quality of a set of tests is
measured based on the execution of structures in the source
code. Test coverage analysis first involves determining
what entities in the program need to be monitored based on
the test coverage criteria desired. Then, as entities are mon-
itored, they must be recorded. Once execution information
is known, test coverage is calculated. Fault localization

requires the identification of suspicious code that may con-
tain bugs. This is often done by monitoring all execution

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

leading up to a suspicious code segment or through the use
of breakpoints in a debugger.

The overhead of test coverage analysis and automated
fault localization is dominated by the cost of monitoring
program execution, which is generally enabled using code
instrumentation. To instrument code, the program is ana-
lyzed, either statically or dynamically, to determine points of
interest. Each point is marked by a probe, which is usually
a jump or call to payload code that analyzes the monitored
information. Usually the code inserted into the executable
unnecessarily remains throughout execution, further increas-
ing its expense. The time overhead and code growth when
applying such techniques are high, even when monitoring
simple structures. For example, the time overhead of using
instrumentation for branch testing has been reported to be,
on average, between 10% to 30%, with code growth rang-
ing from 60% to 90% [4, 8, 11]. When monitoring large
scale programs or more complex structures for data-flow or
paths, the overall cost of monitoring can become prohibitive
in time and space, especially in resource constrained envi-
ronments. Instrumentation also is impractical for monitor-
ing multithreaded or time-sensitive programs, in which ad-
ditional probe and payload code may perturb normal exe-
cution.

However, a new landscape of microprocessors is emerging
that can change the way we think about efficiently perform-
ing online monitoring, and in fact, can potentially lead to
completely new types of analyses as well as new hardware
features. Hardware monitoring mechanisms have become
ubiquitous on modern processors and are gradually becom-
ing accessible at the kernel and user levels. For example,
the Intel Nehalem processor provides the capability to track
more than 2000 different performance events, and recent
Linux kernel patches provide user-level support for nearly
200 of these mechanisms [3]. Compared to software driven
approaches such as instrumentation, hardware mechanisms
potentially can be used with very little overhead. The initial
setup for a counter takes approximately 318µs, and reading
a counter value takes only 3.5µs on average [2]. In addition
to enabling monitoring with low time overhead, hardware
mechanisms can remove the need for instrumentation.

Not only can these hardware mechanisms potentially be
used to mitigate the costs that stem from online monitoring
and analysis, advances in hardware monitoring technology
provide an opportunity to develop new techniques for testing
and fault localization. Although recent research has shown
that the cost incurred for online monitoring and analysis for
path profilers, trace selectors, and dynamic optimizers can

be greatly reduced with hardware monitors [1, 6, 10], the
potential of leveraging hardware mechanisms has been little
researched for software testing and fault localization.

In this paper, we propose novel techniques that leverage
hardware mechanisms to calculate structural coverage and
perform fault localization. The goal is to determine if, as
in profiling and optimization research, software testing and
fault localization can benefit from the use of hardware mech-
anisms in terms of time overhead and code growth. First,
we focus on determining which hardware mechanisms lend
themselves well to these goals. Then we explore how event
information can efficiently and effectively be obtained from
the hardware mechanisms for low-cost monitoring. We pro-
pose novel online techniques that leverage hardware moni-
toring mechanisms to advance the state-of-the-art for struc-
tural testing and fault localization, and finally, we present
preliminary results showing the promise of, and trade-offs
between, key hardware performance mechanisms.

2. BACKGROUND
Although there are thousands of performance counters

and hardware mechanisms that on many modern micropro-
cessors can be accessed, this paper focuses on two more ad-
vanced hardware mechanisms that were recently introduced
to enable debugging and precise event reporting. These
mechanisms are the Last Branch Record (LBR) and the
Branch Trace Store (BTS). Simple counters, such as Branch
Instructions Retired, can only be used to report one instruc-
tion per sample. The LBR, however, reports the last n exe-
cuted branches per sample where n is determined by the size
of the LBR. For example, Intel’s Core 2 processor reports
the last 4 branches and the Core i7 processor reports the last
16. By increasing the amount of information available per
sample period, the cost of monitoring a full program is de-
creased while improving the quality of information reported.
In contrast, the BTS is an on-chip branch recording mech-
anism, which streams all executed branch information to a
buffer stored in memory whose size and location is deter-
mined by the user. The BTS effectively enables the tracing
of all branch events.

Current operating systems provide calls that allow us to
harness hardware monitoring capabilities. Hardware perfor-
mance counters provide a mechanism to trigger an OS inter-
rupt when a particular value or condition is met. Although
the hardware mechanism tracking a particular event will ob-
serve all events of that type during program execution, it is
impractical to record every event that occurs due to the over-
head of performing a system call. If these interrupts occur
too frequently, the system can become overloaded with inter-
rupts, slowing down execution and potentially even causing
the system to appear frozen. Therefore, if the OS interface
is used, a balance must be found between the amount of
information collected and the overhead of collecting it.

3. CHALLENGES AND APPROACHES
The overall goal of this work is to identify potential re-

cent hardware advances that can be leveraged to explore
how these mechanisms can be used for more efficient, and
indeed novel, analyses in software testing and fault local-
ization. To do this, we will explore and develop techniques
that use hardware mechanisms that are currently available
on commodity machines and can be accessed at the kernel

!"#$%&%'"#

()*+,-%../-

(0-120-/+*/&304%#5

*'4%6'-%4.+,-%../-

Figure 1: Deep Dynamic Inspection

and user levels. In this work, we discuss two such tech-
niques, efficient coverage analysis for structural testing and
a technique that we call deep dynamic inspection for fault
localization.

3.1 Efficient Coverage Analysis
A key challenge in performing monitoring for coverage

analysis using hardware mechanisms lies in collecting all
events with which we are concerned and only those events
from the binary code. However, hardware mechanisms are
designed to report information on all executed events. To re-
duce the time overhead of monitoring, we need to selectively
monitor hardware only during the test program’s source
code execution. Unlike profiling, in test coverage analysis,
we are looking for the execution of particular events. Thus,
sampling of the hardware needs to be performed more fre-
quently and carefully to improve the likelihood of specific
events being observed. For each mechanism used, we ex-
amine the interaction between sampling rate, coverage com-
pleteness, and the time overhead and code growth incurred.

To collect hardware monitoring information online for our
efficient coverage analysis tool, we intend to use a very thin
runtime layer, inspired by the lightweight introspection en-
gine [6, 7]. This layer represents the minimal software pres-
ence necessary to manipulate core specific hardware moni-
toring features and either log the information for later anal-
ysis or transfer information to another core for parallel anal-
ysis. This software layer has a static code overhead of 21kb
regardless of the size of the application.

3.2 Deep Dynamic Inspection
To illustrate how hardware monitoring mechanisms can

be used to design novel online analyses for fault localiza-
tion, Figure 1 presents our proposed deep dynamic inspection

(DDI) technique. The goal of this approach is to provide
an efficient lightweight technique for partially automated
software fault localization. The programmer only needs to
identify a region of suspicious code, and upon an error, our
DDI analysis leverages hardware performance mechanisms,

Benchmark Hardware Instrumented
% Growth % Growth

bzip2 1.54 50.77
gobmk 0.24 14.76
h264ref 0.73 23.37
hmmer 0.88 34.70
libquantum 0 25.00
mcf 0 21.88
sjeng 0 43.92

Table 1: Percent of code growth of hardware ap-

proach vs software instrumented approach.

namely the LBR, to report the path that leads to the error
with negligible runtime overhead.

There are two classes of information reported by DDI:
concrete path information and fuzzy path information. The
concrete path that leads up to the error presents a com-
plete path limited by the instantaneous size of the branch
trace collected at the time of the error. Fuzzy path informa-
tion provides longer probable paths using a reverse dynamic
trigger injection technique. As shown in Figure 1, a hard-
ware performance monitor (HPM) trigger is injected into
the suspicious basic block. This trigger is tripped when the
suspicious block is executed, and the contents of the LBR
are immediately collected. The contents of the LBR at this
point provide a concrete path leading up to the execution
of this block. Upon this trigger, a new trigger can then be
injected into the block at the head of this path. This process
continues until an error occurs. If these paths are executed
a number of times, longer fuzzy paths can also be provided.

4. PRELIMINARY WORK
Our preliminary work includes results which explore the

potential of using the BTS and LBR in branch coverage
analysis. In this work, we examine the tradeoffs between
the sampling rate, time overhead, and code growth that can
be obtained by sampling the LBR and BTS and applying
the information to branch testing.

4.1 Code Growth
Independent of sampling technique, a leading source of

low coverage monitoring effectiveness is due to the fact that
branch-based hardware mechanisms alone cannot observe
when fall-through branches have occurred. Fall-through
branch observation is possible is several ways. One tech-
nique is to supplement the information from branch-based
monitoring with other event data. Another technique to
detect fall-through branches includes a static post mortem
analysis of the program and observed information. How-
ever, because this paper focuses on the capabilities of using
only branch-based hardware monitoring, we instead give the
branch-based mechanism the potential to observe the fall-
through path by inserting harmless unconditional branches
along every fall-through edge in the binary.

In Table 1, we compare the code size of the original pro-
gram to 1) the program generated by applying our fall-
through enabling tool and 2) a fully software-instrumented
program. We use TestCocoon to generate the instrumented
programs [4]. On average, our approach produces a binary
with less than 2% code growth compared to the original.
Note that alternative approaches to determine fall-through

!"#$%&'$&()*+,'$&('-&./0#"(1

2&(/&.3'4)#&'56&(0&"+'7,).8'30&'9:;

<==>
?@
<@
?=@
<=@

''(?=A
''=A

''?=A

''B=A

''C=A

''D=A

''<=A

''E=A

-F)$B 8*-#1 0BED(&G 0##&(%)-HI".3I# #/G ,J&.8

2
&(
/&
.
3'
3)
#
&'
*
6
&(
0
&"
+
'

Figure 2: Actual time overhead for branch coverage

analysis using the LBR through libpfm4 compared

to instrumentation.

branches could be used that would incur no code growth.
Our modifications are much more lightweight than tradi-
tional instrumentation, which incurred code size increase
ranging from approximately 15% to 50% in the seven SPEC
benchmarks that we considered. Most of these SPEC bench-
marks are rather small in code size; we would expect more
pronounced comparisons when using larger applications.

4.2 Branch Trace Store
Intuitively, the BTS is the most appealing hardware mech-

anism for use in monitoring branches for branch testing be-
cause it is capable of reporting a complete trace of executed
taken branches. However, we discovered that using the BTS
generated time overheads averaging 40X compared to native
execution for our test applications. The extremely high time
overhead is due to the fact that the BTS was designed as
a debugging mechanism rather than a performance mecha-
nism, and as it is reported in the Intel Processor Manual [5],
when the BTS mechanism is turned on, the processor en-
ters a specialized debug mode and runs 25X to 30X slower
automatically (varies by application). This is further exac-
erbated by the fact that in the current Linux kernel, on every
context switch, the BTS is disabled and reenabled, and the
configuration is saved and restored in order to appropriately
associate instruction pointers that are part of the branch
records with the corresponding process. Thus, we find that
the BTS overheads are inherently prohibitively high.

4.3 Last Branch Record
We also performed an exploratory study of the cost of

performing branch coverage analysis when leveraging the
LBR through a user-level hardware monitoring interface,
libpfm4 [3]. To reduce the number of branches monitored
that are not associated with the test program’s source code,
sampling begins when the binary has been loaded into mem-
ory and is stopped prior to cleanup. Figure 2 shows the ef-
fect of various sampling periods on the runtime collection of
branch vectors. The time overhead is shown for five sam-
pling periods ranging from 500K to 50M relative to the time
overhead incurred by instrumentation using TestCocoon [4].

At higher sampling rates, we observe that the overhead
of monitoring using the LBR is improved compared to in-
strumentation. However, to achieve more complete coverage
information, smaller sampling periods are more desirable.

4.4 Potential Performance
Leveraging the LBR for the purposes of branch testing

shows promise, especially for use in memory constrained

!"#$%&$'()$*%$+&(,-.$(/0$*1$2'

3445
67
37
647
347

(((839
(((849
(((639
(((649
(((39
((49

((39

:;-#8 <=:.> 18?@*$A 1..$* B-:CD2+&D. .%A EF$+<

)
$*
%$
+
&(
&-
.
$(
=
0
$*
1
$2
'
(

G2.#B$(#$*-='E(#$*(:$+%1.2*>

Figure 3: Expected time overhead of branch cover-

age analysis using lightweight approach compared to

instrumentation.

systems where traditional instrumentation techniques can-
not be applied. The reported time overhead of monitoring,
however, can potentially be drastically reduced. Monitoring
the LBR through libpfm4 during the entire test program
execution leads to two undesirable results. The first is that
many of the branches observed are not related to the source
code with which we are concerned. Some of these branches
relate to calls outside the test program. The majority, how-
ever, are due to pollution from the executing monitoring
tool. The second is that the underlying cost to poll the
LBR is unnecessarily high as the operating system is called.

To reduce these costs and improve coverage information,
we propose to perform all monitoring at the kernel level
using a lightweight tool like that described in Section 3.1.
This tool will additionally turn off monitoring during exe-
cution outside the test program (i.e. during library calls or
execution of outside packages). We estimate through exper-
imentation that at the kernel level, the system calls needed
to interrupt and read the LBR require only 1.2µs, while
the polling function used in libpfm4 requires approximately
14600µs. Figure 3 represents the results we expect from ap-
plying these changes. Using this technique could thus reduce
the time overhead of branch coverage analysis by more than
20% compared to full software-level instrumentation. This
low-cost technique will also enable us to sample at smaller
rates, increasing overall coverage observed.

5. RELATED WORK
The work by Shye et al. [12] is most closely related to our

research regarding using hardware mechanisms for coverage
analysis. Their technique calculates basic block coverage us-
ing a combination of static analysis and Branch Trace Buffer
(BTB) samples for the purposes of debugging. The BTB,
available on the Itanium-2, is much like the LBR in that
it is a circular buffer that stores the instruction and target
addresses of branches executed. However, the BTB holds
only four branches, whereas the LBR in the Intel Nehalem
processors contain the last sixteen, allowing more consecu-
tive branch information to be observed. By using the LBR,
we are able to gather more samples per period than if us-
ing the BTB, which enables us to achieve higher quality
coverage data at lower sampling rates. Tran et al. [13] use
specialized hardware to improve executed branch gathering.
Using this hardware, they are able to achieve achieve nearly
100% coverage with only 8% to 12% overhead. However,
the hardware used is specialized, and the benchmarks are
not standardized.

Yilmaz and Porter [15] also recently applied hardware

mechanisms to distinguish failed executions from success-
ful executions at a fraction of the runtime overhead cost of
using software-based execution data.

6. CONCLUSION
This work explores the applicability and readiness of hard-

ware monitoring mechanisms to common software engineer-
ing goals and presents a strong step forward to improve our
understanding of the potential of leveraging recent features
in structural testing and fault localization. Our preliminary
work reveals that the memory needed for effective moni-
toring is significantly smaller than that of monitoring us-
ing instrumentation, making our techniques useful partic-
ularly in memory constrained environments. These tech-
niques also can be used to calculate coverage with signifi-
cantly less overhead than instrumentation. Additionally, we
outlined a novel deep dynamic inspection analysis to enable
a highly efficient fault localization technique.

7. REFERENCES
[1] D. Chen, N. Vachharajani, R. Hundt, S.-w. Liao,

V. Ramasamy, P. Yuan, W. Chen, and W. Zheng. Taming
hardware event samples for fdo compilation. In CGO ’10, pages
42–52, New York, NY, USA, 2010. ACM.

[2] T. Dey, W. Wang, J. Davidson, and M. L. Soffa. Characterizing
multi-threaded applications based on shared-resource
contention. In To Appear: IEEE International Symposium on
Performance Analysis of Systems and Software. IEEE, 2011.

[3] S. Eranian. Perfmon2. http://perfmon2.sourceforge.net.

[4] T. S. Factory. Testcocoon - code coverage tool for c/c++ and
c#. http://www.testcocoon.org/.

[5] Intel Corporation. Intel 64 and IA-32 Architectures Software
and Developer’s Manual, Volumes 3A and 3B. Intel
Corporation, Santa Clara, CA, USA, March 2010.

[6] J. Mars and R. Hundt. Scenario based optimization: A
framework for statically enabling online optimizations. In CGO
’09: Proceedings of the 2009 International Symposium on
Code Generation and Optimization, pages 169–179,
Washington, DC, USA, 2009. IEEE Computer Society.

[7] J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa.
Contention aware execution: online contention detection and
response. In CGO ’10: Proceedings of the 2010 International
Symposium on Code Generation and Optimization, pages
257–265, New York, NY, USA, 2010. ACM.

[8] J. Misurda, J. A. Clause, J. L. Reed, B. R. Childers, and M. L.
Soffa. Demand-driven structural testing with dynamic
instrumentation. In ICSE ’05: Proceedings of the 27th
international conference on Software engineering, pages
156–165, New York, NY, USA, 2005. ACM.

[9] W. Perry. Effective Methods for Software Testing. John Wiley
& Sons, Inc., New York, New York, 1995.

[10] V. Ramasamy, R. Hundt, W. Chen, and D. Chen.
Feedback-directed optimizations with estimated edge profiles
from hardware event sampling. In Open64 Workshop at CGO
2008, Boston, MA, USA, 2008. ACM.

[11] R. Santelices and M. J. Harrold. Efficiently monitoring
data-flow test coverage. In ASE ’07, pages 343–352, New York,
NY, USA, 2007. ACM.

[12] A. Shye, M. Iyer, V. J. Reddi, and D. A. Connors. Code
coverage testing using hardware performance monitoring
support. In AADEBUG’05: Proceedings of the sixth
international symposium on Automated analysis-driven
debugging, pages 159–163, New York, NY, USA, 2005. ACM.

[13] A. Tran, M. Smith, and J. Miller. A hardware-assisted tool for
fast, full code coverage analysis. In Software Reliability
Engineering, 2008. ISSRE 2008. 19th International
Symposium on, pages 321 –322, nov. 2008.

[14] T. Wang and A. Roychoudhury. Automated path generation for
software fault localization. In Proceedings of the 20th
IEEE/ACM international Conference on Automated software
engineering, ASE ’05, pages 347–351, New York, NY, USA,
2005. ACM.

[15] C. Yilmaz and A. Porter. Combining hardware and software
instrumentation to classify program executions. In FSE ’10.
ACM, 2010.

	Introduction
	Background
	Challenges and Approaches
	Efficient Coverage Analysis
	 Deep Dynamic Inspection

	Preliminary Work
	Code Growth
	 Branch Trace Store
	 Last Branch Record
	Potential Performance

	 Related Work
	Conclusion
	References

