
BlockChop: Dynamic Squash Elimination for Hybrid Processor Architecture

Jason Mars
University of Virginia

jom5x@cs.virginia.edu

Naveen Kumar
Intel Corporation

naveen.j.kumar@intel.com

Abstract

Hybrid processors are HW/SW co-designed processors
that leverage blocked-execution, the execution of regions of
instructions as atomic blocks, to facilitate aggressive spec-
ulative optimization. As we move to a multicore hybrid de-
sign, fine grained conflicts for shared data can violate the
atomicity requirement of these blocks and lead to expensive
squashes and rollbacks. However, as these atomic regions
differ from those used in checkpointing and transactional
memory systems, the extent of this potentially prohibitive
problem remains unclear, and mechanisms to mitigate these
squashes dynamically may be critical to enable a highly per-
formant multicore hybrid design.

In this work, we investigate how multithreaded applica-
tions, both benchmark and commercial workloads, are af-
fected by squashes, and present dynamic mechanisms for
mitigating these squashes in hybrid processors. While the
current wisdom is that there is not a significant number of
squashes for smaller atomic regions, we observe this is not
the case for many multithreaded workloads. With region
sizes of just 200 – 500 instructions, we observe a perfor-
mance degradation ranging from 10% to more than 50% for
workloads with a mixture of shared reads and writes. By har-
nessing the unique flexibility provided by the software sub-
system of hybrid processor design, we present BlockChop, a
framework for dynamically mitigating squashes on multicore
hybrid processors. We present a range of squash handling
mechanisms leveraging retrials, interpretation, and retrans-
lation, and find that BlockChop is quite effective. Over the
current response to exceptions and squashes in a hybrid de-
sign, we are able to improve the performance of benchmark
and commercial workloads by 1.4x and 1.2x on average for
large and small region sizes respectively.

1 Introduction

The evergrowing need for energy efficient, yet high per-
forming, processor microarchitecture designs continues to
compel computer architects to develop innovative technolo-
gies that excel in both objectives. One such technology that is
receiving a notable amount of renewed attention from indus-
try and academia is the hybrid processor design. As shown
in Figure 1(a), a hybrid microarchitecture design is one that
uses hardware/software co-design to couple a complex soft-
ware binary translation (BT) subsystem with a simple, often
in-order, underlying hardware design. The underlying hard-
ware implements a custom native ISA designed specifically
to enable and support the BT subsystem. The BT subsys-

BT
SW

Core

Region
Cache

BT
SW

Core

BT
SW

Core

BT
SW

Core

BT
SW

Core

Interconnect + Memory SubsystemSubsystem

Region
Cache

Atomic
Blocks

Uniprocessor Multiprocessor

x86 ISA

Custom
ISA

(a) (b)

x86 ISA

Figure 1: Transitioning the Hybrid Architecture from

Uniprocessor to Multiprocessor

tem dynamically translates the host ISA to the native ISA
and is responsible for much of the complexity in the pro-
cessor such as dynamic instruction scheduling, load/store re-
ordering, speculation, and aggressive optimization. The most
notable commercial examples of such a design are the Cru-
soe [13] and Efficeon [23] processors produced by Trans-
metta Corp, although there has been other work involving
hybrid processor designs such as Daisy [15], PARROT [27],
and rePlay [25]. As of today, only uniprocessor hybrid de-
signs have been realized. However, for such a design to be
commercially viable, hybrid designs must keep up with the
growing core counts of today’s production processors.

Hybrid processors leverage hardware atomicity as an in-
tegral primitive for optimization. The instruction schedul-
ing, speculative load/store reordering, and aggressive opti-
mizations performed by the BT component of the microar-
chitecture occurs within the bounds of regions called trans-
lations. Translations are static regions of application code.
By leveraging conditional commits large atomic regions can
be formed dynamically. We refer to the sequence of dynamic
instructions executed between two commit points within a
translation as atomic blocks. On a uniprocessor design, these
atomic blocks abort and rollback when a speculative condi-
tion is violated, resulting in the costly consequence of the BT
subsystem resorting to an interpretation mode for the corre-
sponding host instructions. However, the BT subsystem is
tasked to form only those translations that are likely to suc-
cessfully commit, and in practice, squashes and rollbacks
due to mis-speculation occur infrequently for a uniproces-
sor design. Atomic regions is one of the of the key strengths
and enabling technologies of the hybrid design in that it en-
ables aggressive speculative optimizations. However, when
moving to a multicore design, this strength may become a

weakness.
As we move to a multiprocessor, shown in Figure 1(b),

a new condition for squashes and rollbacks emerges. When
multiple atomic blocks are simultaneously executing, data el-
ements shared across cores may be read and written to during
the speculative execution of the regions. These data conflicts,
or squash hazards [1], violate the atomicity requirement of
the atomic block and at least one block must be aborted on a
conflict. Understanding the magnitude of this potential prob-
lem for hybrid processors, and how the flexibility of the hy-
brid design can be utilized to mitigate the performance im-
plications of these squash hazards is critical for steering the
design of a multicore hybrid processor.

Recent work has looked at this problem for blocked-
execution architectures and concluded that for small re-
gion sizes (less than 2K instructions) squashes are infre-
quent [1, 8, 19]. While this may be the case for benchmark
workloads that have a high number of shared reads and few
shared writes (such as Parsec and Splash), it remains unclear
whether this is the case for other workloads and commercial
applications. In addition, there is no prior work investigating
how atomic blocks, formed by the processor itself, can be dy-
namically reformed to minimize and/or eliminate squashes.
In this work, we address both of these questions.

In this paper, we investigate the problem of data conflict
squashes on a dual and quad-core hybrid design across a
range of benchmark and commercial workloads. We also
introduce BlockChop, a framework for the dynamic mitiga-
tion of data conflict squashes in hybrid architecture designs.
BlockChop leverages the unique capabilities of a hybrid pro-
cessor design to observe and respond to squashes as they oc-
cur dynamically. These responses span a range of squash
handling mechanisms that use techniques such as retrials, in-
terpretation, and re-translation to automatically and dynami-
cally identify and eliminate squashes.

The specific contributions are as follows:

• We perform an investigation of the severity of shared
data conflicts for a range of small and large regions sizes
across benchmark and commercial workloads. We find
that even at smaller region sizes, shared data conflicts
are indeed quite problematic for hybrid processor de-
signs.

• We describe BlockChop, the first squash handling
framework for hybrid processors. BlockChop provides
a platform for designing adaptive policies to automat-
ically and dynamically mitigate and eliminate squash
hazards.

• We identify five squash handling mechanisms (SHMs)
that leverage retrials, interpretation, and re-translation
to respond to squashes dynamically. We also provide
a comparative analysis of these SHMs and discuss the
particular scenarios where each proves most appropri-
ate.

Through our investigation of the severity of squashes due
to shared data conflicts on our hybrid design, we observe a
significant performance penalty. With region sizes of just
200 – 500 instructions, we observe a performance degrada-
tion ranging from 10% to more than 50% for workloads with
a mixture of shared reads and writes. When using Block-
Chop to dynamically and adaptively mitigate these squashes

we observe significant performance gains. Over the state-of-
the-art response to exceptions and squashes in a hybrid de-
sign, we are able to improve the performance of benchmark
and commercial workloads by 1.4x and 1.2x on average for
large and small region sizes, respectively.

The remainder of the paper is organized as follows. In
Section 2, we provide background on hybrid processor de-
sign. We then discuss how shared data conflicts impact a
multicore hybrid design in Section 3. We introduce Block-
Chop and several squash handling mechanisms in Section 4.
In Section 5, we investigate the severity of squashes for
benchmark and commercial workloads. Section 6 presents
related work, and finally we conclude in Section 7.

2 Hybrid Processor Design

The most notable examples of hybrid processor designs
are the Transmeta’s Cruseo and Efficeon processors [13, 23].
Throughout this work, we use the Efficeon processor and its
binary translation subsystem, the Code Morphing Software
(CMS), as a basis for a multicore hybrid processor. In this
section, we describe the design of the hardware and software
components of Efficeon, and discuss a multicore design.

2.1 Processor Architecture

The primary design objective of the Efficeon is to use a
simple in-order low-power custom processor coupled with a
sophisticated binary translation software subsystem to enable
aggressive out of order rescheduling and optimization. While
the simplicity of Efficeon hardware provides low-power ad-
vantages in this design, the adaptive binary translator, CMS,
is responsible for delivering high performance.

2.1.1 Core Architecture

The Efficeon is a very long instruction word (VLIW) pro-
cessor. Each VLIW instruction, or molecule, consists of up
to eight 32-bit packets. A packet encodes functional opera-
tions, called atoms, but can also encode some auxiliary infor-
mation, such as a memory alias protection marker that allows
CMS to signal to the hardware when it speculatively reorders
and elides memory operations. Efficeon’s atoms use a tra-
ditional three-address format and can be assigned to one of
seven functional units: two ALU, two memory, two floating
point and a branch unit. Efficeon hardware has few hard-
ware interlocks. In fact, the only interlocks are to handle
variable latency memory operations. CMS guarantees cor-
rectness by carefully scheduling operations, inserting nops
as necessary. While the lack of interlocks significantly sim-
plifies hardware, it does imply that CMS must conservatively
schedule instructions across control boundaries. Efficeon’s
custom ISA uses 64 general purpose integer registers and 32
floating point registers. The register file is much larger than
the number of architectural registers in the x86. This large
register file permits dedicated native registers for maintain-
ing x86 architectural state, while leaving plenty of registers
for CMS to use. The core architecture of Efficeon also pro-
vides memory alias detection hardware to guarantee the cor-
rectness of memory operations that has been reordered by
CMS.

Translator /
Optimizer

Interpreter

Nucleus

hot code
Region
Cache

Hardware

exceptions

Figure 2: Software BT Subsystem

2.1.2 Hardware Atomicity and Speculation Support

Efficeon provides hardware support for speculation, includ-
ing support for fast checkpointing and rollback of registers
and memory. Checkpoint/rollback of registers is made pos-
sible by having two sets of register files, a working copy and
a shadow copy. Memory checkpointing/rollback is similarly
realized by associating a speculative bit in the first level data
cache. Speculative state is written into working copy of reg-
isters and by setting the speculative bit in the data cache and
marking the lines dirty. If a cacheline is dirty and written to
speculatively, its dirty contents are first evicted to a victim
cache. An explicit commit operation commits all speculative
state in a single cycle by copying working register set into
the shadow register set and by clearing all speculative bits in
cachelines. Similarly, CMS can use a rollback operation to
roll back speculative state by copying values from shadow
register set to working set and invalidating all speculative
lines in the data cache. The CMS builds atomic regions us-
ing these constructs and performs aggressive code optimiza-
tions within the atomic regions. If a fault or exception oc-
curs within an atomic region, a fault handler in CMS rolls
back speculative state. CMS can also detect atomic regions
that fault frequently, often due to aggressive speculation, and
then adaptively regenerate non-faulting code. Indeed, CMS
makes heavy use of atomicity to aggressively optimize code.
Atomicity is the single most important feature in Efficeon for
realizing high performance.

2.2 Binary Translation Subsystem

The binary translation and optimization software, such as
Efficeon’s CMS, is the heart of a hybrid processor. As shown
in Figure 2, CMS broadly consists of three components: the
interpreter, the translator, and the nucleus. The interpreter
and translator are responsible for emulating x86 instructions.
Initially, each x86 instruction is interpreted. Frequently ex-
ecuted x86 instructions are then translated and optimized
based upon the execution profile collected during interpre-
tation. The nucleus is responsible for handling interrupts and
exceptions at the host level. Those that occur at x86 level are
handled by the interpreter. The nucleus is also responsible
for recovering from speculation faults (i.e., mis-speculation).

The CMS translator is responsible for optimization and
scheduling of atoms emulating x86 code. The code regions
identified as frequently executed by the interpreter are sub-
divided into atomic regions and optimized. While the trans-
lator is essentially free to arbitrarily classify instruction re-
gions as a single atomic block, typical atomicity boundaries

are loop iterations and I/O boundaries, with an upper bound
on the number of static basic blocks and instructions.

Instructions within atomic regions can be reordered by the
translator without regard for memory consistency and precise
exceptions. Efficeon’s speculation support and alias hard-
ware is used to avoid x86-visible effects of mis-speculation
and imprecise exceptions. Atomic regions that fault due
to mis-speculation, or true x86 exceptions, invoke the nu-
cleus. Execution of the atomic region is then rolled back.
The CMS interpreter subsequently interprets the respective
x86 instructions while carefully maintaining precise excep-
tions and memory ordering. The nucleus marks and monitors
translations that repeatedly fault and adaptively retranslates
to avoid further faults.

2.3 A Multicore Design

Our hybrid multicore design targets the space of common
x86 commercial multi-processor architectures. The x86 mul-
tiprocessor implementation essentially permits multiple in-
dependent processor cores to share memory and devices. The
instruction set architecture of our multicore design is much
the same as the uniprocessor’s instruction set, except for a
small number of additions to support atomicity and serializa-
tion. Communication between processors is accomplished
using either shared memory or inter-processor interrupts.

The primary responsibility of a hybrid multi-processor is
to efficiently emulate guest (e.g., x86) instructions, includ-
ing atomic and serializing instructions, under the memory
consistency model and other constraints defined by x86. The
multi-processor CMS can, however, use a memory consis-
tency model that is stricter than that implemented by tradi-
tional x86 multi-processors.

Complications to multi-processor design arise not only
from intricacies in emulation of multiprocessor guest ISA,
but also from interaction with another copy of CMS execut-
ing on another processor core. Some of these inter-CMS
interactions are explicit, such as locks and inter-processor
interrupts, while others are implicit, such as modification
of x86 code on one core rendering translated code used
by another core stale. Solutions to the problems of multi-
processor consistency, multi-processor ISA emulation and
multi-processor CMS design are beyond the scope of this
paper. This paper specifically targets a fundamental prob-
lem in the hybrid multi-processor design, namely data cache
conflicts.

3 Data Conflicts in a Hybrid Design

As the size of atomic blocks increases, so does the chance
for these blocks to suffer shared data conflicts. In this sec-
tion, we first discuss how large atomic blocks are formed in
a hybrid processor, shared data conflicts and the high level
semantics that cause them, and how squashes and rollbacks
impact a hybrid processor design.

3.1 Larger Blocks in a Hybrid Design

For a hybrid design, larger atomic blocks are desirable for
a number of reasons. In a hybrid design, the architectural
state of the processor must be enforced at the host ISA level,

shared memory

Atomic Block Atomic Block

Data Block

Figure 3: Conflicts for Shared Data Blocks

therefore all speculative optimizations are restricted to en-
force the architectural state at every commit point. A larger
window of execution between commit points allow for these
optimizations to be applied more aggressively. In addition,
frequent commits are costly. At every commit point a check
for shared conflict is performed by accessing the coherence
directory of the last level cache. The more frequently com-
mits occur, the higher the overall cost of performing these
checks.

As the unit of optimization in a hybrid design is a transla-
tion that typically spans a relatively small number of static in-
structions, a mechanism must be in place to allow for longer
atomic blocks between commits. To achieve this we lever-
age conditional commits [4] where static commits inside the
translations are replaced with branch to skip instructions that
skip the commit until a condition is met. These conditions
can be in the form of specialized checks for the availability
of speculative resources, or atomic block size. In addition
to the insertion of these branch to skip transformations, ad-
ditional transformations are applied to allow the optimiza-
tion of larger regions. These transformations are described
in prior work [4].

Leveraging conditional commits, hybrid processors can
form atomic blocks of 10s to 1000s of instructions. How-
ever, with larger regions comes an increased chance to suffer
squashes due to shared memory data conflicts.

3.2 Shared Data Conflicts

Figure 3 illustrates a shared data block conflict. In this fig-
ure two concurrently executing atomic blocks are accessing
the same data block in shared memory. When both of these
accesses are reads, execution can proceed and the subsequent
commits are allowed. However, if a write operation is per-
formed by either core, this data block moves from shared
state to exclusive state for the first core performing the write.
If other concurrently executing blocks either read or write
to this memory block, the atomicity assumption is violated.
To ensure faithful enforcement of the memory consistency
model of the guest ISA in the example shown in Figure 3,
one of these regions must be squashed.

With larger atomic blocks, both the chance of suffering
a squash, and the performance cost of enduring the squash,
increases. Upon a squash, a software exception handler is
invoked to perform a rollback, and all of the forward progress

made from the prior commit point must be rolled back. With
larger regions, more time is available for other concurrent
atomic blocks to perform a write to any one of the data blocks
accessed, and a larger amount of work is wasted on a squash.

3.3 Source of Shared Data Conflicts

There are a number of high level constructs that are re-
sponsible for shared data conflicts in multithreaded applica-
tions.

1. [Benign and Buggy Data Races] When two or more
threads modify the same memory element that is not
protected by synchronization, we have a data race. Al-
though it is not good programming practice to have data
races, these may be benign in that they do not affect
the correct execution of an application. Programs with
these data races in the critical path are prone to suffer
shared data conflicts as the ordering of memory oper-
ations from the hybrid processor must be conformant
with the memory consistency model of the guest ISA.

2. [Lock Variables] Potentially the most common cause
of shared data conflicts are the usage of lock variables.
When locks are released and acquired, this involves
shared reads and write to the data block where the lock
variable resides.

3. [Lock Free Data Structures] Lock free data structures
are used heavily in a number of applications. These
data structures provide thread-safe access to shared data
without the use of explicit synchronization operations.
Fine grained reads and writes to these data structures
can safely occur from a multiple threads and thus shared
data conflicts can occur.

4. [Dynamic Linkage] Dynamic linkage constructs such
as the Procedure Linkage Table (in Unix) provides a
level of indirection to facilitate dynamic linking. For
the standard C library, there are over 600 entries in this
table. This shared table is read and modified as library
functions are called. There are a number of application
and implementation level properties that impact the de-
gree of access and usage of the PLT throughout execu-
tion. If it is used heavily and updated frequently, shared
data conflicts are likely to be problematic.

5. [Library Code] Library function calls such as
malloc, or signal themselves use lock variables and
update global data structures. Frequent use of these
types of library functions can lead to shared data con-
flicts.

6. [False Sharing] The current architectural view of the
memory system is as a data block / cache line granu-
alirty. The distinction between individual words in a
single line is not made by the coherence and memory
subsystem protocols. Therefore, if multiple threads are
accessing different words on the same line, the whole
line is marked dirty, leading to shared data conflicts.

3.4 Squashes and Rollbacks

In our Efficeon-based hybrid design, data conflicts are de-
tected lazily on a commit. If a conflict is detected, the com-
mitting core will send a squash signal to all cores for which it

Translator /
Optimizer

Interpreter

Nucleus

hot code

Region
Cache

Hardware

exceptions

BlockChop

Figure 4: The BlockChop Framework

is in conflict. When a squash occurs, the squashed core tran-
sitions to an interpreter mode where the host ISA instructions
are interpreted one by one. As squashes on a uniprocessor
occur only due to exceptions and mis-speculated optimiza-
tions, these squashes are infrequent and results in a negligi-
ble performance impact in an application’s steady state. If
squashes due to shared conflicts are also infrequent in prac-
tice, responding to these squashes with the interpreter may
be a reasonable response. Considering that atomic blocks in
hybrid processors does not approach the large sizes of up to
25,000 instructions as studied in prior work [1], this simple
solution may be sufficient. As we show in Section 5, we
find that for the class of applications that have a mixture of
shared reads and writes, this is not the case, and better squash
handling mechanisms are needed to mitigate and eliminate
squash hazards.

4 Squash Elimination with BlockChop

The atomic blocks formed by a hybrid processor is un-
like those in the transactional memory (TM) programming
paradigm. In a TM system, atomic regions are formed by
the developer, and the scope of these regions can not be fun-
damentally changed by the underlying processor. In a hy-
brid processor, these regions are formed by the processor at
a lower level of abstraction. As such, these regions can be
reformed and adapted by the processor itself, and a wider
range of responses to high conflict regions is available to the
software component of the hybrid processor.

4.1 The BlockChop Framework

To address the problem of frequent squashes in a hybrid
design, we present the BlockChop squash handling frame-
work. As shown in Figure 4, BlockChop is an extension
to the BT subsystem of hybrid processor to enable adap-
tive, software controlled, squash management. One of the
key advantages of the hybrid design, is the ability of the BT
subsystem to observe application behavior and employ feed-
back directed and situation specific execution and optimiza-
tion policies. BlockChop leverages this capability to direct
its dynamic response to squashes.

As shown in Figure 4, upon a squash exception, the nu-
cleus is triggered. If the squash is due to a data conflict, the

nucleus then recovers, rolls back execution, then passes con-
trol to the BlockChop framework. BlockChop then decides
how to handle the squash and may then decide one of three
options.

1. [Interpreter] Pass control to the interpreter to guar-
antee squash-free interpreted execution of the atomic
block.

2. [Translation] Pass control to the translator to apply a
translation to reduce the likeliness of suffering another
squash. In this work, we have designed and imple-
mented a “chopper” translation.

3. [Region Cache] Directly re-execute the same region in
hopes that it does not conflict again.

BlockChop can also maintain historical information on
which to base its squash response. This information includes,
but is not limited to, translation squash frequencies, squash
profiles of individual instructions, and other statistical infor-
mation.

4.2 Squash Handling Mechanisms

BlockChop provides a platform for the creation of dy-
namic and adaptive squash handling mechanisms. In this sec-
tion, we describe five response heuristics using BlockChop
to respond to squashes as they occur throughout execution,
summarized in Figure 5.

4.2.1 Interpret

The first heuristic shown in Figure 5(a) show the interpreter
based response. Upon a squash, BlockChop simply passes
control to the interpreter for non-squashable execution of
the atomic block. This approach is the current default for
squashes in the Efficeon hybrid processor for exceptions that
interrupt the execution of an atomic block. We use this ap-
proach as the baseline throughout our evaluation. While
squashes on the interpreting core is guaranteed not to occur,
interpretation is slow. On the Transmeta Efficeon with a pre-
release version of CMS 7.0 (never released to market), each
x86 host instruction is interpreted at the cost of 10s to 100s
of cycles on average.

4.2.2 Delayed Retry

Another intuitive response is to simply retry the same atomic
block, as shown in Figure 5(b). Assuming a retry at delay =

0 is successful and the atomic region does not squash again,
this response is the most efficient. However, if we suffer
retrials throughout execution, we have a sustained cost that
is proportional to the size of the atomic blocks. A delay
can be set to try to offset the timing of conflicting accesses
to increase the likelihood of avoiding the squash, however
at large atomic block sizes this would prove less effective
when conflict prone instructions are in the critical path of
the application. In addition, if retrials are unsuccessful when
large delays are used, the cost of the squashes are further
exacerbated.

N N

interpret retry chopper translation

adaptive retry to interpret adaptive retry to chopper

delay=t

delay=t delay=t

(b)(a) (c)

(d) (e)

Figure 5: Squash Handling Mechanisms

choppe r (e x c e p p c) :

/ / r o l l back a r c h i t e c t u r a l s t a t e

r o l l b a c k ()

/ / r e t r i e v e d e s c r i p t o r f o r t h e t r a n s l a t i o n

t r d e s c <−− l o o k u p t r a n s l a t i o n (e x c e p p c)

/ / i d e n t i f y c o n f l i c t i n g ” g u e s t ” i n s t r u c t i o n

x 8 6 e i p <−− map to x86 (t r d e s c , e x c e p p c)

/ / mark c o n f l i c t i n g e i p f o r i s o l a t i o n

t r d e s c . r e t r a n s i s o l a t e e i p <−− x 8 6 e i p

/ / r e t r a n s l a t i o n i s o l a t e s e i p i n i t s own commit r e g i o n

r e t r a n s l a t e a n d d i s p a t c h (t r d e s c)

Figure 6: Pseudo Code for Chopper Translation

4.2.3 Chopper Retranslation

The chopper translation, illustrated in Figure 5(c), is a re-
translation approach designed to eliminate squashes by iso-
lating instructions that are responsible for squashes. This
translation algorithm, shown in Figure 6, inserts commit
instructions before and after memory access operations that
cause squashes, effectively chopping the atomic block. Note
that our coherence protocol has been enhanced to contain
the program counter for the instruction initiating the cache
access. This program counter is delivered to the proces-
sor where squash occurs in a machine specific register. For
this approach to be most effective, instead of inserting con-
ditional commits, it marks the instruction pc as a serializing
instruction and the call to retranslate and dispatch

inserts a regular commit before and after the instruction.
By inserting non-conditional commits inside the critical path
within a translation, the dynamic atomic block is not chopped
into two pieces, it is effectively chopped at every occurrence
of the chopped instruction.

It is important to note that re-translation includes com-
plex compilation analyses in a hybrid design, and as such,
it is costly, taking 10s-100s of thousands of cycles depend-
ing on the number of static instructions spanning the atomic

block. The major advantage of this re-translation approach is
that it neutralizes squashes for the duration of execution, and
the initial cost of retranslation is quickly amortized during
execution.

4.2.4 Adaptive Interpret

Another policy may be to use historical information to com-
bine retrials with interpretation. This approach is shown in
Figure 5(d). As execution occurs, BlockChop first takes a
retry approach to handling squashes. The success or fail-
ure of retrials are observed by BlockChop and if BlockChop
observes a number of consecutive failures, a response of in-
terpretation is taken. The rationale behind this approach is
that retrying is likely to fail after a number of failed attempts
has been made. Passing control to the interpreter at this point
guarantees forward progress. We also have the added benefit
of eliminating the possibility of starvation.

4.2.5 Adaptive Chopper

Similar to adaptive interpret, adaptive chopper, shown in Fig-
ure 5(e), resorts to the chopper translation after a number
of failed retries. The core algorithm for adaptive chopper
is shown in Figure 7. Instead of immediately chopping any
conflicting instructions as they occur, we neutralize problem-
atic memory operations only as they demonstrate their per-
sistence by continually causing squashes. The tradeoff be-
tween adaptive interpret and adaptive chopper is whether to
reinterpret and guarantee forward progress now at a cost, or
neutralize the propensity of particular instructions to cause
squashes for the long term at an even larger initial cost. An-
other advantage of this adaptive approach is the retrials them-
selves serve to filter out only those operations that are most
conflict prone. As we show in Section 5, this adaptation sig-
nificantly reduces the number of chops applied to the appli-
cation.

a d a p t i v e c h o p p e r (excep pc , d a d d r) :

/ / r o l l back a r c h i t e c t u r a l s t a t e

r o l l b a c k () ;

/ / r e t r i e v e d e s c r i p t o r f o r t h e t r a n s l a t i o n

t r d e s c <−− l o o k u p t r a n s l a t i o n (e x c e p p c)

/ / i s t h i s a r e t r y

i f ! f r w d p r o g r e s s () && t r d e s c . d c o n f l i c t . add r == d a d d r :

/ / i s t h e r e t r y c o u n t g r e a t e r t h a n ” t h r e s h o l d ”

i f t r d e s c . d c o n f l i c t . c o u n t > t h r e s h o l d

/ / i d e n t i f y c o n f l i c t i n g ” g u e s t ” i n s t r u c t i o n

x 8 6 e i p <−− map to x86 (t r d e s c , e x c e p p c)

/ / mark c o n f l i c t i n g e i p f o r i s o l a t i o n

t r d e s c . r e t r a n s i s o l a t e e i p <−− x 8 6 e i p

/ / r e t r a n s l a t i o n i s o l a t e s c o n f l i c t i n g i n s t r u c t i o n

r e t r a n s l a t e a n d d i s p a t c h (t r d e s c)

e l s e

t r d e s c . d c o n f l i c t . c o u n t ++

/ / r e t r y t h e same a t om i c b l o c k

d i s p a t c h (t r d e s c)

e l s e

t r d e s c . d c o n f l i c t . add r <−− d a d d r

t r d e s c . d c o n f l i c t . c o u n t <−− 1

/ / r e t r y t h e same a t om i c b l o c k

d i s p a t c h (t r d e s c)

f o r w a r d p r o g r e s s () :

/ / check whe the r i n s t r u c t i o n s commited

i f c h o p p e r i n s n c o u n t == c u r r e n t x 8 6 i n s n c o u n t

re turn f a l s e

e l s e

c h o p p e r i n s n c o u n t <−− c u r r e n t x 8 6 i n s n c o u n t

re turn t ru e

Figure 7: Pseudo Code for Adaptive Chopper

Processor Transmeta Efficeon 2 (TM8800)

Frequency 1.2 GHz

BT Subsystem CMS 7.0 (pre-release)

Registers 64 integer, 64 FPU

Trans. Cache 32MB

L1 I-Cache 128 KB, 4-way, 64B line

L1 D-Cache 64 KB, 8-way, 32B line

Victim Cache 1 KB, fully-associative, 32B line

L2 Unified Cache 1024 KB, 4-way, 128B line

Main Memory 1 GB DDR-400

Op. Sys. Linux 2.6.19

Table 1: Efficeon Hardware Modeled

5 Evaluation

In this section, we investigate the magnitude of shared
memory data conflicts for a range of benchmark and real
workloads. We then evaluate the effectiveness of using
BlockChop to apply various squash handling mechanisms
over simply resorting to interpretation to handle squashes.
But first, we describe our experimental setup and simulation
methodology.

5.1 Experimental Setup and Methodology

For our evaluation we use a recently developed HybridMP
simulator developed at Intel Corp, shown in Figure 8. Hy-
bridMP is a functional x86 simulator with a timing model
for hardware atomicity and memory subsystem. The model
used to implement hardware atomicity has been derived from
a pre-release version of the Transmeta Efficeon uniproces-

workload description

SM-Stress SpiderMonkey Javascript Engine:

JS BeginRequest and JS EndRequest are

called continuously on javascript threading

contexts by 4 threads

NSPR-Time Mozilla NSPR Thread Package: The calen-

dar/time api is exercised continuously by 3

threads

MemcacheD MemcacheD: The memcached increment()

api is exercised continuously by 3 threads.

Spidermonkey SpiderMonkey Javascript Engine:

JS NewContext, JS BeginRequest, and

JS DestroyContext is exercised continuously

by 3 threads

Table 2: Commercial Workloads

Quad Core Cache Arch

BT

SW

Core

BT

SW

Core

BT

SW

Core

BT

SW

Core

HybridMP

Figure 8: HybridMP Simulation

sor shown in Table 1. Cycle latencies for events such as
commit, rollback, recovery, interpretation, and re-translation
are faithfully modeled. The memory subsystem architecture
(private/shared caches, and access to main memory) used is
representative of the “uncore” of a Quad Core Intel Nehalem
architecture.

Within HybridMP, commit points are selected dynami-
cally at a parameterized atomic block size. For example, if
HybridMP is parameterized to form atomic blocks of 1000
instructions, a commit is issued every 1000 instructions. This
is slightly different than using conditional commits [4] in-
serted by the BT system in that those commits may be earlier
or later than the dynamic commits. However, as each commit
point also begins the next atomic block, in the steady state,
this simply slightly shifts the location of the commits by few
dynamic instructions in practice. It is also important to note
that the performance benefit of the added optimization op-
portunity of larger regions is not included in our evaluation
methodology. However, the cost of squashes is significantly
more expensive relative to the added optimization benefits of
increased region size as entire regions of execution must be
squashed and re-executed.

In this work, we look at workloads that have a high
amount of shared reads and writes in addition to read only
sharing. The workloads used throughout this evaluation span
a number of applications from the Stamp [6, 7] benchmark
suite using simulator inputs, and the set of commercial work-
loads described in Table 2. All applications were compiled
with GCC 4.6.1 using the pthread library. All applications
are executed in their entirety. In the cases that are relevant,
single thread initialization phases are skipped and only the
parallel regions of executions are simulated.

 0%

 50%

 100%

 150%

 200%

 250%

Bayes genome intruder km−lo km−hi labyrinth ssca2 vac−lo vac−hi yada%
 o

f
C

o
n
fl

ic
ti

n
g
 R

eg
io

n
s

r200
r500
r1000
r2000
r4000

Figure 9: Conflicting Regions (2 Cores)

 0%

 50%

 100%

 150%

 200%

 250%

Bayes genome intruder km−lo km−hi labyrinth ssca2 vac−lo vac−hi yada%
 o

f
C

o
n
fl

ic
ti

n
g
 R

eg
io

n
s

r200
r500
r1000
r2000
r4000

Figure 10: Conflicting Regions (4 Cores)

5.2 Severity of Squashes

First, we investigate the severity across applications with
a high degree of shared reads and writes. This section is
complementary to prior findings [1], and shows that there
are indeed applications that severely suffer from shared data
conflicts. In this section, we perform a characterization ex-
periment that only checks for conflicts for every commit re-
gion. When a region conflicts with two or more cores, this
conflict is counted once per conflicting core. After a conflict
is counted the speculative state of the committing region is
cleared and is therefore not counted by its conflicting neigh-
bors, preventing conflicts from being counted multiple times
across cores.

5.2.1 Benchmark Workloads

Figures 9 and 10 show the percentage of dynamic regions ex-
ecuted that experienced a shared data conflict at five atomic
block sizes for both a dual-core and quad-core hybrid design.
At each size, a commit is executed after the set region of in-
structions. Each bar shows the percentage of those commits
where a shared conflict is detected.

As shown in these figures, some applications are more
prone to shared data conflicts than others. Applications such
as labyrinth, vacation, and yada are similar to Par-
sec and Splash in that they perform less shared read/writes
and are thus less likely to have data conflicts. Other appli-
cations, such as ssca2 and gnome are much more prone
to data conflicts. When moving to a quad core design, the
number of conflicting regions increases significantly. Note
that the scale of the y-axis has changed to 250%. Keep in
mind, however, that even in the cases where we have a small
number of conflicts, for a hybrid processor design, there may
be a significant performance penalty.

To investigate how the performance of these workloads
are affected by their propensity for data conflicts we execute
them using a baseline configuration of HybridMP that uses
that standard squash handling response. Figures 11 and 12
shows the performance penalty of resorting to the interpreter
when a squash occurs. The y-axis shows the normalized IPC
relative to execution on HybridMP where atomic blocks are

 0x

 0.2x

 0.4x

 0.6x

 0.8x

 1x

 1.2x

Bayes genome intruder km−lo km−hi labyrinth ssca2 vac−lo vac−hi yada

N
o

rm
al

iz
ed

 I
P

C

r200
r500
r1000
r2000
r4000

Figure 11: IPC Impact of Squashes on a Dual Core Hybrid

Processor (HybridMP)

 0x

 0.2x

 0.4x

 0.6x

 0.8x

 1x

 1.2x

Bayes genome intruder km−lo km−hi labyrinth ssca2 vac−lo vac−hi yada

N
o

rm
al

iz
ed

 I
P

C

r200
r500
r1000
r2000
r4000

Figure 12: IPC Impact of Squashes on a Quad Core Hybrid

Processor (HybridMP)

not used, more specifically, the costs associated with inter-
pretation, commits, and rollbacks are not included.

As shown in these figures, the performance penalty suf-
fered even for applications with a small proportion of con-
flicting regions is significant. While labyrinth is essen-
tially unaffected by squashes, vacation, and yada suffer
more than a 10% degradation as region sizes grows beyond
500. For applications that are prone to data conflicts the per-
formance penalty is overbearing, exceeding 50% in many
cases. When moving to a quad core design, these degrada-
tions become more severe.

MemcacheD SpiderMonkey%
 o

f
C

o
n
fl

ic
ti

n
g
 R

eg
io

n
s

r200
r500
r1000
r2000
r4000

 0%
 50%

 100%
 150%
 200%
 250%
 300%
 350%
 400%

SM−Stress NSPR−Time

Figure 13: Conflicting Regions (4 Cores)

 0.6x

 0.8x

 1x

 1.2x

SM−Stress NSPR−Time MemcacheD SpiderMonkey

N
o

rm
al

iz
ed

 I
P

C r200
r500
r1000
r2000
r4000

 0x

 0.2x

 0.4x

Figure 14: IPC Impact of Squashes on a Quad Core Hybrid

Processor (HybridMP)

5.2.2 Commercial Workloads

Benchmark applications are not always representative of
real world applications. To address this uncertainty, we

interpret
retry
retry−delay
interp−adapt
chopper
chopper−adapt1
chopper−adapt2

Figure 15: Legend Used for Figures 16 to 35

have also performed our experimentation on four commer-
cial workloads that have shared read and write accesses.
These applications are collected from the Radbench bench-
mark suite [18]. For each workload, a test harness is used to
exercise each workload through calls to their relevant APIs
as shown in Table 2.

As shown in Figures 13 and 14, we observe the same trend
for these commercial workloads. For SM-Stress every re-
gion results in a squash, even at a region size of 200. This ap-
plication continually creates and destroys Javascript context.
While this type of behavior is not likely to occur through-
out execution, this workload represents a phase of execution
that exists in real applications. When this type of behavior
occurs, a high density of conflicts can be expected.

N
o

rm
al

iz
ed

 I
P

C

 0.8x

 1x

 1.2x

 1.4x

 1.6x

 1.8x

 2x

Bayes genome intruder km−lo km−hi labyrinth ssca2 vac−lo vac−hi yada mean

 0.6x

Figure 16: IPC After Applying BlockChop (r4000)

%
 o

f
S

q
u
as

h
ed

 R
eg

io
n
s

 20%

 40%

 60%

 80%

 100%

Bayes genome intruder km−lo km−hi labyrinth ssca2 vac−lo vac−hi yada mean
 0%

Figure 17: Squashes After Applying BlockChop (r4000)

5.3 Squash Handling Mechanisms

In this section, we perform a comparative evaluation of
the various squash handling mechanisms implemented in
BlockChop. Seven response heuristics are shown:

squash handler description

interpret Transition to interpreter.
retry Immediately retry
retry-delay Delayed retry by 30 cycles
interp-adapt Adaptively go to interpreter after 5 failed retrials
chopper Apply the chopper translation on squash
chopper-adapt1 Adaptively apply chopper translation after 5 failed

retrials
chopper-adapt2 Adaptively apply chopper translation after 10 failed

retrials

Figures 16 and 17 (see Figure 15 for legend) show the per-
formance improvement (normalized IPC), and percentage of
dynamic atomic blocks that were squashed, at a block size

N
o

rm
al

iz
ed

 I
P

C

 0.8x

 1x

 1.2x

 1.4x

 1.6x

 1.8x

Bayes genome intruder km−lo km−hi labyrinth ssca2 vac−lo vac−hi yada mean

 0.6x

Figure 18: IPC After Applying BlockChop (r2000)

%
 o

f
S

q
u
as

h
ed

 R
eg

io
n
s

 20%

 40%

 60%

 80%

 100%

Bayes genome intruder km−lo km−hi labyrinth ssca2 vac−lo vac−hi yada mean
 0%

Figure 19: Squash After Applying BlockChop (r2000)

of 4000 instructions when applying each of these various
squash handling mechanisms over the baseline of resorting
to the interpreter, on a dual core hybrid design. Figures 18
and 19 show this experiment for a block size of 2000.

We observe that, although resorting to the interpretation
mode on a squash guarantees forward progress it is con-
sistently the worst of the seven approaches. When in the
interpretation mode, each x86 instruction takes 10s of cy-
cles to execute. This cost is high considering interpretation
of an atomic block is potentially as costly as 10s of retri-
als. Even though forward progress is guaranteed, subsequent
executions of the atomic block may trip to the interpreter
repeatedly. As shown in Figures 17 and 19, reducing or
eliminating dynamic squashes does not imply better perfor-
mance. The method used to reduce the squashes themselves
have a cost, for interpretation this cost is significant, so al-
though we have less squashes than retrying, we ultimately
have poorer performance. We also observe that for these
workloads, although interp-adapt is significantly better
than the baseline, it is still worse than simply retrying. How-
ever, when starvation is likely to occur interp-adapt is
preferable in that it guarantees forward progress. Our chop-
per translation proves to provide the greatest gains, both pro-
viding higher performance in light of its high costs, and vir-
tually eliminating squashes. Also keep in mind that these
workloads are relatively short running as they were run on
simulator inputs, in our experimentation we observe that in a
long running steady state the chopper heuristic continues to
converge to the IPC of having no aborts (with the caveat of
enduring more frequent commits).

Figures 20 to 25 show the same experimentation at
smaller block sizes ranging from 200 to 1000. Most notably,
we observe that at smaller region sizes, retrying is most ef-
fective for a number of workloads, and the chopper transla-
tion produces much poorer performance, at 200, almost al-
ways underperforming the baseline. This effect is due to the
high cost of translation vs the higher success rates of retrying
when region sizes are small. Here we see the key strength
of BlockChop in leveraging the flexibility of a hybrid de-
sign, in that, adaptive chopper, chopper-adapt1 and
chopper-adapt2, approaches the performance of simply
retrying for the smaller regions shown here, while achieving
the performance gain of chopping for the larger regions sizes
of 2000 to 4000.

BlockChop at r200

 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4

B
ay

es

g
en

o
m

e

in
tr

u
d
er

k
m

−
lo

k
m

−
h
i

la
b
y
ri

n
th

ss
ca

2

v
ac

−
lo

v
ac

−
h
i

y
ad

a

N
o
rm

al
iz

ed
 I

P
C

 0.5

Figure 20: IPC at r200

BlockChop at r500

 0.8

 1

 1.2

 1.4

 1.6

B
ay

es

g
en

o
m

e

in
tr

u
d
er

k
m

−
lo

k
m

−
h
i

la
b
y
ri

n
th

ss
ca

2

v
ac

−
lo

v
ac

−
h
i

y
ad

a

N
o
rm

al
iz

ed
 I

P
C

 0.6

Figure 21: IPC at r500

BlockChop at r1,000

 0.8

 1

 1.2

 1.4

 1.6

 1.8

B
ay

es

g
en

o
m

e

in
tr

u
d
er

k
m

−
lo

k
m

−
h
i

la
b
y
ri

n
th

ss
ca

2

v
ac

−
lo

v
ac

−
h
i

y
ad

a

N
o
rm

al
iz

ed
 I

P
C

 0.6

Figure 22: IPC at r1000

Squash Ratio at r2,000

 20%

 40%

 60%

 80%

 100%

B
ay

es

g
en

o
m

e

in
tr

u
d

er

k
m

−
lo

k
m

−
h

i

la
b

y
ri

n
th

ss
ca

2

v
ac

−
lo

v
ac

−
h

i

y
ad

a%
 o

f
S

q
u

as
h

ed
 R

eg
io

n
s

 0%

Figure 23: Squashes at r200

Squash Ratio at r2,000

 20%

 40%

 60%

 80%

 100%

B
ay

es

g
en

o
m

e

in
tr

u
d

er

k
m

−
lo

k
m

−
h

i

la
b

y
ri

n
th

ss
ca

2

v
ac

−
lo

v
ac

−
h

i

y
ad

a%
 o

f
S

q
u

as
h

ed
 R

eg
io

n
s

 0%

Figure 24: Squashes at r500

Squash Ratio at r2,000

 20%

 40%

 60%

 80%

 100%

B
ay

es

g
en

o
m

e

in
tr

u
d

er

k
m

−
lo

k
m

−
h

i

la
b

y
ri

n
th

ss
ca

2

v
ac

−
lo

v
ac

−
h

i

y
ad

a%
 o

f
S

q
u

as
h

ed
 R

eg
io

n
s

 0%

Figure 25: Squashes at r1000

N
o

rm
al

iz
ed

 I
P

C

 0.8x

 1x

 1.2x

 1.4x

 1.6x

 1.8x

 2x

MemcacheD NSPR−Time SM−Stress SpiderMonkey mean

 0.6x

Figure 26: IPC After Applying BlockChop (r4000)

%
 o

f
S

q
u
as

h
ed

 R
eg

io
n
s

 50%
 100%
 150%
 200%
 250%
 300%
 350%
 400%

MemcacheD NSPR−Time SM−Stress SpiderMonky mean
 0%

Figure 27: Squashes After Applying BlockChop (r4000)

N
o

rm
al

iz
ed

 I
P

C

 0.8x

 1x

 1.2x

 1.4x

 1.6x

 1.8x

 2x

MemcacheD NSPR−Time SM−Stress SpiderMonky mean

 0.6x

Figure 28: IPC After Applying BlockChop (r2000)

%
 o

f
S

q
u
as

h
ed

 R
eg

io
n
s

 50%
 100%
 150%
 200%
 250%
 300%
 350%
 400%

MemcacheD NSPR−Time SM−Stress SpiderMonky mean
 0%

Figure 29: Squashes After Applying BlockChop (r2000)

BlockChop at r200

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

MemcacheD NSPR−Time SM−Stress SpiderMonky

N
o
rm

al
iz

ed
 I

P
C

 0.6

Figure 30: IPC at r200

BlockChop at r500

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

MemcacheD NSPR−Time SM−Stress SpiderMonky

N
o
rm

al
iz

ed
 I

P
C

 0.6

Figure 31: IPC at r500

BlockChop at r1,000

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

MemcacheD NSPR−Time SM−Stress SpiderMonky

N
o
rm

al
iz

ed
 I

P
C

 0.6

Figure 32: IPC at r1000

Squash Ratio at r2,000

 50%

 100%

 150%

 200%

 250%

 300%

 350%

 400%

MemcacheD NSPR−Time SM−Stress SpiderMonky

%
 o

f
S

q
u

as
h

ed
 R

eg
io

n
s

 0%

Figure 33: Squashes at r200

Squash Ratio at r2,000

 50%

 100%

 150%

 200%

 250%

 300%

 350%

 400%

MemcacheD NSPR−Time SM−Stress SpiderMonky

%
 o

f
S

q
u

as
h

ed
 R

eg
io

n
s

 0%

Figure 34: Squashes at r500

Squash Ratio at r2,000

 50%

 100%

 150%

 200%

 250%

 300%

 350%

 400%

MemcacheD NSPR−Time SM−Stress SpiderMonky

%
 o

f
S

q
u

as
h

ed
 R

eg
io

n
s

 0%

Figure 35: Squashes at r1000

ss
ca

2

v
ac

−
h

i

v
ac

−
lo

y
ad

a

S
M

−
S

tr
es

s

N
S

P
R

−
T

im
e

M
em

ca
ch

eD

S
p

id
er

M
o

n
k

ey

N
o

rm
al

iz
ed

 I
P

C chopper
chopper−adapt1
chopper−adapt2

 1

 10

 100

 1,000

B
ay

es

g
en

o
m

e

in
tr

u
d

er

k
m

−
h

i

k
m

−
lo

la
b

y
ri

n
th

Figure 36: Chop Count

B
ay

es

g
en

o
m

e

in
tr

u
d

er

k
m

−
h

i

k
m

−
lo

la
b

y
ri

n
th

ss
ca

2

v
ac

−
h

i

v
ac

−
lo

y
ad

a

S
M

−
S

tr
es

s

N
S

P
R

−
T

im
e

M
em

ca
ch

eD

S
p

id
er

M
o

n
k

ey

N
o

rm
al

iz
ed

 I
P

C chopper
chopper−adapt1
chopper−adapt2

 0
 200
 400
 600
 800

 1,000
 1,200
 1,400
 1,600
 1,800
 2,000

Figure 37: Average Dynamic Region Size

5.4 BlockChop on Commercial Workloads

We have also investigated the effectiveness of applying
various squash handling mechanisms on commercial appli-
cations on a quad core hybrid design. Figures 26 to 29
(see Figure 15 for legend) show the results for 4000 and
2000 instruction block sizes. Unlike the previous benchmark
workloads that are relatively short running on simulator in-
puts, these workloads have been configured to run for much
longer. As a result, we observe a greater benefit of using the
chopper translation at larger block sizes as a longer period
of execution allows the cost of chops to be amortized over
time. As retrials tend to succeed for these runs, the adaptive
chopper approaches described tend to trigger retrials in lieu
of chopping. For smaller region sizes, as shown in Figures 30
to 35, we observe that chopper does not perform worse than
the baseline due to both the fact that the cost of chopping
is amortized over long runs, and these applications suffer a
higher amount of squashes at smaller region sizes compared
to the benchmark workloads presented earlier.

5.5 Characterizing Chopper Translation

To better understand how the chopper translation affects
the dynamic execution of the workloads presented we char-
acterize the number of static chops performed during execu-
tion and how these chop affects the average dynamic block
sizes throughout execution. Figure 36 presents the number of
static chops performed for each of the applications across the
three chopping heuristics presented, at a block size of 2000.
Note that this figure is on a log-scale. As shown in the fig-
ure, the retry adaptation effectively functions as a chop filter,
allowing BlockChop to only chop blocks are frequently fail-
ing during retry. This reduction in the number of static chops
both reduces the dynamic cost of chopping, and increases the
average atomic block region size throughout execution.

Figure 37 shows the average size of executed dynamic
regions through execution across the three chopping heuris-
tics. For some applications such as intruder, yada, and

SM-Stress, the average dynamic region size is severely
reduced. These small dynamic block sizes occurs as a result
of the key conflicting reads and writes being in the critical
path of the application’s execution. Along the dynamic trace
of these workloads, a small number of conflict-prone static
instructions appear repeatedly in the trace. These chops have
a significant impact on the ability of the BT component of
the hybrid system to perform speculative optimizations, how-
ever removing squashes is a first order objective as suffering
squashes renders any optimization benefit insignificant. For
these reasons, the greatest strength of a hybrid processor de-
sign, its atomicity support for speculative optimizations, be-
comes a weakness.

6 Related Work

There has been a sizable amount of work in the area of
blocked execution and shared data conflicts. Perhaps the
most closely related work is the recent work by [1]. This
work explores the very question of squashes due to shared
data conflicts and how these conflicts can be mitigated; how-
ever, there are a number of key differences. Firstly, this
work focuses on much larger block sizes of more than 15,000
instructions per block. At this granularity, squashes be-
come problematic even for mainly read-only applications
such as Parsec and Splash. Indeed, real-world applications
that demonstrate extensive read-write sharing have not been
evaluated. Also, the solutions to mitigate squashes proposed
by this work are applied statically and therefore have lim-
ited appeal in backward-compatible systems. Our work is
complementary to this work in that we show that shared data
conflicts can be quite problematic at smaller region sizes for
a number of benchmark and commercial applications. We
also propose a framework and mechanisms to dynamically
and adaptively mitigate and eliminate squashes.

In addition to this prior work, a number of other
works [11, 19, 20] has dealt with the issue of shared data
conflicts in various types of atomic regions. However, these
works do not cover the important question of how atomic
blocks impact the design of hybrid multicore architectures.

There has been a significant research effort investigating
various issues related to blocked-execution architecture de-
signs [2, 3, 9, 8, 10, 14, 16, 26, 29, 30, 31] that use atomic
regions as a core primitive of optimization and execution.
There is also a wealth of prior work on hardware / software
co-designed architecture [4, 5, 13, 23, 24, 27]. However there
is little work dealing with issues related to a multicore de-
sign, and none of the prior work investigate the potentially
prohibitive challenge of shared data conflicts. Another do-
main of related work is that of deterministic replay on mul-
ticore processors [32, 22, 21]. These techniques leverage
atomicity to implement efficient mechanism to guarantee re-
play of concurrent execution with deterministic interleaving
of threads. The goal in these systems is to ”record” the shared
data conflicts, so that the conflicts can later be deterministi-
cally replayed. These works do not propose how to reduce
the shared data conflicts.

Finally, in the domain of transactional memory (TM)
[17, 28, 16, 12], there have been significant efforts in inves-
tigating the cost of shared data conflicts and mitigating the
costs. However, instead of programmers specifying atomic
transactions, in a hybrid processor, the BT system decides
atomicity boundaries and is free to choose and modify the

boundaries. Further, a hybrid processor almost exclusively
executes atomic regions. Because of these reasons, the cost
of conflicts and our solutions are very different from those
proposed in TM literature.

7 Conclusion

While hardware atomicity is the key enabling technol-
ogy for achieving high performance in a hybrid architecture,
when moving to a multicore design, this strength, can be-
come a weakness. Frequent shared data conflicts across two
atomic regions can result in expensive squashes and roll-
backs. In this work, we have investigated how multithreaded
applications, both benchmark and commercial workloads,
are affected by these squashes at a range of both small and
large atomic regions. While the current wisdom is that there
are insignificant number of squashes for smaller atomic re-
gions, we observe the opposite for many multithreaded work-
loads. With a region size of just 200 - 500 instructions,
we observe a performance degradation ranging from 10%
to more than 50% for workloads with a mixture of shared
reads and writes. We have also presented a dynamic hy-
brid framework, BlockChop, for designing squash handling
mechanisms to adaptively mitigate and eliminate squashes,
and identified and evaluated 7 dynamic mechanisms using
BlockChop. We find that using our chopper and adaptive
chopper techniques over the state-of-the-art response to ex-
ceptions and squashes in a hybrid design, we are able to im-
prove the performance of benchmark and commercial work-
loads by 1.4x and 1.2x on average for large and small region
sizes, respectively.

References

[1] R. Agarwal and J. Torrellas. Flexbulk: intelligently forming atomic

blocks in blocked-execution multiprocessors to minimize squashes. In

ISCA ’11, pages 33–44, New York, NY, USA, 2011. ACM.
[2] W. Ahn, S. Qi, M. Nicolaides, J. Torrellas, J.-W. Lee, X. Fang, S. Mid-

kiff, and D. Wong. Bulkcompiler: high-performance sequential con-

sistency through cooperative compiler and hardware support. In MI-

CRO 42, pages 133–144, New York, NY, USA, 2009. ACM.
[3] C. Blundell, M. M. Martin, and T. F. Wenisch. Invisifence:

performance-transparent memory ordering in conventional multipro-

cessors. In ISCA ’09, pages 233–244, New York, NY, USA, 2009.

ACM.
[4] E. Borin, Y. Wu, M. Breternitz, and C. Wang. Lar-cc: Large atomic

regions with conditional commits. In CGO ’11, pages 54 –63, april

2011.
[5] E. Borin, Y. Wu, C. Wang, W. Liu, M. Breternitz, Jr., S. Hu, E. Natan-

zon, S. Rotem, and R. Rosner. Tao: two-level atomicity for dynamic

binary optimizations. In CGO ’10, pages 12–21, New York, NY, USA,

2010. ACM.
[6] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP:

Stanford transactional applications for multi-processing. In IISWC

’08, September 2008.
[7] C. Cao Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson,

J. Casper, C. Kozyrakis, and K. Olukotun. An effective hybrid trans-

actional memory system with strong isolation guarantees. In ISCA ’07.

Jun 2007.
[8] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. Bulksc: bulk en-

forcement of sequential consistency. In ISCA ’07, pages 278–289,

New York, NY, USA, 2007. ACM.
[9] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval. Bulk disambiguation of

speculative threads in multiprocessors. In ISCA ’06, pages 227–238,

Washington, DC, USA, 2006. IEEE Computer Society.
[10] H. Chafi, J. Casper, B. Carlstrom, A. McDonald, C. C. Minh, W. Baek,

C. Kozyrakis, and K. Olukotun. A scalable, non-blocking approach to

transactional memory. In High Performance Computer Architecture,

2007. HPCA 2007. IEEE 13th International Symposium on, pages 97

–108, feb. 2007.
[11] M. Cintra and J. Torrellas. Eliminating squashes through learning

cross-thread violations in speculative parallelization for multiproces-

sors. In HPCA ’02, pages 43 – 54, feb. 2002.

[12] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nuss-

baum. Hybrid transactional memory. In Proceedings of the 12th in-

ternational conference on Architectural support for programming lan-

guages and operating systems, ASPLOS-XII, pages 336–346, New

York, NY, USA, 2006. ACM.
[13] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler,

A. Klaiber, and J. Mattson. The transmeta code morphing software:

using speculation, recovery, and adaptive retranslation to address real-

life challenges. In CGO ’03, pages 15–24, Washington, DC, USA,

2003. IEEE Computer Society.
[14] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. Dmp: deterministic

shared memory multiprocessing. In ASPLOS ’09, pages 85–96, New

York, NY, USA, 2009. ACM.
[15] K. Ebcioglu, E. Altman, M. Gschwind, and S. Sathaye. Dynamic bi-

nary translation and optimization. In Computers, IEEE Transactions

on, volume 50, pages 529–548. IEEE, 2001.
[16] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,

B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Oluko-

tun. Transactional memory coherence and consistency. In ISCA ’04,

pages 102–, Washington, DC, USA, 2004. IEEE Computer Society.
[17] M. Herlihy and J. E. B. Moss. Transactional memory: architectural

support for lock-free data structures. In Proceedings of the 20th annual

international symposium on computer architecture, ISCA ’93, pages

289–300, New York, NY, USA, 1993. ACM.
[18] N. Jalbert, C. Pereira, G. Pokam, and K. Sen. Radbench: a concur-

rency bug benchmark suite. In HotPar’11, pages 2–2, Berkeley, CA,

USA, 2011. USENIX Association.
[19] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M. Chen,

and J. Flinn. Respec: efficient online multiprocessor replayvia specu-

lation and external determinism. In ASPLOS ’10, pages 77–90, New

York, NY, USA, 2010. ACM.
[20] B. Lucia, J. Devietti, K. Strauss, and L. Ceze. Atom-aid: Detect-

ing and surviving atomicity violations. In ISCA ’08, pages 277–288,

Washington, DC, USA, 2008. IEEE Computer Society.
[21] P. Montesinos, L. Ceze, and J. Torrellas. Delorean: Recording and

deterministically replaying shared-memory multiprocessor execution

ef?ciently. In Proceedings of the 35th Annual International Sympo-

sium on Computer Architecture, ISCA ’08, pages 289–300, Washing-

ton, DC, USA, 2008. IEEE Computer Society.
[22] S. Narayanasamy, G. Pokam, and B. Calder. Bugnet: Continuously

recording program execution for deterministic replay debugging. In

Proceedings of the 32nd annual international symposium on Com-

puter Architecture, ISCA ’05, pages 284–295, Washington, DC, USA,

2005. IEEE Computer Society.
[23] N. Neelakantam, D. R. Ditzel, and C. Zilles. A real system evalua-

tion of hardware atomicity for software speculation. In ASPLOS ’10,

ASPLOS ’10, pages 29–38, New York, NY, USA, 2010. ACM.
[24] N. Neelakantam, R. Rajwar, S. Srinivas, U. Srinivasan, and C. Zilles.

Hardware atomicity for reliable software speculation. In ISCA ’07,

pages 174–185, New York, NY, USA, 2007. ACM.
[25] S. Patel and S. Lumetta. replay: A hardware framework for dynamic

optimization. In Computers, IEEE Transactions on, volume 50, pages

590–608. IEEE, 2001.
[26] S. H. Pugsley, M. Awasthi, N. Madan, N. Muralimanohar, and R. Bal-

asubramonian. Scalable and reliable communication for hardware

transactional memory. In PACT ’08, pages 144–154, New York, NY,

USA, 2008. ACM.
[27] R. Rosner, Y. Almog, M. Moffie, N. Schwartz, and A. Mendelson.

Power awareness through selective dynamically optimized traces. In

ISCA ’04, pages 162–, Washington, DC, USA, 2004. IEEE Computer

Society.
[28] N. Shavit and D. Touitou. Software transactional memory. Distributed

Computing, 10:99–116, 1997. 10.1007/s004460050028.
[29] J. Torrellas, L. Ceze, J. Tuck, C. Cascaval, P. Montesinos, W. Ahn,

and M. Prvulovic. The bulk multicore architecture for improved pro-

grammability. Commun. ACM, 52:58–65, December 2009.
[30] E. Vallejo, M. Galluzzi, A. Cristal, F. Vallejo, R. Beivide, P. Stenstrom,

J. Smith, and M. Valero. Implementing kilo-instruction multiproces-

sors. In ICPS ’05, pages 325 – 336, july 2005.
[31] T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. Mechanisms

for store-wait-free multiprocessors. In ISCA ’07, pages 266–277, New

York, NY, USA, 2007. ACM.
[32] M. Xu, R. Bodik, and M. Hill. A ”flight data recorder” for enabling

full-system multiprocessor deterministic replay. In Computer Archi-

tecture, 2003. Proceedings. 30th Annual International Symposium on,

pages 122 – 133, june 2003.

