
Loaf: A Framework and Infrastructure for Creating Online
Adaptive Solutions

Jason Mars
University of Virginia

jom5x@cs.virginia.edu

Mary Lou Soffa
University of Virginia

soffa@cs.virginia.edu

ABSTRACT

Achieving effective online adaptation for natively executed
applications has proved quite challenging and to date has
not been widely adopted. Traditionally, to enable online
adaptation for native binary applications, a run-time layer
is added that virtualizes the execution of the application
by performing dynamic binary to binary translation. This
virtual layer injects trampolines and instrumentation into
the translated code to maintain control of the application.
This approach adds significant overhead and complexity to
the application, discouraging its use for online adaptation in
commercial deployments and particularly in the modern dat-
acenter computing domain. In this work we present a new
lightweight paradigm for online adaptation that leverages
current microarchitectural advances to efficiently enable on-
line monitoring and adaptation without the complexity of bi-
nary translation or fine-grain instrumentation. Our method-
ology takes advantage of the ubiquitous hardware perfor-
mance monitors present in modern chip micro-architectures
to dynamically monitor micro-architectural events and ap-
plication behavior with negligible overhead. By leveraging
these capabilities to develop an innovative lightweight on-
line adaptation framework (Loaf) we are be able to
address a number of important real-world online adaptation
problems.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming—parallel programming ; D.3.4 [Programming Lan-
guages]: Processors—run-time environments, compilers, op-
timization, debuggers; D.4.8 [Operating Systems]: Per-
formance—measurements, monitors

General Terms

Performance, Design, Algorithms, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EXADAPT ’11 June 5, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0708-6/11/06 ...$10.00.

P4 Core i7 Core i7 Core i7 Core i7 Athlon Athlon Athlon Athlon

App App App

Compiler

Context 1 Context 2 Context 3

App

App

App App

Figure 1: A Single Rigid Binary Executing in Three
Contexts

Keywords

cross-core interference, profiling framework, program under-
standing

1. INTRODUCTION
Traditionally, an application program is written by a pro-

grammer, then statically compiled to a binary executable
file composed of instructions from a targeted instruction set
architecture (ISA). This binary can then be run on a range
of micro-architectures that conforms to that ISA. The struc-
ture and layout of the binary code is determined statically,
and consequently, it remains ridged across inputs, micro-
architectures and execution environments. It is well known
that semantically equivalent variations in the code structure
and layout can cause a wide range of variance in its perfor-
mance and other properties [60, 22]. As a result, program-
mers and optimizing compilers are faced with the task of
statically determining the optimal code layout and structure
for application binaries. However, these code structure and
layout decisions are impacted by changes in application in-
put, system micro-architectures and execution environment.
These execution contexts can change across application runs,
and indeed during a single run. Figure 1 shows three exe-
cution contexts of a single application: in the first context
the application runs alone on a single core machine, in the
second context the same binary runs on a multicore ma-
chine, and in the third context the application’s execution
environment is includes three other co-running processes on
a quad core machine. The applications optimal code layout
and execution behavior may vary across these contexts. To
allow this flexibility, online adaptation techniques must be
used.

To perform online adaptation, information that is only
available at run-time must be used to restructure the appli-
cation’s execution, its environment, or both. Online adap-
tation is composed of two key tasks. First, the application’s
execution or execution environment must be monitored as
it executes. Second, when a particular run-time character-
istic or event is observed, the application’s execution or its
environment is then restructured or adapted in some way
to accommodate this behavior. To perform these two key
tasks, online adaptation approaches require a run-time com-
ponent to be present and executed in tandem with the host
application.

However achieving online adaptation for native applica-
tions has proved quite challenging. The runtime layer nec-
essary to perform the monitoring and dynamic restructuring
of the binary application increases the amount of work re-
quired to execute the application. The benefit of adding
run-time online optimization or adaptation must outweigh
the penalty suffered from the added complexity. Effectively
achieving online adaptation at the binary level has proved
difficult and has, by-in-large, not been adopted for practical
use in current industry and commercial domains. Current
techniques fall into two categories: heavyweight approaches
that provide too little benefit for the added complexity and
approaches that propose novel hardware changes and are
unable to be realized on current chip architectures.

In this work, we present a new paradigm for achieving
online adaptation at the binary level that uses what we
call lightweight introspection. In contrast to a heavyweight
online adaptation technique that requires either instrumen-
tation of the host application to enable monitoring or the
dynamic translation of the applications binary instructions,
a lightweight online adaptation technique uses no instru-
mentation and performs no binary to binary online trans-
lation. Our lightweight introspection approach takes full ad-
vantage of the performance monitoring hardware features
that are ubiquitous in current micro-architectural design [28]
to perform all online monitoring with negligible overhead
and minimal added software complexity. Using a technique
we call periodic probing, monitoring is performed by tak-
ing snapshots of the hardware performance monitors using
timer interrupts. In this work, we take advantage of this
lightweight online adaptation methodology to design Loaf,
the Lightweight Online Adaptation Framework. To effec-
tively achieve online optimization on current microarchitec-
tures, Loaf enables 1) the monitoring of the application and
execution environment, 2) the dynamic restructuring of ap-
plication code, and 3) the cooperative adaptation of the co-
runners in an applications execution environment.

We then present two case studies showing how the Loaf
infrastructure was used to design and construct practical
lightweight adaptive solutions to two pressing problems in
our field. The first problem is that of aggressive optimiza-
tions. These are optimizations that are risky, as they can
significantly improve or degrade performance. As shown in
previous work [60, 22], the effect of applying this class of op-
timizations cannot be predicted statically, as it may depend
on input size, micro-architectural events, and execution en-
vironment. In this work we show how the Loaf infrastructure
is used to enact an adaptation policy to dynamically apply
aggressive optimization only when there is benefit.

For the second case study we present how Loaf is used
to adapt the environment to the application. The prob-

lem addressed in this case study is that of cross-core ap-
plication interference. Contention for shared resources and
cross-core application interference due to contention, pose
a significant challenge to providing application level quality
of service (QoS) guarantees on commodity multicore micro-
architectures. The commonly used solution is to simply dis-
allow the co-location of latency-sensitive applications and
throughput-oriented batch applications on a single chip, sac-
rificing utilization. In this work, we show how to use Loaf’s
ability to cooperatively adapt co-running applications to de-
sign an agnostic contention aware execution environment
that will adapt an application’s environment to minimize
cross-core interference due to contention, while maximizing
chip utilization.

The main contributions of this work are:

• The design of Loaf, a holistic lightweight online adap-
tation framework for native binary applications that is
both able to adapt an application to its execution en-
vironment, and also the execution environment to the
application.

• The design and discussion of periodic probing for lightweight
introspection, scenario based multiversioning for on-
line code restructuring, and cross core application co-
operation for coordinated adaptation across cores.

• Two case studies demonstrating the process of leverag-
ing the Loaf Infrastructure to address real problems
and the effectiveness of these solutions.

It is important to note that the primary focus of this paper
is the Loaf framework and infrastructure. The details of the
individual adaptation policies used for the two case studies
have been published in our prior work [38, 40].

Loaf is a single general platform for the online adaptation
for native applications that enables both the restructuring of
the application code online without the complexity of per-
forming any online code generation or binary rewriting, and
the ability to cooperatively restructure the application’s co-
runners to enact coordinated online adaptation policies. To
the best of our knowledge there is currently no such holis-
tic software-only general online adaptation framework with
these capabilities.

2. LOAF OVERVIEW
In this Section we first discuss the required functionality of

Loaf, and then discuss our lightweight approaches to achieve
this functionality.

2.1 Enabling Online Adaptation
In order to effectively enable online adaptation, Loaf must

provide the capability to monitor online events and adapt
the application or its environment to these events. To achieve
these capabilities we have three key functionality require-
ments for Loaf which includes:

1. An efficient mechanism for the online monitoring of
the application or its environment’s behavior.

2. An efficient mechanism to allow the dynamic restruc-
turing of application code. One of the key methods
used to adapt application behavior is to allow code
restructuring in response to dynamic events.

Adaptation

policy Loaf SBM

Compiler

Loaf Introspection

Engine + API

SBM Versioning

Adaptation Policy

App
Code Ninja

CCAC

App

CCAC

App

1

2

3

...

Figure 2: Loaf Overview. (1) Lightweight Introspection (2) Scenario Based Multiversioning (3) Cross-Core
Application Cooperation

3. An efficient mechanism to enable the adaptation of
multiple co-running applications and threads in an ap-
plication’s execution environment. Multicore archi-
tectures are ubiquitous in today’s computing environ-
ment, and an application can be affected by its simul-
taneously executing co-runners.

The underlying philosophy of our online adaptation ap-
proach is to achieve efficiency by remaining as lightweight as
possible. Therefore, to achieve the tasks of online adapta-
tion, observation and adaptation, with minimal application
interference we use the following approaches to the three
design goals mentioned above:

1. To achieve online monitoring, we use the lightweight
approach of periodically probing the hardware perfor-
mance monitors on current microarchitectures. We
call this approach lightweight introspection.

2. To achieve the dynamic restructuring of application
code, we use the lightweight approach of statically pro-
viding multiple code versions for regions of interest and
allowing dynamic switching based on online monitor-
ing. We call this approach scenario based multi-
versioning.

3. To accommodate adaptation of the application and
its environment based on events that occur due to si-
multaneous co-scheduling on current multicore archi-
tectures, we use the lightweight approach of sharing
dynamic monitoring information across cores using a
shared communication table, allowing multiple threads
to cooperate during online adaptation. We call this ap-
proach cross-core application cooperation.

Figure 2 illustrates how a user of the Loaf infrastructure
interacts with Loaf. Each of the three components men-
tioned above corresponds to the numbers in Figure 2 re-
spectively. The blue sections of each component denotes
the locations a user must touch to implement the desired
adaptation policy. An adaptation policy is a specification of
a desired response to some dynamic event or set of events.

With a particular adaptation policy in mind, the user can
leverage Loafs API in each of these components to enact the
policy.

2.1.1 Online Monitoring

To achieve the necessary task of efficient online monitor-
ing we use lightweight introspection as shown in Figure 2-1.
The core intuition of this approach is to remain lightweight
by leveraging periodic probing with the usage of hardware
performance monitors. These hardware performance moni-
tors provide realtime micro-architectural information about
the applications currently running on chip. As the coun-
ters record this information, the program executes uninter-
rupted, and thus recording this online profiling information
presents no instrumentation overhead. These capabilities
can be leveraged with one of the many software APIs, such
as PAPI [35] or Perfmon2 [21]. In this work, we use Perf-
mon2 as it is one of the most robust and flexible PMU in-
terfaces, and supports a wide range of micro-architectures.

The self introspection run-time employs a periodic probing
approach, meaning information is gathered and analyzed in-
termittently. Using a timer interrupt the environment will
periodically read the performance monitoring hardware, re-
set the timer, and restart the performance monitoring coun-
ters. The algorithms that comprise our lightweight intro-
spection engine is shown in Algorithms 1 and 2.

Algorithm 1: Loaf LIE Initialization

events of interest← user defined events;
probe interval← user defined interval

foreach e in events of interest do
active counters←PMUConfigure(e)

end
foreach c in active counters do

PMUBeginCounting(c)

end

IssueTimerInterrupt(probe interval)

Algorithm 2: Loaf Periodic Probes

PMUStopCounters();
foreach e in events of interest do

e.value←PMUReadCounter(e)

end

DoAdaptationAnalysis();
Adapt();

if new events of interest then
events of interest← new events of interest

end
if new probe interval then

probe interval← user defined interval
end

foreach e in events of interest do
active counters←PMUConfigure(e)

end
foreach c in active counters do

PMUBeginCounting(c)

end

IssueTimerInterrupt(probe interval)

Periodic probing is an efficient method for collecting infor-
mation from hardware performance monitors. The overhead
of this technique is determined by two factors: the frequency
of probes (e.g. interrupts), and the complexity of the analy-
sis and adaptation work done during those interrupts. These
two factors are impacted by the nature of the desired adap-
tation policy. For the policies implemented in our case stud-
ies, the probe interval used is one every millisecond and the
resulting overhead is negligible.

Its important to note that hardware performance coun-
ters are a ubiquitous hardware feature and has been used in
prior works. There has been a significant amount of prior
work discussing and using performance counters for particu-
lar applications such as selecting optimizations [10], enhanc-
ing operating systems [33], and in Java virtual machines [49]
among others. However, in this work, we present a general
online adaptation framework for native binaries that lever-
ages hardware performance monitors exclusively to provide
a lightweight monitoring and introspection runtime that fa-
cilitates both the online adaptation of an application to its
environment in addition to adapting the environment to the
application itself.

Our Loaf lightweight introspection runtime serves as the
core mechanism for the monitoring of application behavior,
and the execution environment. The runtime can be at-
tached to a host application in a number of ways including
statically linking the run-time module into the application
binary, dynamically linking in as a module, or as a third
party virtual application host such as gdb. In this work we
use the static linking approach.

2.1.2 Adapting the Application

To achieve the dynamic restructuring of application code
as execution occurs we use a multiversioning technique we
call scenario based multiversioning (SBM) as shown in Fig-
ure 2-2. The key insights of this scenario based multiversion-
ing is to enable compiler writers to statically accommodate
the various run-time scenarios and situations an application
may face. Traditionally, static code layout and structure is

rigid regardless of changes in its execution environment or
application phase, this is exactly what the scenario based
multiversioning is equipped to address. Using SBM, com-
piler writers can apply various optimizations and code lay-
outs across multiple instances (or versions) of a code re-
gion, each specialized to particular dynamic situations and
events. By taking advantage of these static compile-time
optimization capabilities with lightweight introspection, ex-
ecution can be rerouted dynamically to execute the desired
code regions. In addition, SBM retains all of the capabilities
and advantages of static compilation, such as the availabil-
ity of high-level source information, while achieving run-time
flexibility.

SBM performs its multiversioning at the function level al-
lowing the generation of specialized versions of a function to
target different scenarios. As discussed in Section 5, function
level multiversioning is a classic inter-procedural code trans-
formation that has proven quite useful by numerous other
compiler techniques and optimizations. However to achieve
Loaf’s online code adaptation, traditional multiversioning
must be extended to be driven by hardware performance
counters via the lightweight introspection engine and pro-
vide a general platform able to accommodate a variety of
adaptation policies. For SBM we provide an interface be-
tween the static binary and a lightweight introspection run-
time component. This interface will allow the introspection
engine to hook into the executing binary and reroute the
execution via reseting the active versions of the functions.
To accomplish this we have two designs.

We call the first design the alternate versioning scheme
and the second the n-version versioning scheme. While both
techniques requires the use of a trampoline as the multiplex-
ing mechanism, there are differences. Figure ?? shows the
alternate version scheme. For this scheme, we have a de-
fault and alternate version of particular functions. With the
alternate version scheme there is a single global switch that
the dynamic component interfaces to control which version
the application uses. With this scheme the entire binary
will either execute the default versions for all multiversioned
functions or the alternative version. This provides a simple
abstraction that a compiler writer can use to design SBM
based techniques that do not require too much complexity.

Figure ?? shows the design of the n-version versioning
scheme. This scheme allows for any number of versions
for any function and individual version switching. For this
scheme, we maintain a global mapping table in memory for
each function. Instead of a global switch, each call to a
multiversioned function is transformed to an indirect call.
During execution, the target address of the call is controlled
by the dynamic component and any combination of versions
can be active at anytime. This will allow for much more
complex SBM techniques where multiple scenarios can oc-
cur at the same time.

One important consideration is that we cannot have multi-
ple versions of every function in our application binary. This
would cause an unacceptable amount of code growth, which
would limit the applicability of SBM and ultimately have a
negative impact on application performance. Therefore we
limit the number of functions we multiversion to only the
hottest functions in the application. To efficiently multiver-
sion our application we take advantage of some basic profil-
ing that has proven useful for determining the hottest code
in an application [15, 36, 37]. SBM can use the simple pro-

Core Core Core Core

Shared Memory

CCAC Runtime

Application

CCAC Runtime

Application

CCAC Runtime

Application

CCAC Runtime

Application

Figure 3: Cross-Core Application Cooperation Run-
time

filing provided by GCC’s GProf to identify the hottest func-
tions of the application. We know from prior work that the
top 2 to 8 functions most often covers the vast majority of
the dynamically executed instructions across the SPEC 2006
benchmarks. Just the top 5 hottest functions can cover a
significant portion of an applications execution, many times
over 90%. Multiversioning these top functions leads to a
very slight amount of code growth, for the SPEC2006 bench-
marks less than 2% on average.

2.1.3 Adapting the Environment

To accommodate the adaptation of an application and its
environment based on events that occur due to simultane-
ous co-scheduling on current multicore architectures, we use
a cross-core application cooperation (CCAC) approach as
shown in Figure 2-3. This approach is designed for prob-
lems that require the coordination of a number of processes
or threads for a particular goal. The design of the CCAC
enabled Loaf run-time environment is presented in Figure 3.
In the scenario presented in the diagram, we have four ap-
plications running simultaneously on a quad core machine.
In order to monitor and collect thread/core specific perfor-
mance information on current hardware, we collect perfor-
mance monitoring information on each core hosting the ap-
plications of interest and use a shared communication table
to provide this information to other Loaf runtimes. Also,
adaptation directives can be issued from one core to an-
other through this shared communication table. We use the
table to allow multiple CCAC enabled Loaf run-times to
cooperate, respond, and adapt to each other.

We use shared memory to achieve this cross-core applica-
tion cooperation (shown in Figure 3 as arrows pointing into
the table). Performance information is gathered and added
to the communication table intermittently using Loaf’s lightweight
introspection. It is also useful to record a window of multiple
samples of performance information in the table as keeping
a window of recent activity will allow us to observe trends
in application behavior. To accommodate this communica-
tion protocal, we also develop an abstract primitive for each
table entry which is supplied by our API.

3. CREATING SOLUTIONS WITH LOAF
In this section, we demonstrate the practicality and ef-

fectiveness of our lightweight online optimization framework
(Loaf), by showing how it is used to construct solutions to
address two important pressing problems: one where the ap-

plication must adapt to its environment, and the other where
the environment must adapt to the application. First we use
Loaf’s scenario based multiversioning to dynamically apply
aggressive application optimizations to eliminate potential
degradations and gain better application performance. Sec-
ond we use Loaf’s cross-core application cooperation to de-
sign a contention aware execution environment that will dy-
namically detect contention on multicore chips and respond
by adapting the applications environment to minimize the
performance degradation due to cross-core interference while
maximizing chip-wide utilization. The primary focus of this
paper is the Loaf framework and infrastructure. The details
of the individual adaptation policies used for these two case
studies can be found in our prior work [38, 40].

3.1 Aggressive Optimizations Using Scenar-
ios

To demonstrate Loaf’s ability to adapt the application to
its environment we address the problem of aggressive opti-
mizations. Many optimizations show benefit in some cases
and a degradation in others [60]. We call these optimization
aggressive optimizations. To address this problem, we use
Loaf’s lightweight introspection and scenario based multiver-
sioning to construct a technique we call Online Aiding and
Abetting of Aggressive Optimizations (OAAAO). The intu-
ition is that we should be able to detect the scenarios where
aggressive optimizations are beneficial or not and react ac-
cordingly.

3.1.1 Problem Description

Aggressive optimizations may increase performance in some
contexts and decrease performance in others. For our OAAAO
approach we use two such optimizations, software cache prefetch-
ing and loop unrolling. These optimization heuristics are
found in GCC as optional optimizations and, as shown in
previous work [60, 22], the effect of applying this class of
optimizations cannot be predicted statically, as it may de-
pends on input size, micro-architectural events, and execu-
tion environment. Our hypothesis is that lightweight intro-
spection and scenario based multiversioning should be able
to improve the performance of these aggressive optimiza-
tions. Using lightweight introspection we detect the scenarios
when aggressive optimizations are improving or degrading
performance. We can then reroute execution accordingly,
using our scenario based multiversioning mechanism.

3.1.2 Adaptation Policy for Aggressive Optimiza-
tons

actionlearning

phase 1 phase 3phase 2

(T1) (T1) (T2)

Figure 4: This represents the three phase execution
approach of OAAAO.

The adaptation policy for the online aiding and abetting
of aggresive optimizatsons (OAAAO), uses the alternate ver-
sioning scheme mentioned with an online three phase analy-

sis. Statically we generate code for two scenarios. First, we
generate code without software prefetching or loop unrolling
for the scenario that aggressive optimizations would degrade
performance; we call this the non-aggressive version. Then,
for the scenario that aggressive optimizations would improve
performance, we generate code for that same function that
has software prefetching and loop unrolling; we call this the
aggressive version.

The dynamic component of our OAAAO approach has
three phases as shown in Figure 4. The first two phases
compose the learning and monitoring part of OAAAO, and
the third phase composes the action part of OAAAO. Dur-
ing execution these phases continually loop until the host
application terminates. The full details of this heuristic are
presented in our prior work [38].

3.2 Addressing Cross-Core Interference Us-
ing Loaf

To demonstrate Loaf’s ability to adapt the environment
to the application we address the problem of contention for
shared resources on chip. Current multicore chip design
in commodity hardware is composed of private and shared
caches. For example, Intel’s Core 2 Duo architecture has
2 cores, each with a private L1 cache and a single L2 of
4mb shared between the two cores, Intel’s new Core i7 (Ne-
halem) architecture has 4 cores, each with private L1 and L2
caches and a single 8mb shared L3 cache for all 4 cores [28].
The shared last level cache presents the first level of possible
contention and can cause significant cross core performance
interference. For latency-sensitive applications, and other
QoS requirements, this cross-core interference is not accept-
able. We take advantage of Loaf’s lightweight introspection
and cross-core application cooperation to detect and respond
to cross core performance interference as it happens dynami-
cally. We call this online adaptation approach the contention
aware execution run-time (CAER).

3.2.1 Problem Description

When more than one application is using the shared last
level of cache heavily, and the data is not shared, contention
occurs. One way to address this problem is to increase the
size and associativity of the cache, and although cache sizes
have been increasing with every generation of processors,
they still remain far behind the demands of today’s appli-
cation workloads. When simply co-locating two SPEC2006
applications on state-of-the art quad core chips, we often
see a performance degradation exceeding 30% and up to 2x
overhead.

Application priority and quality of service requirements
often cannot withstand unexpected cross-core interference.
For example, applications commonly found in the web ser-
vice data center domain such as search, maps, image search,
email and other user facing web applications are latency-
sensitive. These applications must respond to the user with
minimal latency, as having high latency discourages the user.
Data centers for web services classify applications as either
being latency-sensitive or as throughput-oriented batch ap-
plications, where latency is not important. To avoid cross-
core interference between latency-sensitive and batch ap-
plications, web service companies simply disallow the co-
location of these applications on a single multicore CPU. Us-
ing this solution may leave the CPU severely underutilized,
and is a contributing reason to the server utilization of these

Detect
Contention

+
Response

-
Response

Detect Respond

Yes

No

Figure 5: Basic Detection Response

data centers often being 15% or less [34]. Low utilization re-
sults in wasted power and lost cost saving opportunities.
We use Loaf’s lightweight introspection and cross-core ap-
plication cooperation to create a contention aware execution
run-time (CAER) to detect and respond to contention to
minimize cross-core interference and maximize utilization.

3.2.2 Adaptation Policy for Contention Detection

Figure 5 presents our CAER approach. As shown in the
figure, before CAER can react to contention in the shared
cache, it must first detect that the applications are indeed
contending. We have developed two heuristics for this de-
tection task, a burst shutter approach, and a rule based ap-
proach. Both heuristics run continuously throughout the
lifetime of CAER to detect and respond to contention using
Loaf’s periodic probing. The full details of these heuristics
are presented in our prior work [40].

As Figure 5 shows after detecting contention we transi-
tion into one of the response states, either c-negative or c-
positive. In these states the CAER run-time environment
can respond by dynamically modifying and adapting the
batch application under which it runs. CAER reacts to con-
tention by enforcing a fine grained throttling of the execu-
tion of the batch application to relieve pressure in the shared
cache. An example of this is a red-light green-light approach
which, as the name implies, stops or allows execution for a
fixed or adaptive number of periods based on the outcome
of our contention detection phase.

4. EVALUATING LOAF
We have presented the design and implementation of the

Loaf online adaptation framework. However, Loaf is effec-
tive only if it can be successfully used to address important
problems by both allowing the adaptation of the application
to its environment, and the adaptation of the environment to
the application. We evaluate Loaf for the tasks ofOnline Ap-
plication of Aggressive Optimizations and Contention Aware
Execution on current commodity multicore processors with
the SPEC2006 benchmark suite as follows:

• Online Application of Aggressive Optimizations:
To evaluate the effectiveness of using Loaf for the on-
line application of aggressive optimization we demon-
strate how Loaf can be harnessed to implement the ap-
plication adaptation policy and evaluate the resulting
overall improvement of application performance. That

 80%

 90%

 100%

 110%

 120%

 130%

4
3
3
.m

il
c

4
4
4
.n

am
d

4
5
3
.p

o
v
ra

y

4
7
0
.l

b
m

4
0
1
.b

zi
p
2

4
0
3
.g

cc

4
2
9
.m

cf

4
4
5
.g

o
b
m

k

4
5
6
.h

m
m

er

4
6
2
.l

ib
q
u
an

tu
m

4
6
4
.h

2
6
4
re

f

4
7
3
.a

st
ar

m
ea

n

E
x
ec

u
ti

o
n
 T

im
e

Impact of OAAAO on Execution Time

 O2

 O2+pref

 O2+unroll

 O2+pref+unroll

 O2+oaaao

Figure 6: This is the execution time after applying the aggressive optimizations statically compared to
applying the same optimizations using OAAAO. (lower is better)

is if our application with our online adaptation based
solution performs better than statically applying ag-
gressive optimizations we conclude that our Loaf-based
approach is effective.

• Contention Aware Execution Run-time: The goal
of our contention aware execution run-time environ-
ment built on Loaf is to both maximize utilization and
minimize the performance penalty from cross core ap-
plication interference for latency sensitive applications.
As we disucss in Section 3, simply disallowing the collo-
cation of latency sensitive applications and other appli-
cations gives full performance isolation but eliminates
all utilization provided by neighboring cores. Simply
allowing the colocation gives full utilization of neigh-
boring cores however causes the maximum penalty from
cross-core interference. If our Loaf-based approach al-
lows us to have a very small performance penalty for
significant utilization gain we consider it effective.

4.1 Effectiveness of Loaf-based Solutions
In this Section we present key results from these two appli-

cations of the Loaf framework. First we present results from
leveraging Loaf’s scenario based multiversioning for the on-
line application of aggressive optimizations. We then present
results of our contention aware execution run-time environ-
ment based on Loaf’s cross-core cooperation architecture.

4.1.1 Using SBM for Aggressive Optimizations

The goal of our OAAAO optimizations is to eliminate the
degradations of aggressive optimization while reaping the
benefits. We also hypothesized that we would be able to
exceed the potential benefits of applying and using aggres-
sive optimizations statically. All of our experiments were
performed on a machine with the Intel Core 2 Quad 6600
architecture and 2gb of ram. We used a selection of bench-
marks from the SPEC2006 v1.1 suite and ran them on their
reference inputs to completion. We used the GCC 4.3.1 com-
piler to compile these benchmarks. The benchmarks were all
compiled with optimization level -O2, and tuned to the Core
2 architecture (compiler option -march=core2). All experi-
ments were run on Ubuntu Linux Kernel 2.6.25 patched with
Perfmon2.

The fourth bar in Figure 6 shows the impact on execution

time when applying aggressive optimizations with and with-
out the Online Aiding and Abetting of Aggressive Optimiza-
tions. As the data in Figure 6 shows, only when OAAAO
is applied do we see performance improvements with excep-
tion of gobmk where the degradations are effectively elimi-
nated. In addition to eliminating the degradations and leav-
ing only performance improvement, in the large majority of
the benchmarks the performance improvements significantly
exceeds those produced by any combination of aggressive
optimization without OAAAO. In 9 out of the 12 bench-
marks presented OAAAO exceeds the benefit of aggressive
optimizations, in most cases more than doubling the perfor-
mance boost.

4.1.2 Using CCAC to Detect and Respond to Con-
tention

We aim to minimize the interference penalty (overhead
of the latency-sensitive application due to contention) and
maximize the utilization of the chip. We demonstrate the ef-
fectiveness of our contention aware execution run-time (CAER)
environment by showing a considerable reduction in this in-
terference penalty when allowing co-location, while achiev-
ing a significant increase of chip utilization (60% on average)
compared to disallowing co-location.

Our CAER prototype supports two applications, one deemed
latency-sensitive and the other a throughput-oriented batch
application. We use the SPEC2006 benchmark (C/C++
only) and run all to completion using their reference inputs.
We use the Intel Core i7 (Nehalem) 920 Quad Core archi-
tecture to perform our experimentation. This processor has
three levels of cache: the first two private to each core, the
third shared across all cores. The sizes of the L1 and L2
caches are 16kb and 256kb respectively. The L3 cache is
8mb and inclusive to the L1 and L2. The system used has
4gb of main memory, and runs Linux 2.6.29.

In the experiment shown here, the lbm benchmark served
as our batch application and was co-located on a neighbor-
ing core. The main benchmark is assumed to be the latency-
sensitive application. Lbm was chosen as our batch applica-
tion because it presents an interesting adversary as it makes
heavy usage of the L3 cache.

We evaluate the reduction in the interference penalty due
to contention when running on our CAER environment. In

4
7
3
.a

st
ar

4
8
3
.x

al
an

cb
m

k

4
3
3
.m

il
c

4
3
5
.g

ro
m

ac
s

4
4
4
.n

am
d

4
4
7
.d

ea
lI

I

4
5
0
.s

o
p
le

x

4
5
3
.p

o
v
ra

y

4
5
4
.c

al
cu

li
x

4
7
0
.l

b
m

4
8
2
.s

p
h
in

x
3

m
ea

n

E
x
ec

u
ti

o
n
 T

im
e

 Co−lo

 Co−lo /w CAER (S)

 Co−lo /w CAER (R)

 1x

 1.05x

 1.1x

 1.15x

 1.2x

 1.25x

 1.3x

 1.35x

 1.4x

4
0
0
.p

er
lb

en
ch

4
0
1
.b

zi
p
2

4
0
3
.g

cc

4
2
9
.m

cf

4
4
5
.g

o
b
m

k

4
5
6
.h

m
m

er

4
5
8
.s

je
n
g

4
6
2
.l

ib
q
u
an

tu
m

4
6
4
.h

2
6
4
re

f

4
7
1
.o

m
n
et

p
p

Figure 7: Investigating the reduction in interference penalty.

Figure 7 we show the slowdown in execution time due to con-
tention when we co-locate the latency-sensitive and batch
applications. The first bars show the interference penalty
when co-locating the native applications directly on multi-
core chip. The second bars shows the interference penalty
when co-locating the native applications on CAER with the
burst shutter heuristic. The last bars show this co-location
on CAER with the rule based approach.

As Figure 7 shows we significantly reduce the cross-core
interference penalty for the wide range of SPEC2006 bench-
marks. Our burst shutter contention detection technique
uses the red-light green-light response with a response length
of 10 periods. The impact threshold in for the burst shutter
detection is set to 5%, meaning if the batch application burst
causes a spike of 5% or more in last level cache misses of
the latency-sensitive application we assert contention. Using
this approach CAER brings the overhead due to contention
from 17% down to 6% on average, while gaining close to 60%
more utilization of the processor over running the latency-
sensitive application alone.

5. RELATED WORK
Current online dynamic optimization approaches can be

separated into two categories: those that deal with managed
run-time systems targeting bytecode and those that apply
to native application binaries. The majority of online opti-
mization frameworks that target bytecode [44, 53, 2] work
at the function granularity. These optimizers detect fre-
quently executed methods and identify them as hot. These
hot methods are then just-in-time compiled and recompiled
at higher levels of optimization, depending on how often
they are executed. Other bytecode online optimization and
adaptation approaches [57, 56] address memory and other
issues. However this work is concerned more with online
adaptation at the binary level.

5.1 Online Adaptation at the Binary Level
This work deals with the class of online optimizers and op-

timization frameworks that deal with native binaries directly
such as Dynamo [4], DynamoRIO [6], and Strata [51]. These
current dynamic optimization techniques have had limited
success. One of the seminal works that has inspired many
future projects was the work by Bala et al. [4] on Dynamo.
Dynamo is a binary to binary translator and dynamic opti-

mizer that works at the basic block and trace levels. Dynamo
was the only online optimizer of its class to achieve consis-
tent performance gains. This has mostly been attributed
to the intricacies of the PA-RISC platform for which it was
implemented. Attempts have been made to reproduce this
performance benefit on other architectures but have been
largely unsuccessful. Bruening et al. reimplemented the Dy-
namo infrastructure for x86 with the DynamoRio project [6]
and was unable to achieve significant improvement. A sim-
ilar effort was made with the Strata [51] infrastructure and
was also unable to achieve performance gains. One major
challenge these three approaches face is the added overhead
from virtualizing the application and maintaining control of
the executing binary. In fact there has been much work
focused on optimizing the dynamic optimizer itself, in par-
ticular the handling of indirect branches [26].

Research attention has also been paid to online optimiza-
tion approaches using multicore architecture and novel hard-
ware techniques. The Adore infrastructure has been used by
Lu et al. [36] to achieve dynamic software prefetching via the
use of helper threads and performance monitoring hardware.
A similar technique was also later applied to SUN’s Ultra-
Sparc Architecture [37]. Zhang et al. proposed Trident [58,
59], a new dynamic optimizer framework that requires hard-
ware support. This work proposes that trace selection occurs
entirely in hardware and uses a number of hardware exten-
sions. This work shows promising potential, but currently
cannot be applied as it depends on novel micro-architectural
features to be developed.

5.2 Extracting Run-time Information
The usefulness of information about an application’s run-

time behavior and dynamic micro-architectural impact has
also shown to be quite important. Profiling has become
the cornerstone for understanding an application’s behavior
and can play an important part in compiler optimizations
as shown in the work by Chang et al. [14]. This seminal
work introduces compiler support for profile feedback di-
rected compiler optimizations. The compiler executes the
application on a number of canned inputs, profiles it, and
recompiles the application using this information. Using
profiling information has lead to many new kinds of opti-
mizations [45, 47, 24]. However these compiler optimizations
remain rigid and thus tends to be applied conservatively.

Performance counters have shown to be a great tool to
enable low overhead profiling of micro-architectural events.
Moreover, these hardware structures are becoming more com-
plex as is seen in the work by Dean et al. [19]. Azimi et al.
presents a technique to use limited performance counters to
simultaneously profile numerous events via sampling [3]. In
recent work by Cavazos et al. [11] performance counters and
machine learning are used together to find better compiler
optimization settings for applications. These performance
counters are also being used for more than just profiling. In
the works by Chen et al. [15] and our prior work [39] perfor-
mance monitoring hardware are used to form dynamic hot
traces without slowing down the running application. We
also see performance counters used in Java VMs and JITs
to steer optimization in the works by Schneider et al. [50]
and Adl-Tabatabai et al. [1]

5.3 Function Cloning and Versioning
Function cloning and Multiversioning is an inter-procedural

code transformation that is used by a number of optimiza-
tions dating back to the earliest works on compiler optimiza-
tion [8, 18, 7, 9, 17, 20, 55]. It was originally conceived for
classic optimizations such as inter-procedural constant prop-
agation (IPCP) [8]. It has also been been used by Carini et
al. for flow insensitive IPCP [9] and Cierniak et al. for
inter-procedural array remapping [17].

Multiversioning approaches have also been used by Diniz
et al. [20] and Voss et al. [55]. In the work by Diniz et al.
multiversioning is used in the context of a parallelizing com-
piler for object-based languages to provide a mechanism to
dynamically switch the implementation of a particular syn-
chronization mechanism online. Although the concept of
dynamic feedback is discussed in this work, a general mech-
anism to achieve online code adaptation using multiversion-
ing is not explored. In addition, the mechanisms used in
this work to gather information to steer version switching
is significantly limited in comparison to the scenario based
multiversioning approach presented in this work. The mul-
tiversioning approach provided by Diniz’s dynamic feedback
relies entirely on a timing approach, only allowing for vari-
ants of the sampling/production phase heuristic presented
in their work. However our scenario based multiversioning
provides much more general monitoring capabilities in that
our approach is guided by the ability to identify scenarios
based on a collection of the information available through
our lightweight introspection interface. In addition the idea
of having a number of co-running application adapting in
cooperation is also not explored.

The work by Voss et al. [55] discusses the idea of switch-
ing regions of executing code dynamically, however multiver-
sioning is not performed statically. Versions are generated
continuously by compiler tools and optimizers running on
sockets and machines separate to the executing applications.
In addition users of their system must learn a new domain
specific language, and the flexibility of potential adaptation
policies is limited to what can be expressed in this language.
Requiring this new language presents a significant amount
of complexity, which is contrary to the goal of Loaf. Also
the fact that a new language must be learned to use their
system may further deter users from adopting this approach.

More recently mutliversioning has been used in a number
of works by Fursin et al. as a mechanism to provide dynamic
machine-learning testbeds for evaluating optimization con-

figurations and performing online optimization space prun-
ing [22, 23]. In this work we take advantage of function
cloning and multiversioning to provide a general, flexible
and lightweight approach to enable online code adaptation.

5.4 Cache Contention
When two application are running on neighboring cores,

contention for the shared cache can affect application Qual-
ity of Service (QoS) and can negatively affect overall through-
put and scheduling fairness. QoS and Fairness techniques
have received much research attention [25, 41, 32, 29, 30,
42, 43, 52]. These works propose QoS and fairness models,
as well as hardware and platform improvement to enable
QoS and fairness be enforced. Rafique et al. investigates
micro-architectural extensions to support the OS for cache
management [46]. There has been a number of works aimed
at better understanding and modeling cache contention [5,
12] and job co-scheduling [31, 16]. Other hardware tech-
niques to enable cache management have also received re-
search attention [54, 27, 48, 13]. Suhendra [54] proposes
partitioning and locking mechanisms to minimize unpre-
dictable cache contention. Cache reconfiguration [48] has
also been proposed as a mechanism to enable cache parti-
tioning. Although these works show promising future direc-
tions for hardware and system designers to take when ad-
dressing these problems, unfortunately current commodity
micro-architectures cannot support these solutions as they
do not meet the micro-architectural assumptions made these
works. Another very promising direction based on what is
likely to be future hardware capabilities, is to leverage core
specific dynamic voltage scaling as is presented by Herdirch,
Illikkal, Iyer, et al [25].

6. CONCLUSION
Many of the important problems that exist for computer

systems and applications are those that only arise during
application execution. Some of these are predictable and
occur during every run, while others are non-deterministic
and cannot be detected statically. To enable a robust abil-
ity to address these problems, an online adaptation mecha-
nism must be used. In this work, we present the design and
implementation of an efficient online adaptation framework
capable of addressing many of these dynamically occurring
problems. Our online adaptation framework is lightweight,
practical and flexible. It can be used to enable online adap-
tation solutions. In this work, we have described in detail
three key lightweight approaches to achieve online adapta-
tion, lightweight introspection, scenario based multiversion-
ing, and cross-core application cooperation. In addition, we
use our online adaptation framework to provide novel solu-
tions to two pressing problems using each of our lightweight
approaches.

7. REFERENCES
[1] A.-R. Adl-Tabatabai, R. L. Hudson, M. J. Serrano,

and S. Subramoney. Prefetch injection based on
hardware monitoring and object metadata. In PLDI
’04: Proceedings of the ACM SIGPLAN 2004
conference on Programming language design and
implementation, pages 267–276, New York, NY, USA,
2004. ACM.

[2] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F.
Sweeney. Adaptive optimization in the jalapeno jvm.

In OOPSLA ’00: Proceedings of the 15th ACM
SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
pages 47–65, New York, NY, USA, 2000. ACM.

[3] R. Azimi, M. Stumm, and R. W. Wisniewski. Online
performance analysis by statistical sampling of
microprocessor performance counters. In ICS ’05:
Proceedings of the 19th annual international
conference on Supercomputing, pages 101–110, New
York, NY, USA, 2005. ACM.

[4] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A
transparent dynamic optimization system. In ACM
Conference on Programming Language Design and
Implementation, pages 1–12, Vancouver, British
Columbia, Canada, 2000.

[5] G. E. Blelloch and P. B. Gibbons. Effectively sharing
a cache among threads. In SPAA ’04: Proceedings of
the sixteenth annual ACM symposium on Parallelism
in algorithms and architectures, pages 235–244, New
York, NY, USA, 2004. ACM.

[6] D. Bruening, T. Garnett, and S. Amarasinghe. An
infrastructure for adaptive dynamic optimization. In
CGO ’03: Proceedings of the international symposium
on Code generation and optimization, pages 265–275,
Washington, DC, USA, 2003. IEEE Computer Society.

[7] M. Byler, M. Wolfe, J. R. B. Davies, C. Huson, and
B. Leasure. Multiple version loops. In ICPP, pages
312–318, 1987.

[8] D. Callahan, K. D. Cooper, K. Kennedy, and
L. Torczon. Interprocedural constant propagation.
SIGPLAN Not., 39(4):155–166, 2004.

[9] P. R. Carini and M. Hind. Flow-sensitive
interprocedural constant propagation. In PLDI ’95:
Proceedings of the ACM SIGPLAN 1995 conference
on Programming language design and implementation,
pages 23–31, New York, NY, USA, 1995. ACM.

[10] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla,
M. O’Boyle, and O. Temam. Rapidly selecting good
compiler optimizations using performance counters.
CGO ’07: Proceedings of the International Symposium
on Code Generation and Optimization, Mar 2007.

[11] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. P.
O’Boyle, and O. Temam. Rapidly selecting good
compiler optimizations using performance counters. In
CGO ’07: Proceedings of the International Symposium
on Code Generation and Optimization, pages 185–197,
Washington, DC, USA, 2007. IEEE Computer Society.

[12] D. Chandra, F. Guo, S. Kim, and Y. Solihin.
Predicting inter-thread cache contention on a chip
multi-processor architecture. In HPCA ’05:
Proceedings of the 11th International Symposium on
High-Performance Computer Architecture, pages
340–351, Washington, DC, USA, 2005. IEEE
Computer Society.

[13] J. Chang and G. S. Sohi. Cooperative cache
partitioning for chip multiprocessors. In ICS ’07:
Proceedings of the 21st annual international
conference on Supercomputing, pages 242–252, New
York, NY, USA, 2007. ACM.

[14] P. P. Chang, S. A. Mahlke, and W. mei W. Hwu.
Using profile information to assist classic code
optimizations. Softw. Pract. Exper., 21(12):1301–1321,
1991.

[15] H. Chen, W.-C. Hsu, J. Lu, P.-C. Yew, and D.-Y.
Chen. Dynamic trace selection using performance
monitoring hardware sampling. In CGO ’03:
Proceedings of the international symposium on Code
generation and optimization, pages 79–90,
Washington, DC, USA, 2003. IEEE Computer Society.

[16] S. Chen, P. B. Gibbons, M. Kozuch, V. Liaskovitis,
A. Ailamaki, G. E. Blelloch, B. Falsafi, L. Fix,
N. Hardavellas, T. C. Mowry, and C. Wilkerson.
Scheduling threads for constructive cache sharing on
cmps. In SPAA ’07: Proceedings of the nineteenth
annual ACM symposium on Parallel algorithms and
architectures, pages 105–115, New York, NY, USA,
2007. ACM.

[17] M. Cierniak and W. Li. Interprocedural array
remapping. In PACT ’97: Proceedings of the 1997
International Conference on Parallel Architectures and
Compilation Techniques, page 146, Washington, DC,
USA, 1997. IEEE Computer Society.

[18] K. D. Cooper, M. W. Hall, and K. Kennedy. A
methodology for procedure cloning. Comput. Lang.,
19(2):105–117, 1993.

[19] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl,
and G. Chrysos. Profileme: hardware support for
instruction-level profiling on out-of-order processors.
In MICRO 30: Proceedings of the 30th annual
ACM/IEEE international symposium on
Microarchitecture, pages 292–302, Washington, DC,
USA, 1997. IEEE Computer Society.

[20] P. Diniz and M. Rinard. Dynamic feedback: an
effective technique for adaptive computing. PLDI ’97:
Proceedings of the ACM SIGPLAN 1997 conference
on Programming language design and implementation,
May 1997.

[21] S. Eranian. Perfmon2.
http://perfmon2.sourceforge.net/.

[22] G. Fursin, A. Cohen, M. F. P. O’Boyle, and
O. Temam. Quick and practical run-time evaluation of
multiple program optimizations. Trans. on High
Performance Embedded Architectures and Compilers,
1(1):13–31, Jan. 2007.

[23] G. Fursin and O. Temam. Collective optimization. In
HiPEAC ’09: Proceedings of the 4th International
Conference on High Performance Embedded
Architectures and Compilers, pages 34–49, Berlin,
Heidelberg, 2009. Springer-Verlag.

[24] R. Gupta, D. A. Berson, and J. Z. Fang.
Resource-sensitive profile-directed data flow analysis
for code optimization. In MICRO 30: Proceedings of
the 30th annual ACM/IEEE international symposium
on Microarchitecture, pages 358–368, Washington, DC,
USA, 1997. IEEE Computer Society.

[25] A. Herdrich, R. Illikkal, R. Iyer, D. Newell,
V. Chadha, and J. Moses. Rate-based qos techniques
for cache/memory in cmp platforms. In ICS ’09:
Proceedings of the 23rd international conference on
Supercomputing, pages 479–488, New York, NY, USA,
2009. ACM.

[26] J. D. Hiser, D. Williams, W. Hu, J. W. Davidson,
J. Mars, and B. R. Childers. Evaluating indirect
branch handling mechanisms in software dynamic

translation systems. In CGO ’07: Proceedings of the
International Symposium on Code Generation and
Optimization, pages 61–73, Washington, DC, USA,
2007. IEEE Computer Society.

[27] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and
S. W. Keckler. A nuca substrate for flexible cmp cache
sharing. In ICS ’05: Proceedings of the 19th annual
international conference on Supercomputing, pages
31–40, New York, NY, USA, 2005. ACM.

[28] Intel Corporation. IA-64 Application Developer’s
Architecture Guide. Intel Corporation, Santa Clara,
CA, USA, 2009.

[29] R. Iyer. Cqos: a framework for enabling qos in shared
caches of cmp platforms. In ICS ’04: Proceedings of
the 18th annual international conference on
Supercomputing, pages 257–266, New York, NY, USA,
2004. ACM.

[30] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni,
D. Newell, Y. Solihin, L. Hsu, and S. Reinhardt. Qos
policies and architecture for cache/memory in cmp
platforms. In SIGMETRICS ’07: Proceedings of the
2007 ACM SIGMETRICS international conference on
Measurement and modeling of computer systems,
pages 25–36, New York, NY, USA, 2007. ACM.

[31] Y. Jiang, X. Shen, J. Chen, and R. Tripathi. Analysis
and approximation of optimal co-scheduling on chip
multiprocessors. In PACT ’08: Proceedings of the 17th
international conference on Parallel architectures and
compilation techniques, pages 220–229, New York, NY,
USA, 2008. ACM.

[32] S. Kim, D. Chandra, and Y. Solihin. Fair cache
sharing and partitioning in a chip multiprocessor
architecture. In PACT ’04: Proceedings of the 13th
International Conference on Parallel Architectures and
Compilation Techniques, pages 111–122, Washington,
DC, USA, 2004. IEEE Computer Society.

[33] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn.
Using os observations to improve performance in
multicore systems. IEEE Micro, 28(3):54 – 66, 2008.

[34] S. Lohr. Demand for data puts engineers in spotlight.
The New York Times, 2008. Published June 17th.

[35] K. London, J. Dongarra, S. Moore, P. Mucci,
K. Seymour, and T. Spencer. End-user tools for
application performance analysis using hardware
counters. In 14th Conference on Parallel and
Distributed Computing Systems, August 2001.

[36] J. Lu, H. Chen, R. Fu, W.-C. Hsu, B. Othmer, P.-C.
Yew, and D.-Y. Chen. The performance of run-time
data cache prefetching in a dynamic optimization
system. In MICRO 36: Proceedings of the 36th annual
IEEE/ACM International Symposium on
Microarchitecture, page 180, Washington, DC, USA,
2003. IEEE Computer Society.

[37] J. Lu, A. Das, W.-C. Hsu, K. Nguyen, and S. G.
Abraham. Dynamic helper threaded prefetching on
the sun ultrasparc cmp processor. In MICRO 38:
Proceedings of the 38th annual IEEE/ACM
International Symposium on Microarchitecture, pages
93–104, Washington, DC, USA, 2005. IEEE Computer
Society.

[38] J. Mars and R. Hundt. Scenario based optimization:

A framework for statically enabling online
optimizations. In CGO ’09: Proceedings of the 2009
International Symposium on Code Generation and
Optimization, pages 169–179, Washington, DC, USA,
2009. IEEE Computer Society.

[39] J. Mars and M. L. Soffa. Multicore adaptive trace
selection. Appeared at STMCS ’08: Third Workshop
on Software Tools for MultiCore Systems, March 2008.

[40] J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa.
Contention aware execution: online contention
detection and response. In CGO ’10: Proceedings of
the 2010 International Symposium on Code
Generation and Optimization, pages 257–265, New
York, NY, USA, 2010. ACM.

[41] M. Moreto, F. J. Cazorla, A. Ramirez, R. Sakellariou,
and M. Valero. Flexdcp: a qos framework for cmp
architectures. SIGOPS Oper. Syst. Rev., 43(2):86–96,
2009.

[42] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E.
Smith. Fair queuing memory systems. In MICRO 39:
Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, pages
208–222, Washington, DC, USA, 2006. IEEE
Computer Society.

[43] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual
private caches. In ISCA ’07: Proceedings of the 34th
annual international symposium on Computer
architecture, pages 57–68, New York, NY, USA, 2007.
ACM.

[44] N. Peleg and B. Mendelson. Detecting change in
program behavior for adaptive optimization. In PACT
’07: Proceedings of the 16th International Conference
on Parallel Architecture and Compilation Techniques
(PACT 2007), pages 150–162, Washington, DC, USA,
2007. IEEE Computer Society.

[45] K. Pettis and R. C. Hansen. Profile guided code
positioning. In PLDI ’90: Proceedings of the ACM
SIGPLAN 1990 conference on Programming language
design and implementation, pages 16–27, New York,
NY, USA, 1990. ACM.

[46] N. Rafique, W.-T. Lim, and M. Thottethodi.
Architectural support for operating system-driven cmp
cache management. In PACT ’06: Proceedings of the
15th international conference on Parallel architectures
and compilation techniques, pages 2–12, New York,
NY, USA, 2006. ACM.

[47] M. Rajagopalan, S. K. Debray, M. A. Hiltunen, and
R. D. Schlichting. Profile-directed optimization of
event-based programs. In PLDI ’02: Proceedings of
the ACM SIGPLAN 2002 Conference on Programming
language design and implementation, pages 106–116,
New York, NY, USA, 2002. ACM.

[48] R. Reddy and P. Petrov. Eliminating inter-process
cache interference through cache reconfigurability for
real-time and low-power embedded multi-tasking
systems. In CASES ’07: Proceedings of the 2007
international conference on Compilers, architecture,
and synthesis for embedded systems, pages 198–207,
New York, NY, USA, 2007. ACM.

[49] F. Schneider, M. Payer, and T. Gross. Online
optimizations driven by hardware performance
monitoring. PLDI ’07: Proceedings of the 2007 ACM

SIGPLAN conference on Programming language
design and implementation, Jun 2007.

[50] F. T. Schneider, M. Payer, and T. R. Gross. Online
optimizations driven by hardware performance
monitoring. In PLDI ’07: Proceedings of the 2007
ACM SIGPLAN conference on Programming language
design and implementation, pages 373–382, New York,
NY, USA, 2007. ACM.

[51] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. W.
Davidson, and M. L. Soffa. Retargetable and
reconfigurable software dynamic translation. In CGO
’03: Proceedings of the international symposium on
Code generation and optimization, pages 36–47,
Washington, DC, USA, 2003. IEEE Computer Society.

[52] L. Soares, D. Tam, and M. Stumm. Reducing the
harmful effects of last-level cache polluters with an
os-level, software-only pollute buffer. In MICRO ’08:
Proceedings of the 2008 41st IEEE/ACM International
Symposium on Microarchitecture, pages 258–269,
Washington, DC, USA, 2008. IEEE Computer Society.

[53] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu,
and T. Nakatani. Design and evaluation of dynamic
optimizations for a java just-in-time compiler. ACM
Trans. Program. Lang. Syst., 27(4):732–785, 2005.

[54] V. Suhendra and T. Mitra. Exploring locking &
partitioning for predictable shared caches on
multi-cores. In DAC ’08: Proceedings of the 45th
annual Design Automation Conference, pages 300–303,
New York, NY, USA, 2008. ACM.

[55] M. Voss and R. Eigemann. High-level adaptive
program optimization with adapt. PPoPP ’01:

Proceedings of the eighth ACM SIGPLAN symposium
on Principles and practices of parallel programming,
Jul 2001.

[56] M. Wegiel and C. Krintz. The mapping collector:
virtual memory support for generational, parallel, and
concurrent compaction. In ASPLOS XIII: Proceedings
of the 13th international conference on Architectural
support for programming languages and operating
systems, pages 91–102, New York, NY, USA, 2008.
ACM.

[57] M. Wegiel and C. Krintz. Dynamic prediction of
collection yield for managed run-times. In ASPLOS
’09: Proceeding of the 14th international conference on
Architectural support for programming languages and
operating systems, pages 289–300, New York, NY,
USA, 2009. ACM.

[58] W. Zhang, B. Calder, and D. M. Tullsen. An
event-driven multithreaded dynamic optimization
framework. In PACT ’05: Proceedings of the 14th
International Conference on Parallel Architectures and
Compilation Techniques, pages 87–98, Washington,
DC, USA, 2005. IEEE Computer Society.

[59] W. Zhang, B. Calder, and D. M. Tullsen. A
self-repairing prefetcher in an event-driven dynamic
optimization framework. In CGO ’06: Proceedings of
the International Symposium on Code Generation and
Optimization, pages 50–64, Washington, DC, USA,
2006. IEEE Computer Society.

[60] M. Zhao, B. R. Childers, and M. L. Soffa. An
approach toward profit-driven optimization. ACM
Trans. Archit. Code Optim., 3(3):231–262, 2006.

	 Introduction
	 Loaf Overview
	 Enabling Online Adaptation
	 Online Monitoring
	 Adapting the Application
	 Adapting the Environment

	 Creating Solutions with Loaf
	 Aggressive Optimizations Using Scenarios
	 Problem Description
	 Adaptation Policy for Aggressive Optimizatons

	 Addressing Cross-Core Interference Using Loaf
	 Problem Description
	 Adaptation Policy for Contention Detection

	 Evaluating Loaf
	 Effectiveness of Loaf-based Solutions
	 Using SBM for Aggressive Optimizations
	 Using CCAC to Detect and Respond to Contention

	 Related Work
	 Online Adaptation at the Binary Level
	 Extracting Run-time Information
	 Function Cloning and Versioning
	 Cache Contention

	 Conclusion
	References

