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Abstract—The class of modern datacenters recently coined as “warehouse scale computers” (WSCs) has traditionally been

embraced as homogeneous computing platforms. However, due to frequent machine replacements and upgrades, modern WSCs

are in fact composed of diverse commodity microarchitectures and machine configurations. Yet, current WSCs are designed with

an assumption of homogeneity, leaving a potentially significant performance opportunity unexplored. In this paper, we investigate

the key factors impacting the available heterogeneity in modern WSCs, and the benefit of exploiting this heterogeneity to

maximize overall performance. We also introduce a new metric, opportunity factor, which can be used to quantify an application’s

sensitivity to the heterogeneity in a given WSC. For applications that are sensitive to heterogeneity, we observe a performance

improvement of up to 70% when employing our approach. In a WSC composed of state-of-the-art machines, we can improve the

overall performance of the entire datacenter by 16% over the status quo.

Index Terms—Super (very large) computers, Heterogeneous (hybrid) systems, Scheduling and task partitioning, Design studies.

✦

1 INTRODUCTION

As more of today’s computing moves into the cloud,
the computing platform recently coined as warehouse-scale
computers (WSCs) [2, 6, 7] is emerging as an important
area of study for computer architecture research [3]. WSCs
have been embraced as homogeneous computing environ-
ments [1, 2, 4]. However, as acknowledged in prior work [9],
this is not the case in practice. As machines are replaced
in these datacenters, new generations of hardware are de-
ployed while older generations continue to operate. This
leads to a WSC that is composed of a mix of machine
platforms, e.g. a heterogeneous WSC. As we show in this
work, ignoring this heterogeneity can lead to inefficient
execution of applications in these datacenters.

The heterogeneity in WSCs differs than that found in a
heterogeneous multicore chip. In a WSC, it is the diversity
in execution environments that must be considered. We define
an application’s execution environment as the set of all factors
that can impact the execution of the application. These
include an application’s machine configuration, underlying
microarchitecture, simultaneously co-located jobs, the state
of the machine’s system software and its configuration,
among others. In this paper we focus our study on the
heterogeneity in the underlying microarchitecture as well
as the set of jobs simultaneously running on the machine.

Another difference between the heterogeneous WSC and
other heterogeneous computing platforms is that there is
a set of key applications (search, maps, etc) that are run
in these datacenters continually. These applications and the
machine platforms are known a priori by the WSC operators
and job management runtimes. This observation leads to
an important insight. The performance opportunity present
from the heterogeneity in machines are defined by the mix
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of applications that will run on these machines. In turn,
the performance opportunity present from the diversity
in applications running in the heterogeneous datacenter is
defined by the particular mix of underlying machines. As
we vary either, the amount of performance opportunity
changes significantly.

This paper makes a number of important contributions:

• Quantifying Datacenter Heterogeneity: We demon-
strate the performance variability endured by applica-
tions as they are placed in various execution environ-
ments in WSCs.

• Opportunity Factor: We introduce a metric, the opportu-
nity factor, that quantifies how sensitive an application
is to the heterogeneity in a datacenter. This metric
approximates the performance opportunity for a given
application when mapped intelligently.

• Opportunistic Mapping and Map Scoring: We present
opportunistic mapping of jobs to machines to take advan-
tage of the heterogeneity in “homogeneous” WSCs. A
required component of such an approach is the ability
to score and rank job placement mappings. We provide
four such map scoring policies and discuss the key
trade-offs between them.

• Heterogeneity in Production: We demonstrate the ef-
fectiveness of our techniques in production datacenters
running Google internet services including web search.

In this work, we use both an experimental testbed and
production datacenters running live internet services to
evaluate the potential of exploiting the heterogeneity in
modern WSCs. We show that individual applications can
improve by up to 70% when employing our opportunis-
tic mapping. Overall, we can improve the performance of
an entire cluster composed of three types of state-of-the-
art machines by 16%. We confirm this result in the wild
on Google’s production datacenters and workloads with
a postmortem analysis, demonstrating a 15% performance



TABLE 1

Production Microarchitecture Mix

Type CPU GHz Cores L2/L3 Mem.

Production Xeon E5345 2.33ghz 2x4 4x4mb conf.
Production Opteron 8431 2.4ghz 6 6mb conf.
Testbed Core i7 920 2.67ghz 4 8mb 4gb.
Testbed Core 2 Q8300 2.5ghz 4 4mb 3gb.
Testbed Phenom X4 910 2.6ghz 4 6mb 4gb

TABLE 2

Production Application Mix

Applications Description

docs content analysis
bigtable storage software for massive amount of data
websearch Google search engine

S (co-runner) image processing and computer vision
P (co-runner) protocol buffer

improvement. Improving the overall performance of jobs
running in WSCs improves the cost efficiency of building
and operating the datacenter [5, 6, 12]. At the scale of
Google, a 1% improvement results in millions of dollars
saved.

2 HETEROGENEITY IN WSCS

In this section, we demonstrate and compare the perfor-
mance variability introduced by microarchitectural and co-
runner heterogeneity in real production datacenters with
the variability present in our experimental testbed. The
machine types that compose these platforms are presented
in Table 1. The amount of memory used on our production
machines is confidential. The Google applications we use
in the study are described in Table 2. These applications
cover a number of Google’s large industry-strength work-
loads [12]. Figure 1 illustrates the microarchitectural and co-
runner heterogeneity for these three key applications. The
number of threads and input workloads are the same for
each application on both architectures and are composed of
real queries and requests from production. The y-axis shows
the performance slowdown of each application when it is
running alone on the Opteron as well as co-running with P
and S on both architectures, compared to its performance
when running alone on the Xeon. As the figure shows,
there is a significant performance variability across vari-
ous co-running pairs and microarchitectures. In addition,
applications have different microarchitectural preferences
when its co-runner changes. For example Doc prefers to run
on Xeon and has a 40% performance swing across various
scenarios. Bigtable prefers to run on Opteron and has
a 50% performance swing. Websearch prefers to run on
Opteron when running alone and when co-ruinnng with P.
However, it prefers Xeon when running with S.

We performed a similar study in our experimental testbed
and observed the same phenomena. In our experimental in-
frastructure we use 22 SPEC CPU2006 benchmarks on their
ref input as our application types and three types of state-
of-the-art microarchitectures presented in Table 1. Figure 2
illustrates the performance variability when co-locating each
application with lbm on the three microarchitectures. We
use lbm as it is a well known memory intensive benchmark
and will exhibit various levels of contentiousness across
various co-running applications and memory subsystem
designs. In this experiment, we observe that the benchmark
workloads on our testbed have a similar sensitivity to
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Fig. 1. Google workload sensitivity to machine and co-runner

diversity. The baseline is each application’s solo run on Xeon.
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Fig. 2. Application sensitivity to microarchitectural diversity

when co-located with lbm compared to running alone.

microarchitectural and co-runner diversity. Each microarchi-
tecture serves as the poorest and best performer in various
cases across the applications. In summary, we observe a
significant performance variability from the heterogeneity
in both production datacenters and our testbed.

3 OPPORTUNITY FACTOR

An important insight arises from the previous section.
Depending on how “immune” an application is to mi-
croarchitectural and co-runner variation, each application
would benefit differently from a job mapping policy that
takes advantage of heterogeneity. We introduce a metric,
opportunity factor, that approximates a given application’s
potential performance improvement opportunity relative to
all other applications, given a particular mix of applications
and machine types. The higher the opportunity factor, the
more an application can potentially benefit from exploiting
the heterogeneity in the WSC. Note that this opportunity
factor can be calculated only if the application mix and the
machine mix are known. For this we use services such as
Google Wide Profiling.

[Google Wide Profiling] In modern production WSCs,
continuous monitoring and logging systems are in place that
collect and archive performance information in production.
Google uses one such system, the Google Wide Profiler [10].
GWP is a standard component in the software stack of
each production deployment. This mechanism is used to
provide historical and continuous performance information
as a service to operators and other software subsystems in
the datacenter. For the remainder of this work, we describe
the opportunity factor and opportunist mapper, both of
which leverage this service. It is important to make the
distinction between the costs associated with populating
the GWP database (refered to later as profiling complexity),
versus the cost of using the information in GWP’s database,
which is in the order of minutes.

[Opportunity Factor] For a given WSC, we can denote
the application of type i as Ai, and the microarchitecture of
type j as Mj . We define the speedup factor for Ai as:

SFAi
=

maxj,k{IPSAi,Mj,Ck
} − minj,k{IPSAi,Mj,Ck

}

minj,k{IPSAi,Mj,Ck
}

, (1)

where IPSAi,Mj ,Ck
is application Ai’s IPS (instruction per

second) when it is running on machine Mj with a set of co-



TABLE 3

Mapping Scoring Policies

Policy Description Complexity

OM-C Colocation Score: This score is based
only on co-location penalty and only re-
quires profiling the co-location penalty
on any type of machine. Once a co-
location profile is collected it is then used
to score that co-location regardless of the
underlying microarchitecture.

|A|n

OM-Cs Colocation Score (Smart): This score is
based on co-location penalty with mi-
croarchitecture specific information. In-
formation about co-location penalty must
be collected for all platforms of interest.

|A|n × |M |

OM-M Microarchitectural Affinity Score: This
score is based on microarchitectural affin-
ity and captures only the speedup of
running each application on one microar-
chitecture over another.

|A| × |M |

OM-MCs Microarchitectural Affinity and Colo-
cation Score: This scoring method in-
cludes both microarchitectural affinity
and microarchitecture specific co-location
penalty. Profiling includes both solo and
corun performance (e.g. n+1). This scor-
ing technique has the heaviest profiling
requirements.

|A|n+1 × |M |

runners Ck. The SFAi is essentially the amount of perfor-
mance variability of Ai in all possible configurations of the
execution environment, composed of the cross product of
all machine options and all co-runner options. Using SFAi ,
we can define the Opportunity Factor (OF) for Ai as:

OFAi =

SFAi∑
j SFAj

(2)

This OFAi represents the sensitivity of each application
type to the overall heterogeneity of a given application
mix, relative to all other applications. This metric allows
datacenter designers and operators to identify applications
that are most likely to benefit from heterogeneity-aware
job mapping. This capability is of particular importance
when managing the QoS requirements of various latency
sensitive applications as applications that are more sensitive
to heterogeneity must be placed carefully in the datacenter
to ensure their QoS targets. We evaluate the accuracy of OF
in Section 4.

4 OPPORTUNISTIC MAPPING

We formulate the problem of mapping jobs of different
types and different characteristics to a set of heterogeneous
machine resources as a combinatorial optimization problem.
Note that special rules can be applied for latency sensitive
applications that have a QoS requirement that may be
affected by certain co-runners [8]. Our opportunistic mapper is
essentially a solver for the optimization problem of finding
the optimal mapping. The core algorithm we use to address
the main optimization problem is based on well established
iterative optimization techniques [11, 13]. However, to com-
pare maps, we need an approach to score maps.

[Map Scoring] An essential part in the opportunistic map-
per is the scoring policy used in each optimization iteration
to compare the mappings’ performance. To produce a score
of a job’s performance in a particular placement, we mine
GWP’s profiling information. To score an entire map of jobs
to machines we use the sum of all of the placement scores.
The higher the score, the better the map. In this work, we
present and evaluate a number of scoring policies. As GWP
is run continually in production, more information becomes
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Fig. 3. Performance speedup (IPS) from Opportunistic Map-

ping

available as time passes. We use the term profiling complexity
to refer to the amount of information needed from GWP for
the ideal functioning of the scoring policy. Table 3 shows
the description and the profiling complexities for our map
scoring policies, where |A| corresponds to the number of
application types, |M | corresponds to the number of ma-
chine types, and n corresponds to the number of co-runners
allowed. The key trade-off when selecting a scoring policy
is between the amount of profiling information needed for
ideal functioning and maximizing the performance gain. In
addition, the diversity present in the WSC has a significant
impact on the usefulness of some information. For example,
if there is little microarchitectural diversity OM-C may be
sufficient.

To investigate the potential performance improvement
gained by exploiting the heterogeneity in a given WSC, we
perform opportunistic mapping in both our experimental
testbed and production datacenters. To measure perfor-
mance, we use the aggregate instructions per second (IPS)
of the entire cluster. IPS is used as it is microarchitecture
independent.

[Experimental Testbed] We conducted experiments on a
range of WSC sizes, from 50 machines to 500 machines. The
composition of machines in each WSC includes an evenly
matched quantity of each of the three machines shown in
Table 1. The workload run on each cluster is composed
of twice as many jobs as there are machines. These jobs
are randomly selected (uniform distribution) from the SPEC
2006 benchmarks. This scenario is representative of how jobs
are run in production datacenters as typically only one or
two major jobs are allocated to a given machine. It is impor-
tant to note that while each SPEC job is a single threaded
workload, as we have shown in Section 2, we observe a
similar performance variability from the microarchitectural
and co-location heterogeneity as Google’s commercial work-
loads. The current job placement approach in production
datacenters treats all machines as homogeneous. Except for
some special rules applied to certain job types, a job can be
placed on any machine in a single cluster. This approach is
used as our baseline.

Figure 3 shows the performance improvement achieved
when using each of the map scoring policies shown in
Table 3. Each bar shows the average IPS of the cluster using
various scoring policies normalized to the IPS of random
job placement with the same workload. The amount of
performance benefit remains fairly stable as we increase the
size of the datacenter. The small variation in performance
improvement across different datacenter sizes is due to the
fact that the baseline for each cluster of bars is a random
mapping. In the figure, we observe that scoring policies that
only consider co-location heterogeneity (OM-C, OM-Cs) are
quite effective, generating up to an 8% improvement over



random mapping. This is impressive considering that less
than half of the 22 SPEC benchmark applications used are
sensitive to performance interference when co-located. On
the other hand, only considering microarchitectural hetero-
geneity without considering co-location (OM-M) can pro-
duce higher performance benefit over the random mapping,
12% on average. When the opportunistic mapper combines
both machine heterogeneity and co-location penalty hetero-
geneity (OM-MCs), the average performance improvement
is increased to almost 16%.

TABLE 4

Number of Machine Types in Production Datacenters
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tunistic mapping over a 1 month period of time

[Production Datacenter] Table 4 shows the amount
of platform diversity found in 10 randomly selected
anonymized Google datacenters in operation. Figure 4
shows the calculated performance improvement from a
heterogeneity-aware mapping of applications in 10 of
Googles active WSCs. We performed this experiment by
using our opportunistic mapping algorithm on real GWP
information to calculate the changes in IPS when mapped to
various machines in the datacenter. Although major appli-
cations are already mapped to their best platform through
manual assignment, we have measured significant poten-
tial improvement of up to 15% when using opportunistic
mapping to place the remaining jobs.

[Opportunity Factor] Figure 5 presents the performance
improvement at the application level from the scenario
with 500 machines (1000 jobs) shown in Figure 3. The y-
axis shows each application type’s average speedup us-
ing the opportunistic mapper, normalized to each type’s
average performance in a random mapping. This figure
demonstrates that application types have varying amounts
of performance benefit from the opportunistic mapping. For
example, while there is a 16% performance improvement
overall, lbm, a benchmark that is sensitive to both microar-
chitectural and co-location heterogeneity, achieves a 70%
performance improvement over random mapping. There
are also applications that suffer performance degradation.
However, as shown in the figure, this effect is minimal.
Figure 6 presents the opportunity factor (OF) of each ap-
plication, calculated using Equation 1 and Equation 2 in
Section 4. As Figures 5 and 6 show, OF correctly predicts the
top applications that benefit from the opportunistic mapper
including lbm, soplex, sphinx and mcf, etc. Remember
that mapping to exploit datacenter heterogeneity is a con-
straint optimization problem. As a result not all applications
can be mapped to their individual optimal situations and
thus the performance potential of some applications, such
as perlbench and xalanbmk, are not fully realized. How-
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ever, as we are using a global optimization approach, the
biggest winners are prioritized.

5 CONCLUSION

In this work, we investigate microarchitectural heterogene-
ity in the datacenter and find that even when considering
platforms from competing generations, there is a signif-
icant performance opportunity when acknowledging the
heterogeneity in “homogeneous” WSCs. We also present
opportunistic mapping and a new metric, an application’s
opportunity factor. Using opportunistic mapping, applica-
tions that are sensitive to heterogeneity have a performance
improvement of up to 70%. Overall, opportunistic mapping
improves the performance of an entire cluster by 16% as
shown with our experimental testbed and 15% in real pro-
duction datacenters as shown by our postmortem analysis.
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