
Contention Aware Execution: Online
Contention Detection and Response

Jason Mars

University of Virginia

jom5x@cs.virginia.edu

Neil Vachharajani Robert Hundt

Google, Mountain View, California

{nvachhar, rhundt}@google.com

Mary Lou Soffa

University of Virginia

soffa@cs.virginia.edu

Abstract

Cross-core application interference due to contention for shared
on-chip and off-chip resources pose a significant challenge to pro-
viding application level quality of service (QoS) guarantees on
commodity multicore micro-architectures. Unexpected cross-core
interference is especially problematic when considering latency-
sensitive applications that are present in the web service data cen-
ter application domains, such as web-search. The commonly used
solution is to simply disallow the co-location of latency-sensitive
applications and throughput-oriented batch applications on a sin-
gle chip, leaving much of the processing capabilities of multi-
core micro-architectures underutilized. In this work we present
a Contention Aware Execution Runtime (CAER) environment
that provides a lightweight runtime solution that minimizes cross-
core interference due to contention, while maximizing utilization.
CAER leverages the ubiquitous performance monitoring capabili-
ties present in current multicore processors to infer and respond to
contention and requires no added hardware support. We present the
design and implementation of the CAER environment, two sepa-
rate contention detection heuristics, and approaches to respond to
contention online. We evaluate our solution using the SPEC2006
benchmark suite. Our experiments show that when allowing co-
location with CAER, as opposed to disallowing co-location, we are
able to increase the utilization of the multicore CPU by 58% on
average. Meanwhile CAER brings the overhead due to allowing
co-location from 17% down to just 4% on average.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—parallel programming; D.3.4
[Programming Languages]: Processors—code generation, run-
time environments, compilers, optimization; D.4.8 [Operating
Systems]: Performance—measurements, monitors

General Terms Performance, Algorithms, Measurement

Keywords contention, multicore, cross-core interference, dy-
namic techniques, online adaptation, execution runtimes

1. Introduction

Multicore architectures are ubiquitous and have become the norm
in computing systems today. These architectures dominate in many

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

CGO’10, April 24–28, 2010, Toronto, Ontario, Canada.
Copyright c© 2010 ACM 978-1-60558-635-9/10/04. . . $10.00

domains, including those with quality of service (QoS) and low
latency requirements. Multicore architectures are composed of a
number of processing cores, each with a private cache(s), and typ-
ically larger caches that are shared among many cores [13]. Other
shared system resources include the bus, main memory, disk, and
other I/O devices. When processes and threads are executing in par-
allel on a single multicore CPU we say they are co-located. Co-
located processes and threads place varying amounts of demand on
these resources; this demand can often lead to contention for these
resources. Resource contention directly impacts application perfor-
mance. When an application’s performance is negatively affected
by another application executing on a separate core, we call this
cross-core interference.

Application priority and quality of service requirements often
cannot withstand unexpected cross-core interference. For example,
applications commonly found in the web service data center do-
main such as search, maps, image search, email and other user
facing web applications are latency-sensitive [4, 7]. These appli-
cations must respond to the user with minimal latency, as hav-
ing high latency displeases the user. Data centers for web ser-
vices classify applications as either being latency-sensitive or as
throughput-oriented batch applications, where latency is not impor-
tant [4]. To avoid cross-core interference between latency-sensitive
and batch applications, web service companies simply disallow the
co-location of these applications on a single multicore CPU. Us-
ing this solution may leave the CPU severely underutilized, and
is a contributing reason to the server utilization of these data cen-
ters often being 15% or less [18]. Low utilization results in wasted
power, and lost cost saving opportunities.

Much research effort has been spent developing QoS and fair-
ness mechanisms [5, 11, 14, 15, 17, 21], simulated approaches
for cache resource management [23–25, 27] , and to better un-
derstand the algorithmic and theoretical characteristics of cache
contention [2, 3, 6, 16]. However to date, there is no readily de-
ployable approach to both minimize cross-core interference due to
contention, and maximize utilization, for existing commodity mul-
ticore architectures.

In this work we propose such a solution. We present an exe-
cution environment, the Contention Aware Execution Runtime
(CAER) environment, which is capable of online contention detec-
tion and response on current commodity hardware. The insight and
opportunity that drives the design of CAER comes from the ubiqui-
tous availability of performance monitoring capabilities in today’s
hardware. These performance monitors are capable of collecting in-
formation about dynamic application behavior in hardware without
added overhead to the application. In this work we exploit the avail-
able performance information to gain information about cross-core
interference due to application contention. Using this information
we are able to detect and respond to this cross-core interference.

4
4

4
.n

am
d

4
4

7
.d

ea
lI

I

4
5

3
.p

o
v

ra
y

4
5

4
.c

al
cu

li
x

4
7

0
.l

b
m

4
8

2
.s

p
h

in
x

3

m
ea

n

4
5

0
.s

o
p

le
x

S
lo

w
d

o
w

n
 D

u
e

to
 I

n
te

rf
er

en
ce

 1x

 1.1x

 1.2x

 1.3x

 1.4x

 1.5x

4
0

0
.p

er
lb

en
ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
4

5
.g

o
b

m
k

4
5

6
.h

m
m

er

4
5

8
.s

je
n

g

4
6

2
.l

ib
q

u
an

tu
m

4
6

4
.h

2
6

4
re

f

4
7

1
.o

m
n

et
p

p

4
7

3
.a

st
ar

4
8

3
.x

al
an

cb
m

k

4
3

3
.m

il
c

4
3

5
.g

ro
m

ac
s

Figure 1. Performance degradation due to contention for shared
last level cache on Core i7 (Nehalem) while running alongside lbm.

4
8

3
.x

al
an

cb
m

k

4
3

3
.m

il
c

4
3

5
.g

ro
m

ac
s

4
4

4
.n

am
d

4
4

7
.d

ea
lI

I

4
5

0
.s

o
p

le
x

4
5

3
.p

o
v

ra
y

4
5

4
.c

al
cu

li
x

4
7

0
.l

b
m

4
8

2
.s

p
h

in
x

3

m
ea

n

L
as

t
L

ev
el

 C
ac

h
e

M
is

se
s

 Alone

 w/ Contender

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

4
0

0
.p

er
lb

en
ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
4

5
.g

o
b

m
k

4
5

6
.h

m
m

er

4
5

8
.s

je
n

g

4
6

2
.l

ib
q

u
an

tu
m

4
6

4
.h

2
6

4
re

f

4
7

1
.o

m
n

et
p

p

4
7

3
.a

st
ar

Figure 2. Increase in last level cache misses when running with
contender.

CAER is composed of a lightweight runtime on which all ap-
plications of interest run. This runtime classifies these applications
into the latency-sensitive and batch categories mentioned earlier.
CAER dynamically probes the hardware performance monitoring
unit (PMU) to collect information about the applications it hosts.
This information is continually collected and analyzed throughout
the lifetime of all applications running on CAER.

We have designed and evaluated two contention detection
heuristics: Burst Shutter, and Rule Based techniques. These two
heuristics are used by CAER to detect contention online. When
contention is detected, CAER dynamically adapts the batch appli-
cations to minimize the contention. In our current prototype, we
adapt by throttling down the execution of the batch applications to
relieve the pressure on the contended resource. If no/low contention
is detected, CAER allows the application to run more aggressively
to maximize utilization.

To evaluate our approach we developed a working prototype of
CAER including implementations of the two contention detection
and response heuristics, and deployed CAER on current multicore
architecture. Using the SPEC2006 benchmark suite we co-located
multiple instances of different benchmarks simultaneously execut-
ing on a Intel Core i7 (Nehalem) Quad Core machine. Allowing
co-location with CAER, as opposed to disallowing co-location, we
are able to increase the utilization of the multicore CPU by 58%
on average. Meanwhile CAER brings the overhead due to allowing
co-location from 17% down to just 4% on average.

The contributions of this work include:

• A framework and runtime environment that addresses the prob-
lem of cross-core interference that can be deployed on current
multicore architecture.

• The design and analysis of two online contention detection
heuristics, their algorithms, and an evaluation of each.

• A thorough evaluation of the CAER runtime system on com-
modity hardware with the SPEC2006 benchmark suite.

Next in Section 2 we explore the problem of cross-core interfer-
ence and motivate our work. We then discuss the design and archi-
tecture of CAER in Section 3. In Section 4 we describe the design
of our two online contention detection heuristics and discuss re-
sponses to detection in Section 5. We describe our experimental
setup and present results in Section 6, present related work in Sec-
tion 7, and finally conclude in Section 8.

2. Problem and Motivation

Current multicore chip design in commodity hardware is composed
of unshared and shared caches. For example, Intel’s Core 2 Duo
architecture has 2 cores, each with a private L1 cache and a sin-
gle L2 of 4mb shared between the two cores. Intel’s new Core i7
(Nehalem) architecture has 4 cores, each with private L1 and L2
caches and a single 8mb shared L3 cache for all 4 cores [13]. These
types of shared memory multicore architectures are common in the
data center space. When the workload of the individual application
processes and threads executing on these multicore processors fits
neatly into private caches, there is no cross-core interference (as-
suming coherence traffic is at a minimum). When the size of an
application’s working set exceeds the size of the private cache, the
working set spills over into the larger shared caches. The shared
last level cache presents the first level of possible contention. Con-
tention can also exist later in the memory subsystem such as con-
tention on the bus, in the memory controller, for shared memory,
disk, etc. However much of the contention in these levels manifest
themselves as traffic off-chip and thus show up as misses in the last
level cache on the chip.

In this work, our strategy is to monitor activity in the last level
of cache to detect contention and focus on minimizing contention
in this level of the cache. When more than one application is using
the shared last level of cache heavily, and the data is not shared,
contention occurs. One way to address this problem is to increase
the size and associativity of the cache. However, although cache
sizes have been increasing with every generation of processors, we
are still far behind the demands of today’s application workloads.
Figure 1 shows the degradation in performance of a set of appli-
cations due to cross-core interference caused by cache contention.
This experiment was run on a state of the art general purpose pro-
cessor (Intel Core i7 920 Quad Core), and demonstrates the im-
pact of just two applications contending on a multicore chip for a
large 8mb, 16way associative, shared, last level cache. The appli-
cations shown come from the SPEC2006 benchmark suite. Each
application was first run alone on the quad core chip, then with
the lbm benchmark running alongside on a neighboring core. The
bars in Figure 1 shows the slowdown of each benchmark running
alongside lbm. Lbm is an example of an application with aggressive
cache usage. An application that is more affected by lbm implies
that that application is also aggressive with its cache usage. Re-
member this data shows just two applications running on a quad
core machine with a large cache designed to handle the load from
four cores simultaneously doing work. In many cases we see a per-
formance degradation exceeding 30%.

0

150000000

300000000

450000000

600000000

In
s
tr

u
c
ti
o

n
s
 R

e
ti
re

d

xalan

0

100000000

200000000

300000000

400000000

In
s
tr

u
c
ti
o

n
s
 R

e
ti
re

d

mcf

0

500000

1000000

1500000

2000000

L
a
s
t

L
e
v
e
l
C

a
c
h

e
 M

is
s
e
s

xalan

0

1000000

2000000

3000000

4000000

L
a
s
t

L
e
v
e
l
C

a
c
h

e
 M

is
s
e
s

mcf

Figure 3. Correlating last level shared cache misses, and reduction
in instruction retirement rate.

Figure 2 shows the increase in last level cache misses when
running with a contender. It is important to notice the delta in
cache misses between the application running alone and when it
is running with the contender. It is also important to get a sense of
the absolute number of misses for each and how that impacts its
sensitivity to contention. Having a 150% increase in cache misses
impacts performance much less as the absolute number of misses
goes down. From this graph it is clear that the more last level cache
misses an application experiences, the more sensitive it is to cross-
core interference.

For the remainder of this work we define utilization of a multi-
core processor as

U =

P

N

i=1

Ri

Ri+Ii

N
(1)

for some time, where N is the number of cores on the chip, Ri is
the amount of time spent running on core i, and Ii is the amount of
time idle on core i.

3. A Solution with CAER

Our goal is to address the contention in the shared caches of current
multicore chip design by minimizing the cross-core interference
penalty on latency-sensitive applications while maximizing chip
utilization. To do so we have developed CAER, a contention aware
execution runtime environment.

3.1 Inferring Contention

Hardware performance monitoring capabilities are ubiquitous in to-
day’s chip micro-architectures [13]. These hardware performance
monitors provide realtime micro-architectural information about
the applications currently running on chip. As the counters record
this information, the program executes uninterrupted, and thus
recording this online profiling information presents no instrumen-
tation overhead. These capabilities enable new opportunities for

online and reactive approaches, and can be leveraged with one of
the many software APIs, such as PAPI [19] or Perfmon2 [9]. To
build our solution, we use Perfmon2 as it is one of the most ro-
bust and flexible PMU interfaces, and supports a wide range of
micro-architectures.

The basic premise of our solution is that information from
PMUs can be used in a low/no overhead way to infer contention.
In this work we focus on the shared last level cache (LLC) miss
behavior. Last level cache misses directly (and negatively) impact
the instruction retirement rate (i.e. IPC). Figure 3 illustrates this
phenomenon with two SPEC2006 benchmarks that exhibit clear
LLC miss phases. These benchmarks were run on their ref inputs
to completion. The x-axis represents time from beginning of the
application run to the end in all four of the graphs presented.
Figure 3 shows two pairs of graphs, each pair correlating the LLC
miss rate over time to the instruction retirement rate over time. We
can see clear and compelling evidence of the inverse relationship
between the number of LLC misses and the retirement rate.

CAER is based on the hypothesis that if two or more applica-
tions are simultaneously missing heavily in the last level shared
cache of the micro architecture, they are both making heavy usage
of the cache and probably evicting each others data (i.e. contend-
ing). This contention then leads to increased cache misses in both
applications, which is evident in Figure 2. We believe that if we can
dynamically monitor and analyze the chip wide information about
thread/core specific impact on the last level cache misses we should
be able to detect contention and thusly respond to this contention.

3.2 Architecture of CAER

The design and architecture of the CAER execution environment
is presented in Figure 4. To the left of the diagram we present the
overall design vision of the CAER environment, and to the right
we present the actual working prototype we have implemented for
this study. In the scenario presented on the left of the diagram we
have two latency-sensitive applications or threads, and two batch
applications or threads. In order to monitor and collect thread/core
specific performance information on current hardware, we must
issue the performance monitoring unit (PMU) configuration and
collection directives on the particular core hosting the application
of interest. For this reason a virtual layer must be present beneath
all application threads of interest. These CAER virtual layers are
cooperative and must share information, respond, and adapt to each
other.

CAER’s cooperation is accomplished via shared memory us-
ing a communication table as is shown in Figure 4 (arrows point-
ing into the table). Notice that the virtual layer (CAER M) beneath
the latency-sensitive applications appear thinner in Figure 4. These
(monitor) virtual layers are more light weight than the main CAER
engines and only are responsible for collecting PMU data and plac-
ing this data in the communication table. The main CAER engines
that lie underneath the throughput-oriented batch applications pro-
cesses this information and perform the contention detection and
response heuristics. CAER only applies any dynamic adaption or
modifications on the batch application. The latency applications al-
ways remain untouched.

The CAER runtime employs a periodic probing approach [20],
meaning information is gathered and analyzed by the virtual layer
intermittently. Using a timer interrupt the environment periodically
reads and restarts the PMU counters. Periodic probing has shown
to be an extremely low overhead approach to perform lightweight
online application monitoring.

In this work the CAER runtime uses a period of one millisec-
ond. Every millisecond each CAER runtime probes their relevant
performance monitoring units and reports last level cache informa-
tion to the communication table. This table records a window of

Core Core Core Core

Shared Memory

CAER M CAER M
CAER CAER

Latency
Sensitive App

Latency
Sensitive App

Batch App Batch App

Core Core

SharedMemory

CAER M
CAER

Latency
Sensitive App

Batch App

CAER Architecture CAER Prototype

Figure 4. Architecture of our Contention Aware Execution Runtime

sample points, which allows us to observe trends of many samples.
The main CAER engines that lie under the batch processes detect
and react to contention. Note that all of the batch processes/threads
must react together. Reaction directives are also recorded in the ta-
ble, and all batch processes must adhere to the reaction directives.
In the current design of CAER, these directive include pausing and
staggering execution.

Our prototype is shown to the right of Figure 4. This instance
of CAER supports two applications, one running atop CAER M,
and the other on the main CAER engine. The CAER runtime is
statically linked into the binary. Our prototype is fully functional
and, as it is shown in Section 6, effective on real commodity
hardware.

Detect
Contention

+
Response

-
Response

Detect Respond

Yes

No

Figure 5. Basic Detection Response

The diagram in Figure 5 shows the contention detection and re-
sponse phases used in the CAER runtime that lies under the batch
applications. Throughout execution CAER resides in one of these
states and continually transitions among these states. After CAER
performs its contention detection heuristic, either contention, or the
absence of contention is asserted, and we enter into the relevant
response state as shown with the yes and no transitions in Fig-
ure 5. We call the state where contention is asserted the c-positive
response, and the state where the absence contention is detected
the c-negative response. The next section explores the heuristics
and methods by which we detect contention corresponding to the

left side of Figure 5, and the subsequent section explores CAER’s
contention responses corresponding to the right side.

4. Detecting Contention with CAER

Before CAER can react to contention in the shared cache, it must
first detect that the applications are indeed contending. We have de-
veloped two heuristics for this task: a burst shutter approach and a
rule based approach. These heuristics run continuously throughout
the lifetime of CAER to detect and respond to contention.

4.1 Burst-Shutter Approach

If our batch application’s execution is going to increase the last
level cache misses in the neighboring latency-sensitive application,
we should be able to see that spike in misses when the batch
application has a burst of execution. That is, if the latency-sensitive
application is running alone while the batch application is halted,
when the batch application then has a burst of execution, we should
see a sharp increase in the last level cache misses of the latency-
sensitive application. We perform this analysis online as follows:

1. We have a number of periods where we halt the execution of
the batch application and collect samples of the last level cache
misses of the latency-sensitive application.

2. We then record the average last level cache miss rate.

3. We then have a number of periods where we execute the batch
at full force (i.e. burst) and record the misses of the latency-
sensitive application.

4. We calculate the average miss rate for these periods.

5. If the number of cache misses are significantly higher in the
burst case, we assert the batch application is impacting the miss
rate of the latency-sensitive application and report contention,
else we report no contention.

The corresponding algorithm is presented in Algorithm 1. There
are a number of parameters that can be tuned. We must determine
how long (as in how many periods) we would like to halt the batch
process’s execution, how long the burst should last, and how high
the sharp increase should be before asserting contention. In Algo-
rithm 1 these parameters correspond to setting the switch_point,
end_point and impact_factor.

4.2 Rule-Based Approach

Our rule based approach is more closely based on the premise of
our hypothesis. Remember our hypothesis is that if two or more

Algorithm 1: CAER Shutter Burst Algorithm

Description: This main loop is executed throughout the lifetime of
the host application. (pause self is used to signal whether to
pause execution for the next period)

count← 0;
while application running do

update l window with llc misses;
update r window with neighbors llc misses;
count++;
pause self ← true;
if count equals switch point then

foreach e in r window until switch point do
steady average← steady average +
(e/(Size(r window)− switch point)

end

pause self ← false;
end

if (count > switch point) and (count < end point) then
pause self ← false;

end

if count equals end point then

foreach e in r window from switch point to end point do
burst average←
burst average + (e/(end point− switch point)

end

if ((burst average− steady average) >
noise thresh)and(burst average >
(steady average ∗ (1 + impact factor))) then

contending ← true;
end

else
contending ← false;

end

end

end

Algorithm 2: CAER Rule Based Algorithm

while application running do
update l window with llc misses;
update r window with neighbors llc misses;
contending ← true;
foreach e in l window do

average← average + (e/Size(l window))
end

if average < usage thresh then
contending ← false

end

average← 0;
foreach e in r window do

average← average + (e/Size(r window))
end

if average < usage thresh then
contending ← false

end

end

applications are simultaneously missing heavily in the last level
shared cache of the micro architecture, they are both making heavy
usage of the cache and probably evicting each others data (i.e. con-
tending). The rule based heuristic tries to test this directly. The ba-
sic intuition says, if the latency-sensitive application is not miss-
ing in the cache heavily, it is probably not suffering from cache
contention, and also if the batch application is not missing heav-
ily in the cache, it is probably not using or at least not contend-
ing in the cache very much. This heuristic works by maintaining a

running average of the last level cache miss windows for both the
latency-sensitive, and batch applications. When this average for ei-
ther application dips below a particular threshold, we assert that we
are not contending, otherwise we report contention. Algorithm 2
presents the corresponding algorithm. In this heuristic the param-
eters include the size of the window and defining what missing
heavily means. In the algorithm these correspond to window and
usage_thresh.

5. Responding to Contention with CAER

As Figure 5 shows, after detecting contention we transition into one
of the response states, either c-negative or c-positive. In these states
the CAER runtime environment can respond by dynamically modi-
fying and adapting the batch application under which it runs. In this
work CAER reacts to contention by enforcing a fine grained throt-
tling of the execution of the batch application to relieve pressure in
the shared cache.

Our CAER runtime environment currently employs two throt-
tling based dynamic contention response mechanisms: a red-light
green-light approach, and a soft locking approach. Our red-light
green-light approach, as the name implies stops or allows execution
for a fixed or adaptive number of periods, based on the outcome of
our contention detection phase. The red-light part of this response
technique correlates to the c-positive result, the green-light corre-
lates to the c-negative result. An adaptive approach can be applied,
increasing the length if the detection phase is consistently produc-
ing the same result. In our CAER runtime environment we use this
red-light green-light response with our burst shutter approach.

Our soft locking response technique applies a soft lock on the
shared last level cache until the cache is no longer being used heav-
ily by the latency-sensitive application. The amount of pressure
placed on the cache by the latency-sensitive application is mea-
sured using the same performance monitoring information used for
the contention detection phase. The batch application is allowed to
fully resume execution when the pressure on the cache subsides.
In our CAER runtime environment we use this response technique
with our rule based approach.

6. Evaluation

The goals of this work is to provide a contention aware execution
runtime environment that can dynamically detect and respond to
contention on today’s commodity multicore processors. We aim
to minimize the cross-core interference penalty (overhead of the
latency-sensitive application due to contention) and maximize the
utilization of the chip. We demonstrate the effectiveness of our
CAER environment by showing a considerable reduction in this
cross-core interference penalty when allowing co-location, while
achieving a significant increase of chip utilization compared to
disallowing co-location.

6.1 Experimental Design

Our CAER prototype supports two applications, one deemed
latency-sensitive and the other a throughput-oriented batch appli-
cation. We use the SPEC2006 benchmark (C/C++ only) and run
all programs to completion using their reference inputs. We use the
Intel Core i7 (Nehalem) 920 Quad Core architecture to perform our
experimentation. This processor has three levels of cache, the first
two private to each core, the third shared across all cores. The sizes
of the L1 and L2 caches are 16kb and 256kb respectively. The L3
cache is 8mb and inclusive to the L1 and L2. The system used has
4gb of main memory, and runs Linux 2.6.29.

In the experiments shown here, the lbm benchmark served as
our batch application and was co-located on a neighboring core.
The main benchmark is assumed to be the latency-sensitive appli-

 1x

 1.05x

 1.1x

 1.15x

 1.2x

 1.25x

 1.3x

 1.35x

 1.4x

4
0

0
.p

er
lb

en
ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
4

5
.g

o
b

m
k

4
5

6
.h

m
m

er

4
5

8
.s

je
n

g

4
6

2
.l

ib
q

u
an

tu
m

4
6

4
.h

2
6

4
re

f

4
7

1
.o

m
n

et
p

p

4
7

3
.a

st
ar

4
8

3
.x

al
an

cb
m

k

4
3

3
.m

il
c

4
3

5
.g

ro
m

ac
s

4
4

4
.n

am
d

4
4

7
.d

ea
lI

I

4
5

0
.s

o
p

le
x

4
5

3
.p

o
v

ra
y

4
5

4
.c

al
cu

li
x

4
7

0
.l

b
m

4
8

2
.s

p
h

in
x

3

m
ea

n

E
x

ec
u

ti
o

n
 T

im
e

P
en

al
ty

 D
u

e
to

 C
ro

ss
−

C
o

re
 I

n
te

rf
er

en
ce Co−location

 Co−location /w CAER (Shutter)

 Co−location /w CAER (Rule Based)

Figure 6. Investigating the reduction in cross-core interference penalty.

cation. Lbm was chosen as our batch application because it presents
an interesting adversary as it makes heavy usage of the L3 cache.
We have performed complete runs using other benchmarks such as
libquantum and milc and produced very similar results. Note that
adversaries that make light usage of the L3 cache present more triv-
ial scenarios; contention occurs when two or more applications are
making heavy usage of the last level cache. As presented shortly,
our experimentation covers cases where the latency-sensitive appli-
cation make both light and heavy usage of the shared cache.

We have scripted our SPEC runs to launch the latency-sensitive
application shortly after the batch is launched. As our applications
run, CAER logs the decisions it makes and wall clock execution
time of our latency-sensitive application running on CAER M. In
the few cases the lbm (batch) benchmark completes before the
latency-sensitive we automatically and immediately relaunch it and
aggregate logs.

6.2 Minimizing Contention and Maximizing Utilization

First we evaluate the reduction in cross-core interference penalty
due to contention when running on our CAER environment. In
Figure 6 we show the slowdown in execution time due to contention
when we co-locate the latency-sensitive and batch applications.
The first bars show the cross-core interference penalty when co-
locating the native applications directly on multicore chip. The
second bars shows the cross-core interference penalty when co-
locating the native applications on CAER with the burst shutter
heuristic. The last bars show this co-location on CAER with the
rule based approach.

As Figure 6 shows we significantly reduce the cross-core in-
terference penalty for the wide range of SPEC2006 benchmarks.

Our burst shutter contention detection technique uses the red-light
green-light response with a response length of 10 periods. The
impact threshold in Algorithm 1 for the burst shutter detection
is set to 5%, meaning if the batch application burst causes a spike
of 5% or more in last level cache misses of the latency-sensitive ap-
plication we assert contention. Using this approach CAER brings
the overhead due to contention from 17% down to 6% on average,
while gaining close to 60% more utilization of the processor over
running the latency-sensitive application alone, which can be seen
in Figure 7.

Our rule based contention detection technique uses the soft
locking response and the usage threshold found in Algorithm 2
is set to 1500, meaning we have to see an average of 1500 or more
last level cache misses per period (1 ms) to assert heavy usage of
the cache. Using this approach CAER brings the overhead due to
contention from 17% down to 4% on average, while gaining 58%
more utilization of the processor over running the latency-sensitive
application alone, as show in Figure 7.

Our rule based CAER contention detection approach slightly
outperforms our shutter based approach on average. However the
shutter based approach has some desirable characteristics. The
burst shutter approach is highly tunable to the QoS requirements of
the application. The impact threshold determines how much cross-
core interference the latency application is willing to withstand;
this provides a “knob” which intuitively sets the sensitivity of de-
tection. Here we use “sensitivity” to mean the amount of impact
needed to trigger a c-positive response. Although the rule based
approach is also tunable as to how conservative or liberal the defi-
nition of “heavy usage” of the cache is, it provides a less intuitive
abstraction. As the goal of this evaluation is to demonstrate the ef-

4
4

4
.n

am
d

4
4

7
.d

ea
lI

I

4
5

0
.s

o
p

le
x

4
5

3
.p

o
v

ra
y

4
5

4
.c

al
cu

li
x

4
7

0
.l

b
m

4
8

2
.s

p
h

in
x

3

m
ea

n

U
ti

li
za

ti
o

n
 G

ai
n

ed

 CAER (Shutter)

 CAER (Rule Based)

 0%

 20%

 40%

 60%

 80%

 100%

4
0

0
.p

er
lb

en
ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
4

5
.g

o
b

m
k

4
5

6
.h

m
m

er

4
5

8
.s

je
n

g

4
6

2
.l

ib
q

u
an

tu
m

4
6

4
.h

2
6

4
re

f

4
7

1
.o

m
n

et
p

p

4
7

3
.a

st
ar

4
8

3
.x

al
an

cb
m

k

4
3

3
.m

il
c

4
3

5
.g

ro
m

ac
s

Figure 7. Maximizing Utilization (Higher is Better)

4
7

3
.a

st
ar

4
8

3
.x

al
an

cb
m

k

4
3

3
.m

il
c

4
3

5
.g

ro
m

ac
s

4
4

4
.n

am
d

4
4

7
.d

ea
lI

I

4
5

0
.s

o
p

le
x

4
5

3
.p

o
v

ra
y

4
5

4
.c

al
cu

li
x

4
7

0
.l

b
m

4
8

2
.s

p
h

in
x

3

m
ea

n

C
ro

ss
−

C
o

re
 I

n
te

rf
er

en
ce

 E
li

m
in

at
ed

 CAER (Shutter)

 CAER (Rule Based)

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

4
0

0
.p

er
lb

en
ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
4

5
.g

o
b

m
k

4
5

6
.h

m
m

er

4
5

8
.s

je
n

g

4
6

2
.l

ib
q

u
an

tu
m

4
6

4
.h

2
6

4
re

f

4
7

1
.o

m
n

et
p

p

Figure 8. Minimizing Cross-Core Interference (Slowdown Eliminated, Higher is Better)

fectiveness of our CAER runtime environment and its applicability
to current multicore architecture, we reserve further investigation
of the heuristic tuning space for future work.

Figures 7 and 8 further illustrate CAER’s effectiveness. As men-
tioned before, Figure 7 shows the utilization gained on the mul-
ticore processor when co-locating the latency-sensitive and batch
applications using CAER. Figure 8 is another way to represent
the decrease in cross-core interference penalty shown in Figure 6,
showing the percentage of the cross-core interference penalty elim-
inated. For both of these Figures, higher is better. Running the
latency-sensitive application alone will provide 100% cross-core
interference elimination but 0% utilization gained. Running the ap-
plications together will provide 0% cross-core interference elimi-
nation but will have 100% utilization gained. Our goal is to maxi-
mize both while running both application on our CAER framework.
It is important to note that utilization gained and cross-core inter-
ference eliminated are two separate units of measurement, so 50%
cross-core interference eliminated for 50% more utilization can be
a great result depending on the cross-core interference sensitivity
of the latency-sensitive application. We explore cross-core inter-
ference sensitivity in the following section.

6.3 Understanding and Adapting to Cross-Core Interference
Sensitivity

The amount of performance impact an application can experience
due to contention for shared resources differs from application to
application. We call this application characteristic its cross-core in-
terference sensitivity. This characteristic can also be determined by
the amount of reliance an application puts on a shared resource. Ap-

plications whose working set fits in its core-specific private caches
are cross-core interference insensitive. Applications whose work-
ing set uses shared cache, memory, etc, are cross-core interference
sensitive.

When performing contention detection and response the han-
dling of cross-core interference insensitive and cross-core interfer-
ence sensitive applications should be different. More concretely,
the amount of utilization that is sacrificed to reduce contention
of a cross-core interference sensitive application should be higher
than the cross-core interference insensitive application. For exam-
ple, an application a is 50% slower when experiencing contention
x, while another application b is 4% slower when contending with
x. We say application a is more cross-core interference sensitive
than b. To eliminate half of the cross-core interference penalty of
a is more valuable than b, meaning the benefit gained, a 20% in-
crease in speed, with a is better than the 1.9% speed up in b. Thus,
we should be willing to sacrifice more utilization to eliminate 50%
of the cross-core interference penalty for a than b since a is more
cross-core interference sensitive.

Lets take mcf as application a and namd as b. As shown pre-
viously in Figure 6 mcf suffers a 36% slowdown when contend-
ing with lbm, namd only suffers a 2% performance degradation.
Clearly mcf is more latency-sensitive than namd, therefor a good
contention detection and response approach will be able to de-
tect these different cross-core interference sensitivities and sacrifice
more utilization for the former case. CAER does exactly this. For
mcf CAER burst shutter approach sacrifices 36% more utilization
to accommodate mcf’s cross-core interference penalty, and CAER
rule based sacrifices 80% more utilization.

4
2
9
.m

cf

4
6
2
.l

ib
q
u
an

tu
m

4
7
1
.o

m
n
et

p
p

4
5
0
.s

o
p
le

x

4
7
0
.l

b
m

4
8
2
.s

p
h
in

x
3

m
ea

n

U
ti

li
za

ti
o
n
 G

ai
n
ed

 /
 C

A
E

R
 (

R
an

d
o
m

)

 CAER (Shutter)

 CAER (Rule Based)

 −100%

 −50%

 0%

 50%

 100%

Figure 9. Utilization gained relative to random for 6 most cross-
core interference sensitive applications.

4
5
6
.h

m
m

er

4
6
4
.h

2
6
4
re

f

4
3
5
.g

ro
m

ac
s

4
4
4
.n

am
d

4
5
3
.p

o
v
ra

y

4
5
4
.c

al
cu

li
x

m
ea

n

U
ti

li
za

ti
o
n
 G

ai
n
ed

 /
 C

A
E

R
 (

R
an

d
o
m

)

 CAER (Shutter)

 CAER (Rule Based)

 −100%

 −50%

 0%

 50%

 100%

Figure 10. Utilization gained relative to random for 6 least cross-
core interference sensitive applications.

6.4 Contention Detection Accuracy

When detecting contention it is possible to have both false positives
and false negatives. A false positive occurs when contention is de-
tected where there is none. A false negative occurs when no con-
tention is detected where there is contention. To evaluate a heuris-
tic’s ability to accurately detect contention we have developed a
baseline random heuristic. This heuristic reports contention with
probability P and no contention with probability 1 − P . In our
experiments P equals 0.5. To respond to contention this heuristic
uses the red-light green-light with a length of 1 period. To illustrate
a CAER heuristic’s ability to detect contention accurately we use
the following

A =
Uh

Ur

− 1 (2)

where Uh is the utilization gained from a heuristic h, and Ur is the
utilization gain with the random heuristic. Figures 9 and 10 demon-
strates the contention detection accuracy of the burst shutter and
rule based heuristics for the six most, and six least cross-core inter-
ference sensitive benchmarks respectively. The y-axis corresponds
with the calculation of A from the equation. Figure 9 shows that, for
cross-core interference sensitive benchmarks, our CAER heuristics
sacrifices more utilization than the random technique, indicating
that our detection is correctly responding to these applications as
high contenders (i.e. cross-core interference sensitive). Figure 10
shows the opposite for cross-core interference insensitive bench-
marks. The heuristics gain much more utilization than the random
heuristics, indicating we are correctly responding to these work-
loads as low contenders.

Also note that any inversion in this response to cross-core inter-
ference penalty indicates inaccurate contention detection. Gaining
more utilization for a cross-core interference sensitive application
than the random heuristic represents a false negative (asserting no
contention where there is contention). And contrarily, gaining less
utilization for cross-core interference insensitive applications rep-
resents a false positive (asserting contention where there is none).

7. Related Work

QoS and Fairness techniques have received much research atten-
tion [11, 14, 15, 17, 21–23, 26]. These works propose QoS and
fairness models, as well as hardware and platform improvement
to enable QoS and fairness be enforced. Rafique et al. investigates
micro-architectural extensions to support the OS for cache man-
agement [24]. There has been a number of works aimed at bet-

ter understanding and modeling cache contention [2, 3, 8] and job
co-scheduling [6, 10, 16]. Other hardware techniques to enable
cache management have also received research attention [5, 12,
25, 27]. Suhendra [27] proposes partitioning and locking mecha-
nisms to minimize unpredictable cache contention. Cache recon-
figuration [25] has also been proposed as a mechanism to enable
cache partitioning. Although these works show promising future
directions for hardware and system designers to take when ad-
dressing these problems, unfortunately current commodity micro-
architectures cannot support these solutions as they do not meet the
micro-architectural assumptions made these works.

Another very promising direction based on what is likely to be
future hardware capabilities, is to leverage core specific dynamic
voltage scaling as is presented by Herdirch, Illikkal, Iyer, et al [11].
Instead of throttling down the execution of an application, this
work proposes throttling down the frequency of the core hosting
the batch application. This approach also has the added benefit of
being energy efficient.

Hardware performance monitoring capabilities have been used
heavily for online and adaptive solutions. Azimi et al. used these
capabilities to enhance operating system support for multicore sys-
tems [1]. Mars et al. leverage performance monitoring hardware to
enable online application adaptation via multiversioning [20].

8. Conclusion

Cross core cross-core interference on current multicore processors
pose a significant challenge to providing application level quality
of service (QoS) guarantees. This problem is especially prevalent
with latency-sensitive applications (such as web-search) in the web
services and data center domains. The commonly used solution to
this problem is to disallow the co-location of latency-sensitive and
batch applications on a single chip. This approach leaves much
of the processing capabilities in multicore systems underutilized,
and is a contributing factor to the low utilization in today’s data
centers (typically 15% or less [18]). In this work we have presented
the Contention Aware Execution Runtime (CAER) environment,
the first of its kind to our knowledge. The goals of CAER is to
minimize the cross-core interference penalty of application co-
location on multicore processors, while maximizing the utilization
on the processor. In addition, CAER can be applied on today’s
commodity hardware.

By allowing co-location with CAER, as opposed to disallowing
co-location, we are able to increase the utilization of the multicore

CPU by 58% on average. Meanwhile CAER brings the overhead
due to allowing co-location from 17% down to just 4% on average.
CAER can be used in today’s data centers and serve to increase
utilization, resulting in savings in energy and cost.

References

[1] R. Azimi, D. K. Tam, L. Soares, and M. Stumm. Enhancing operat-
ing system support for multicore processors by using hardware perfor-
mance monitoring. SIGOPS Oper. Syst. Rev., 43(2):56–65, 2009.

[2] G. E. Blelloch and P. B. Gibbons. Effectively sharing a cache among
threads. In SPAA ’04: Proceedings of the sixteenth annual ACM

symposium on Parallelism in algorithms and architectures, pages 235–
244, New York, NY, USA, 2004. ACM.

[3] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-
thread cache contention on a chip multi-processor architecture. In
HPCA ’05: Proceedings of the 11th International Symposium on

High-Performance Computer Architecture, pages 340–351, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A dis-
tributed storage system for structured data. ACM Trans. Comput. Syst.,
26(2):1–26, 2008.

[5] J. Chang and G. S. Sohi. Cooperative cache partitioning for chip mul-
tiprocessors. In ICS ’07: Proceedings of the 21st annual international

conference on Supercomputing, pages 242–252, New York, NY, USA,
2007. ACM.

[6] S. Chen, P. B. Gibbons, M. Kozuch, V. Liaskovitis, A. Ailamaki,
G. E. Blelloch, B. Falsafi, L. Fix, N. Hardavellas, T. C. Mowry, and
C. Wilkerson. Scheduling threads for constructive cache sharing on
cmps. In SPAA ’07: Proceedings of the nineteenth annual ACM

symposium on Parallel algorithms and architectures, pages 105–115,
New York, NY, USA, 2007. ACM.

[7] L. Cherkasova, Y. Fu, W. Tang, and A. Vahdat. Measuring and
characterizing end-to-end internet service performance. ACM Trans.

Internet Technol., 3(4):347–391, 2003.

[8] C. Ding and Y. Zhong. Predicting whole-program locality through
reuse distance analysis. In PLDI ’03: Proceedings of the ACM SIG-

PLAN 2003 conference on Programming language design and imple-

mentation, pages 245–257, New York, NY, USA, 2003. ACM.

[9] S. Eranian. Perfmon2. http://perfmon2.sourceforge.net/.

[10] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum. Performance
of multithreaded chip multiprocessors and implications for operating
system design. In ATEC ’05: Proceedings of the annual conference on

USENIX Annual Technical Conference, pages 26–26, Berkeley, CA,
USA, 2005. USENIX Association.

[11] A. Herdrich, R. Illikkal, R. Iyer, D. Newell, V. Chadha, and J. Moses.
Rate-based qos techniques for cache/memory in cmp platforms. In
ICS ’09: Proceedings of the 23rd international conference on Super-

computing, pages 479–488, New York, NY, USA, 2009. ACM.

[12] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W. Keckler. A
nuca substrate for flexible cmp cache sharing. In ICS ’05: Proceedings

of the 19th annual international conference on Supercomputing, pages
31–40, New York, NY, USA, 2005. ACM.

[13] Intel Corporation. IA-32 Application Developer’s Architecture Guide.
Intel Corporation, Santa Clara, CA, USA, 2009.

[14] R. Iyer. Cqos: a framework for enabling qos in shared caches of cmp
platforms. In ICS ’04: Proceedings of the 18th annual international

conference on Supercomputing, pages 257–266, New York, NY, USA,
2004. ACM.

[15] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Soli-
hin, L. Hsu, and S. Reinhardt. Qos policies and architecture for
cache/memory in cmp platforms. In SIGMETRICS ’07: Proceedings

of the 2007 ACM SIGMETRICS international conference on Measure-

ment and modeling of computer systems, pages 25–36, New York, NY,
USA, 2007. ACM.

[16] Y. Jiang, X. Shen, J. Chen, and R. Tripathi. Analysis and approxima-
tion of optimal co-scheduling on chip multiprocessors. In PACT ’08:
Proceedings of the 17th international conference on Parallel archi-

tectures and compilation techniques, pages 220–229, New York, NY,
USA, 2008. ACM.

[17] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and parti-
tioning in a chip multiprocessor architecture. In PACT ’04: Proceed-

ings of the 13th International Conference on Parallel Architectures

and Compilation Techniques, pages 111–122, Washington, DC, USA,
2004. IEEE Computer Society.

[18] S. Lohr. Demand for data puts engineers in spotlight. The New York

Times, 2008. Published June 17th.

[19] K. London, J. Dongarra, S. Moore, P. Mucci, K. Seymour, and
T. Spencer. End-user tools for application performance analysis using
hardware counters. In 14th Conference on Parallel and Distributed

Computing Systems, August 2001.

[20] J. Mars and R. Hundt. Scenario based optimization: A framework for
statically enabling online optimizations. In CGO ’09: Proceedings of

the 2009 International Symposium on Code Generation and Optimiza-

tion, pages 169–179, Washington, DC, USA, 2009. IEEE Computer
Society.

[21] M. Moreto, F. J. Cazorla, A. Ramirez, R. Sakellariou, and M. Valero.
Flexdcp: a qos framework for cmp architectures. SIGOPS Oper. Syst.

Rev., 43(2):86–96, 2009.

[22] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair queu-
ing memory systems. In MICRO 39: Proceedings of the 39th Annual

IEEE/ACM International Symposium on Microarchitecture, pages
208–222, Washington, DC, USA, 2006. IEEE Computer Society.

[23] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual private caches. In
ISCA ’07: Proceedings of the 34th annual international symposium

on Computer architecture, pages 57–68, New York, NY, USA, 2007.
ACM.

[24] N. Rafique, W.-T. Lim, and M. Thottethodi. Architectural support for
operating system-driven cmp cache management. In PACT ’06: Pro-

ceedings of the 15th international conference on Parallel architectures

and compilation techniques, pages 2–12, New York, NY, USA, 2006.
ACM.

[25] R. Reddy and P. Petrov. Eliminating inter-process cache interference
through cache reconfigurability for real-time and low-power embed-
ded multi-tasking systems. In CASES ’07: Proceedings of the 2007

international conference on Compilers, architecture, and synthesis for

embedded systems, pages 198–207, New York, NY, USA, 2007. ACM.

[26] L. Soares, D. Tam, and M. Stumm. Reducing the harmful effects
of last-level cache polluters with an os-level, software-only pollute
buffer. In MICRO ’08: Proceedings of the 2008 41st IEEE/ACM In-

ternational Symposium on Microarchitecture, pages 258–269, Wash-
ington, DC, USA, 2008. IEEE Computer Society.

[27] V. Suhendra and T. Mitra. Exploring locking & partitioning for
predictable shared caches on multi-cores. In DAC ’08: Proceedings

of the 45th annual Design Automation Conference, pages 300–303,
New York, NY, USA, 2008. ACM.

	 Introduction
	 Problem and Motivation
	 A Solution with CAER
	 Inferring Contention
	 Architecture of CAER

	 Detecting Contention with CAER
	 Burst-Shutter Approach
	 Rule-Based Approach

	 Responding to Contention with CAER
	 Evaluation
	 Experimental Design
	 Minimizing Contention and Maximizing Utilization
	 Understanding and Adapting to Cross-Core Interference Sensitivity
	 Contention Detection Accuracy

	 Related Work
	 Conclusion

