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ABSTRACT
Multicore microarchitecture designs have become ubiquitous
in today’s computing environment enabling multiple pro-
cesses to execute simultaneously on a single chip. With
these new parallel processing capabilities comes a need to
better understand how co-running applications impact and
interfere with each other. The ability to characterize and
better understand cross-core performance interference can
prove critical for a number of application domains, such as
performance debugging, compiler optimization, and appli-
cation co-scheduling to name a few. We proposed a novel
methodology for the characterization and profiling of cross-
core interference on current multicore systems, which we call
contention synthesis. Our profiling approach characterizes
an applications cross-core interference sensitivity by manu-
facturing contention with the application and observing the
impact of this synthesized contention on the application.

Understanding how to synthesize contention on current
chip microarchitectures is unclear as there are a number of
potentially contentious data access behaviors. This is fur-
ther complicated by the fact that current chip micropro-
cessors are engineered and tuned to circumvent the con-
tentious nature of certain data access behaviors. In this
work we explore and evaluate five designs for a contention
synthesis mechanism. We also investigate how these five
contention synthesis engines impact the performance of 19
of the SPEC2006 benchmarks on two state of the art chip
multiprocessors, namely Intel’s Core i7 and AMD’s Phenom
X4 architectures. Finally we demonstrate how contention
synthesis can be used to accurately characterize an applica-
tion’s cross-core interference sensitivity.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—parallel programming ; D.3.4 [Programming Lan-
guages]: Processors—run-time environments, compilers, op-
timization, debuggers; D.4.8 [Operating Systems]: Per-
formance—measurements, monitors
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1. INTRODUCTION
Multicore architectures are quickly becoming ubiquitous

in today’s computing environment. With each new gen-
eration of general purpose processors, much of the perfor-
mance improvement in micro-architectural design is typi-
cally achieved by increasing the number of individual pro-
cessing cores on a single chip. However, shared on-chip
resources and the memory subsystem is typically shared
among many cores, resulting in a potential performance bot-
tleneck when scaling up multiprocessing capabilities.

Current multicore architectures include early levels of small
core-specific private caches, and larger caches shared among
multiple cores [8]. When multiple processes or threads run
in tandem, they can contend for the shared cache by evicting
a neighboring process or thread’s data in order to cache its
own data. This form of contention occurs when the working
set of the neighboring processes or threads exceed the size
of the private caches, relying on the shared cache resources.
This contention can result in a significant degradation in
application performance.

When an application suffers a performance degradation
due to contention for shared resources with an application
on a separate processing core, we call this cross-core inter-
ference.

The ability to characterize an application’s sensitivity to
cross core interference can prove indispensable for a num-
ber of applications. Compiler and optimization develop-
ers can use knowledge about the contention sensitivity of
a particular code region to develop both static and dynamic
contention conscious compiler techniques and optimization
heuristics. For example, knowledge of contention sensitive
code regions can be used to direct where software cache
prefetching should be applied. Software developers can also
use this cross-core interference sensitivity information for
performance debugging and software tuning. The ability to
characterize the most contention sensitive application phases
allows the programmer to pin-point parts of the application
on which to focus. In addition to performance debugging,
software tuning, and compiler optimization, the character-
ization of application sensitivity to cross core interference
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Figure 1: Performance impact due to contention from co-location with LBM.

can enable smarter, contention conscious dynamic and on-
line scheduling techniques. For example, the understanding
of an application’s contention sensitivity characteristics en-
ables contention conscious application co-scheduling. Ap-
plications that have higher demands on shared memory re-
sources can be co-located with applications that have a lower
demand to gain better performance and throughput.

While ad-hoc and indirect approaches, such as measuring
cache hits and misses via performance counters, can give a
coarse indication of cross-core interference sensitivity, they
are not sufficient to provide accurate and detailed profil-
ing information about on-chip contention. Monitoring the
shared cache misses directly is not sufficient in that not all
cache misses reported by the hardware performance moni-
toring unit are misses that relate to code dependencies. In
modern processors many misses reported by the hardware
monitors are caused by hardware prefetches and hardware
page table walks [8]. These effects do not relate to contention
and are indistinguishable from cache misses that do.

We propose a cross-core interference profiling environment
that uses contention synthesis. To accurately characterize
and profile an applications sensitivity to cross-core inter-
ference, we synthesize contention, meaning we synthetically
create contention with the host application. This contention
synthesis is achieved by synthetically applying pressure on
the shared cache using a contention synthesis engine (CSE).
The profiling framework manipulates the execution of the
CSE while observing the effect on the host application, mea-
suring the impact over time, and assigning an impact score
to the application. However, understanding how to synthe-
size contention on current chip microarchitectures is unclear
as there are a number of differing contentious data access
behaviors in addition to the fact that current chip micro-
processors are engineered and tuned to circumvent the poor
cache performance of certain data access behaviors.

In this work we explore the design space of our contention
synthesis engine and investigate how contention synthesis
can be used to characterize cross-core performance inter-
ference on modern multicore architectures. We have de-
signed and evaluated five contention synthesis mechanisms
that mimic five common data access behaviors. These in-
clude the random access of elements in a large array, the
random traversal of large linked data structures, a real world
fluid dynamics application (the lbm SPEC2006 benchmark),
data movement in 3D object space commonly found in sim-
ulations and scientific computing, and finally, a contention

synthesis engine that was constructed by reverse engineering
lbm, finding its most contentious code, and further tweaking
it to construct a highly contentious synthesis engine. In ad-
dition to presenting the design and implementation of these
contention synthesis methods we investigate how these five
contention synthesis engines impact the performance of 19
of the SPEC2006 benchmarks on two state of the art chip
multiprocessors, Intel’s Core i7 and AMD’s Phenom X4 ar-
chitectures. We also answer a number of questions as to
whether the cross-core interference properties of applications
tend to remain consistent regardless of the particular con-
tention synthesis method chosen. Finally we demonstrate
how contention synthesis can be used to accurately charac-
terize an applications cross-core interference sensitivity.

The contributions of this work includes:

• The discussion of a novel methodology for the char-
acterization of cross-core performance interference on
current multicore architecture.

• The design and implementations of five contention syn-
thesis mechanisms.

• The evaluation and study of the impact these five con-
tention synthesis mechanism on 19 SPEC2006 bench-
marks on both the Intel Core i7 and AMD Phenom X4
Architectures.

• The cross-core interference sensitivity scoring of the
SPEC2006 benchmarks.

Next in Section 2 we motivate our work. We then provide
an overview of our profiling approach in Section 3. Section 4
presents our contention synthesis methodology. We evaluate
our contention synthesis approach in Section 5. Section 6
presents related work, and finally, we conclude in Section 7.

2. MOTIVATION
With the recent growth in popularity of multicore archi-

tecture, comes an increase in the parallel processing capa-
bilities of commodity systems. These commodity systems
are now common-place both in the general purpose desktop
and laptop markets as well as in industry data-center and
computing clusters. Companies such as Google, Yahoo, and
Microsoft use these off the shelf computing components to
build their data-centers as they are cheap, abundant and
easily replaceable [3]. The increase in parallel processing ca-
pabilities in these chip architectures are in fact leading to



server consolidation. However, the memory wall is prevent-
ing these parallel processing capabilities from being fully
realized.

The memory subsystem on current commodity multicore
architectures is shared among the processing cores. Two rep-
resentative examples of the state of the art multicore chip
designs are the Intel Core i7 Quad Core chip and AMD’s
Phenom X4 Quad Core. Intel’s Core i7 has four process-
ing cores, each with a private 32kb L1 cache and a 256kb
L2 cache. A large 8mb L3 cache is shared among the four
cores [8]. AMD’s Phenom X4 also has 4 cores with a similar
cache layout. Each core has a private 64kb L1 and 512kb
L2, with a shared 6mb L3 cache. These chips were designed
to accommodate 4 simultaneous streams of execution. How-
ever, as we can see through experimentation, their shared
caches and memory subsystem often cannot efficiently ac-
commodate even 2 co-running processes.

Figure 1 illustrates the potential cross-core interference
that can occur when multiple co-running applications are
executing on current multicore architectures. We perform
the following experiment using the Core i7 and Phenom X4
architectures. In this experiment we study the cross-core
performance interference caused to each of the SPEC2006
benchmarks when co-running with lbm (one of the SPEC2006
benchmarks known be especially heavy on the on-chip mem-
ory subsystem). Figure 1 shows the slowdown of each bench-
mark due to the cross-core interference. Each application
was executed to completion on their ref inputs. On the
y-axis we show the execution time of the application while
co-running with lbm normalized to the execution-time of the
application running alone on the system. The first bar in
Figure 1 presents this data for the Core i7 architecture, and
the second bar for the Phenom X4. As this graph shows,
there are severe performance degradations due to cross-core
interference on a large number of Spec benchmarks. The
large last level on-chip caches of these two architectures
do little to accommodate many of these co-running appli-
cations. On a number of benchmarks including lbm, mcf,
omnetpp, and sphinx, this degradation approaches 35%.

In addition to the general performance degradation, this
sensitivity to cross-core interference is particularly undesir-
able for real time and latency sensitive application domains.
In the latency sensitive domain of web search for instance
this kind of cross core interference can cause unexpected
slowdowns, negatively impacting the QoS on a search query.
A commonly used solution is to simply disallow the co-
location of latency sensitive applications with others on a
single machine, resulting is lowered utilization and higher
energy cost [14].

Note that not all applications are effected by the con-
tention properties of their co-runners. Applications such as
hmmer, namd, and povray seem immune to lbm’s cross core
interference. This observation shows that cross-core inter-
ference sensitivity vary substantially across applications.

3. PROFILING FRAMEWORK
Contention and cross-core interference can only occur dy-

namically, and depends on a combination of the applica-
tion’s memory behavior, the design of the particular un-
derlying architecture, and the applications co-running on
this microarchitecture at any particular time. Because of
these properties, characterizing this sensitivity using static
analyses is intractable. Also, the traditional profiling of the
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Figure 2: Our Profiling Framework

application in isolation is not sufficient as no contention is
actually occurring. Although it is possible to observe the
performance counters of current architecture designs to an-
alyze cache misses, etc, these are indirect means to infer an
application’s memory behavior as no actual contention or
cross-core interference is occurring. Our methodology is to
profile the application with real contention in a controlled
environment, where we manufacture contention using a con-
tention synthesis mechanism and dynamically monitor and
profile the impact on the host application.

Figure 2 shows an overview of our cross core interference
profiling environment. This figure shows a multicore archi-
tecture with two separate cores sharing an on-chip cache
and memory subsystem. The shaded boxes show our pro-
filing framework, which is composed of the profiler runtime
and a contention synthesis engine (CSE). As shown on the
left side of Figure 2, the host application is controlled by the
profiler runtime and is monitored throughout the execution
of the application. Before the execution of the host appli-
cation, the profiler spawns the contention synthesis engine
on a neighboring core, as shown to the right of the figure.
This CSE shares the cache and memory subsystem of the
host application. As the application executes, the CSE en-
gine aggressively accesses memory trying to cause as much
cross-core interference as possible. The profiler manipulates
the execution of the contention synthesis engine allowing
bursts of execution to occur. Slowdowns in the application’s
instruction retirement rate that result from this bursty exe-
cution are monitored using the hardware performance mon-
itoring (HPM) information [8]. This intermittent control of
the CSE and monitoring of the HPM is achieved using the
periodic probing approach [15]. A timer interrupt is used to
periodically execute the monitoring and profiling directives.
This has shown to be a very low overhead approach for the
dynamic monitoring and analysis of applications.

4. SYNTHESIZING CONTENTION
Many types of applications cause cache contention. With

the continuing advances in micro-architectural design simply
accessing a large amount of data does not necessarily imply
high pressure on cache and memory performance. The type
of data access pattern and the way that data is mapped into
the cache is very important to consider when constructing
the contention synthesis engine. Structures such as hard-
ware cache prefetchers and victim caches can avert poor and



contentious cache behavior even when the working set of the
application is very large. The features and functionality of
these hardware techniques are difficult to anticipate as ven-
dors keep these details closely guarded. Access patterns that
exhibit a large amount of spatial or temporal locality can
easily be prefetched into the earlier and later levels of cache.

4.1 Designing Contention Synthesis
To design our contention synthesis engine we explored and

experimented with a number of common data access pat-
terns. These designs consist of the random access of ele-
ments in a large array, the random traversal of large linked
data structures, a real world fluid dynamics application (the
lbm SPEC2006 benchmark), data movement in 3d object
space commonly found in simulations and scientific comput-
ing and finally, and finally we reverse engineered lbm, found
its most contentious code, and further tweaked it to con-
struct a highly contentious synthesis engine we call ”The
Sledgehammer.”

4.1.1 Naive
Figure 3 shows the C implementation of our naive con-

tention synthesis mechanism.

#include <s td i o . h>
#include <s t d l i b . h>
#include <time . h>
#include <unistd . h>

char ∗data ;

main ( int argc , char ∗argv [ ] ) {
srand ( time (0)+ getp id ( ) ) ;
i f ( argc <2) e x i t ( 1 ) ;
int bytes=ato i ( argv [ 1 ] )∗ 1 0 2 4 ;
data=(char∗) malloc ( bytes ) ;
for ( int i =0; i<bytes ; i++) data [ i ]=rand ()%256;

while (1) {
for ( int j =0; j<bytes −2; j++) {

data [ rand()%bytes ]+=data [ rand()%bytes ] ;
}

}
p r i n t f ( ”%d\n” , ( int ) data [ rand()%bytes ] ) ;

}

Figure 3: Naive Contention Synthesis

The first inclination is to simply access a large array of
memory (a little larger than the L3 cache) performing both
loads and stores. Our earliest CSE design attempts consisted
of an array of memory just larger than the last level of on-
chip cache, which we traversed in a number of clever ways.
However, the hardware prefetchers on both the Intel and
AMD chips cleverly prefetched to early levels of cache. One
example of an approach subverted by the hardware prefetch-
ers was the caching of 10,000 random numbers to be used
to access the elements of a large array. This naive design
evolved to simply calculating the random index on the fly
as shown in Figure 3. The hardware prefetcher was unable
to anticipate these memory accesses. The drawback of this
approach however is the fact that each memory access is
interleaved with the logic to calculate the random number,
allowing for a high degree of instruction level parallelism.

4.1.2 Linked Data Structure
Figure 4 shows the C++ implementation of our linked data

traversal contention synthesis mechanism based on a binary
search tree.

This design for the CSE consisted of the random construc-
tion and traversal of a binary search tree. There were also

#include <iostream>
#include <c s td l i b >
#include <c s t r ing >
using namespace std ;

const int pay l o ad s i z e =128;

void gen name ( char ∗ r e t ) {
for ( int i =0; i<pay l o ad s i z e ; i++) {

r e t [ i ]=(char ) rand ()%256;
}

}

struct t r e e node {
˜ t r e e node (){
i f ( l e f t ) delete l e f t ; i f ( r i gh t ) delete r i gh t ;
}
t r e e node ∗ l e f t ;
t r e e node ∗ r i gh t ;
int data ;
char text [ p ay l o ad s i z e ] ;

} ;

c lass BST {
private :

t r e e node ∗ root ;
public :

BST() {
root = NULL;

}
bool isEmpty ( ) const { return root==NULL; }
void i n s e r t ( int ) ;
void remove ( int ) ;
void c l e a r (){ i f ( root ){ delete root ;} root=NULL;}

unsigned long trample ( ) ;
unsigned long trample ( t r e e node ∗p ) ;

} ;

. . . [ standard implementation o f i n s e r t and remove ]

unsigned long BST : : trample (){ return trample ( root ) ;}
unsigned long BST : : trample ( t r e e node ∗p) {

unsigned long r e t =0;
i f (p != NULL) {

// U s i n g random t r a v e r s a l + 5%
i f (p−>data%2) { // U s i n g p−>d a t a i n s t e a d o f r and + 2%

i f (p−> l e f t ) r e t+=trample (p−> l e f t ) ;
i f (p−>r i gh t ) r e t+=trample (p−>r i gh t ) ;
r e t+=(unsigned long )p−>text [ p−>data%pay l o ad s i z e ] ;
p−>data+=re t ; // Mod ing d a t a + 6%
p−>text [ p−>data%pay l o ad s i z e ]=p−>data%256;

}
else {

i f (p−>r i gh t ) r e t+=trample (p−>r i gh t ) ;
i f (p−> l e f t ) r e t+=trample (p−> l e f t ) ;
ret−=(unsigned long )p−>text [ p−>data%pay l o ad s i z e ] ;
p−>data+=re t ; // Mod ing d a t a + 6%
p−>text [ p−>data%pay l o ad s i z e ]=p−>data%256;

}
}
return r e t ;

}

int main ( int argc , char ∗argv [ ] ) {
int f o o t p r i n t =8192;

BST b ;
srand ( time (0)+ getp id ( ) ) ;

unsigned int node s i z e=s izeo f ( t r e e node )+ s izeo f (BST) ;

for ( int i =0; i<f o o t p r i n t ∗1024/ node s i z e ; i++) {
b . i n s e r t ( pay l o ad s i z e+(rand()− pay l o ad s i z e ) ) ;

}

unsigned long long sum=0;
while (1)

sum+=b . trample ()+b . trample ( ) ;
}

Figure 4: Contention Synthesis Using a Linked
Data-structure

a number of steps taken to reverse optimize (de-optimize
for poor performance) this linked structure CSE approach.
For example, the trample function is a specialized traver-
sal that recursively picks whether the left or right subtree
is to be trampled first. In the final design of this CSE, each
tree node consisted of an id and a payload, and this custom
traversal function, trample, is used, as shown in Figure 4
The payload consisted of a number of random bytes (128 in
our design) to have the node map into its own cache line.
The contentious kernel of this approach uses the trample

function to performed a random depth first search through



the tree touching and changing the data alone the way.

4.1.3 LBM from SPEC2006
The implementation of the LBM benchmark can be found

in the official SPEC2006 benchmarks suite [7]. LBM is an
implementation of the ”Lattice Boltzmann Method” (LBM).
The Boltzmann Method is used to simulate incompressible
fluids. We selected this benchmark as one of our synthesis
mechanisms, as it proved to be one of the most contentious of
the SPEC2006 benchmark suite. For a complete description
of LBM please refer to [7].

4.1.4 3D Data Movement
Figure 5 shows the C++ implementation of our 3D data

movement contention synthesis mechanism.

#include <iostream>
#include <c s td l i b >

using namespace std ;

const int nug s i z e =128;

c lass nugget {
public :

char n [ nug s i z e ] ;
nugget (){

for ( int i =0; i<nug s i z e ; i++){n [ i ]=rand ()%256;}
}

} ;

c lass block {
public :

nugget ∗∗∗b ;
unsigned s i z e ;
b lock (unsigned sz ) ;
˜ block ( ) ;

} ;

b lock : : b lock (unsigned sz ) {
b=new nugget ∗∗ [ sz ] ;
for ( int i =0; i<sz ; i++) {

b [ i ]=new nugget ∗ [ sz ] ;
for ( int j =0; j<sz ; j++)

b [ i ] [ j ]=new nugget [ sz ] ;
}
s i z e=sz ;

}

block : : ˜ block ( ) {
for ( int i =0; i<s i z e ; i++) {

for ( int j =0; j<s i z e ; j++)
delete [ ] b [ i ] [ j ] ;

delete [ ] b [ i ] ;
}
delete [ ] b ;

}

int main ( ) {
const int s i z e =30;
block b1 ( s i z e ) ;
b lock b2 ( s i z e ) ;
b lock b3 ( s i z e ) ;

cout << ”smash” << endl ;
while (1)

for ( int i =0; i<s i z e ; i++)
for ( int j =0; j<s i z e ; j++)

for ( int k=0; k<s i z e ; k++)
b1 . b [ i ] [ j ] [ k]=b2 . b [ j ] [ k ] [ i ]=b3 . b [ i ] [ j ] [ k ] ;

return 0 ;
}

Figure 5: Blockie

This 3D data movement micro benchmark consists of a
number of large 3D arrays of double precision values that
represent solid virtual cubes. In our experimentation the
dimensionality chosen for these cubes was 30x30x30. The
contentious kernel of this CSE is the transposition of cells of
each cube into the space of another cube. The cells of one
cube is continuously copied to another.

4.1.5 "The Sledgehammer"
Figure 6 shows the C implementation of our sledgehammer

contention synthesis mechanism.

#include <s t d l i b . h>

typedef double LBM Grid [ 2 6000000 ] ;

stat ic double ∗ srcGrid ,∗ dstGrid ;
int main ( )
{

const unsigned long margin = 400000 ,
s i z e = s izeo f ( LBM Grid ) + 2∗margin∗ s izeo f ( double ) ;

s rcGrid = malloc ( s i z e ) ;
dstGrid = malloc ( s i z e ) ;
s rcGrid += margin ;
dstGrid += margin ;

while (1)
{

int i ;
for ( i = 0 ; i < 26000000; i += 20 ) {

dstGrid [ i ] = srcGrid [ i ] ;
dstGrid [ i −1998] = srcGrid [(1)+ i ] ;
dstGrid [ i +2001] = srcGrid [(2)+ i ] ;
dstGrid [ i −16] = srcGrid [(3)+ i ] ;
dstGrid [ i +23] = srcGrid [(4)+ i ]
dstGrid [ i −199994] = srcGrid [(5)+ i ] ;
dstGrid [ i +200005] = srcGrid [(6)+ i ] ;
dstGrid [ i −2010] = srcGrid [(7)+ i ] ;
dstGrid [ i −1971] = srcGrid [(8)+ i ] ;
dstGrid [ i +1988] = srcGrid [(9)+ i ] ;
dstGrid [ i +2027] = srcGrid [(10)+ i ] ;
dstGrid [ i −201986] = srcGrid [(11)+ i ] ;
dstGrid [ i +198013] = srcGrid [(12)+ i ] ;
dstGrid [ i −197988] = srcGrid [(13)+ i ] ;
dstGrid [ i +202011] = srcGrid [(14)+ i ] ;
dstGrid [ i −200002] = srcGrid [(15)+ i ] ;
dstGrid [ i +199997] = srcGrid [(16)+ i ] ;
dstGrid [ i −199964] = srcGrid [(17)+ i ] ;
dstGrid [ i +200035] = srcGrid [(18)+ i ] ;

}
}
return 0 ;

}

Figure 6: Sledge

This last design is the result of reverse engineering and
investigating lbm to learn its contentious core nature. This
name is motivated by the fact that the behavior of this de-
sign can be visualized as hitting an element in a 1D or 2D
array, and a number of sparsely surrounding elements feel
the shock-wave, e.g. are effected. As shown in Figure 6,
the final version of this CSE first allocates two large arrays
and enters its contentious kernel which copies data back and
forth with this sledgehammer pattern.

5. EVALUATION
First we evaluate the effectiveness of these five contention

synthesis engines at generating contention, and investigate
how these varying contention generation mechanisms affect
real applications on current commodity multicore microar-
chitectures. Our second goal is to use contention synthesis
to characterize cross-core interference sensitivity and evalu-
ate the ability of such a profiling framework to accurately
identify applications that are indeed sensitive to cross core
interference.

5.1 Evaluating Contention Synthesis Designs
With the variety of contention synthesis mechanisms pre-

sented above, a number of questions arise. The first has to
do with whether there is a drastic difference between the in-
teractions of different applications to the different contention
syntheses designs. We hypothesize that contention is agnos-
tic to the nature of the memory access. We seek to evaluate
this very question. The other goal of this evaluation is to
learn whether there exist a synthesis engine that is better
than all others, and if so, to identify it.

Figures 7 and 8 show the performance impact of co-running
each of the contention synthesis designs with each of the
SPEC2006 benchmarks (C/C++ only, run to completion on
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Figure 7: Slowdown caused by contention synthesis on Intel Core i7.
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Figure 8: Slowdown caused by contention synthesis on AMD Phenom X4.

ref inputs). These benchmarks were compiled with GCC 4.4
on the Linux 2.6.31 kernel. Figure 7 shows the results when
performing this co-location on Intel’s Core i7 Quad architec-
ture, and Figure 8 shows these results on AMD’s Phenom
X4 Quad. The bars show the slowdown when co-located
with naive random access (naive), binary search tree (BST),
the lbm benchmark (LBM Core), the 3D block data move-
ment (Blockie), and our sledgehammer technique (Sledge),
in that order. The lbm benchmark can be viewed as a base-
line to compare the other synthetic engines. We believe lbm

to be a good point of reference as it is actually a naturally
occurring example of a contention application behavior. It
is clear from the graphs that the naive and BST approaches
produce the smallest amount of contention. However note
that they do an adequate job of indicating the applications
that are most sensitive to cross-core interference. The con-
tention produced by these two approaches is low as there is
a good bit of computation between single memory accesses.
blockie and sledge touch large amounts of data in a sin-
gle swoop and with less computation. Note that our Blockie
and Sledge techniques are more effective than using the most
contentious of the SPEC benchmarks.

Across the two architectures the general trend is similar,
although we do see some differences. We see that applica-
tions that tend to be sensitive to contention tend to be uni-
formly so across these two representative architectures. We
also see that the varying contention synthesis designs rank
similarly on both architectures. This general trend supports
our hypothesis that contention is agnostic across this class
of commodity multicore architectures.

Although the general trend is the same, there are some
clear differences. For example the benchmark most sensi-
tive to cross-core interference on the two architectures dif-
fers. On Intel’s architecture mcf shows the most significant
degradation in performance, while on AMD’s architecture
lbm is the clear winner (or loser). These variations are due
to the idiosyncrasies of the microarchitectural design.

The key observation is the fact that the effectiveness of
the contention synthesis designs are mostly uniform across
the different benchmark workloads.

This trend supports our hypothesis that in addition to
being generally agnostic across this class of commodity mul-
ticore architectures, it is also agnostic across the varying
workloads and memory access patterns present in SPEC.

In the following section we selected to use Sledge as our
main CSE for our profiling framework as it most vividly
illustrates contention across the entire benchmark suite.

5.2 Characterizing Cross Core Interference
To characterize an application’s cross core interference

sensitivity our profiling framework spawns the contention
synthesis engine (CSE) on a neighboring core. As the ap-
plication executes, the profiling runtime directs the CSE to
produce short bursts of contentious execution. For every
millisecond of execution the profiler will pause the CSE for
one millisecond. Slowdowns in the application’s instruction
retirement rate that result from this bursty execution are
monitored using the instructions_retired hardware per-
formance counter. A cross-core interference sensitivity score
is then calculated as the average of these slowdowns.
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Figure 9: Comparing Characterization Score Trend to Actual Cross-core Interference on Intel Core i7.
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Figure 10: Comparing Characterization Score Trend to Actual Cross-core Interference on AMD Phenom X4.

Figure 9 and 10 show the cross-core interference sensi-
tivity scores calculated using the described method for all
C/C++ benchmarks in SPEC2006, compared against the
performance degradation when each benchmark is co-running
with lbm, on both Intel Core i7 and AMD Phenom X4. Our
results show that generally, an application’s cross-core in-
terference sensitivity score has a strong correlation propor-
tionally with its performance degradation (e.g a lower CIS
scores indicate smaller degradations and vice versa). Note
that Figures 9 and 10 are intended to demonstrate the trend
of how the cross core interference sensitivity score relates to
the applications actual degradations due to cross core inter-
ference. These figures display a strong trend, indicating that
our approach is indeed accurately characterizing cross-core
interference sensitivity. However, there are three relative ex-
ceptions, sphinx, xalan and astar. These three benchmarks
have very clear phases that seem to increase the inaccuracy
on its average. One possible way to address this challenge is
increasing the periodic probing interval length. Also study-
ing their phase level cross-core interference sensitivity scores
would give more insight about their dynamic sensitivity.

We have also experimented with using the change in last
level cache misses per cycle to detect contention and measure
cross-core interference. Our results show that it is a worse
indicator than directly measuring performance degradation
using IPCs. Also last level cache misses alone is not always a
good indicator either. For example, although an application
with a large number of cache misses per cycle because of its
heavy cache reliance may in fact be sensitive to cross-core
interference, it could also be insensitive if this application

already experiences heavy cache misses when running alone.
In this latter case cross-core interference would not hurt its
already poor cache performance. This often occurs when the
working set of the application greatly exceeds the size of the
last level cache.

6. RELATED WORK
In this paper we present a profiling and characterization

methodology for program sensitivity to cross-core interfer-
ence on modern CMP architecture. Related to our work
is a cache monitoring system for shared caches [25], which
proposes novel hardware designs to facilitate better under-
standing of how applications are interacting and contending
when running together. Similar to our work, the system is
then used for profiling and program behavior characteriza-
tion. However, in contrast to our methodology, this work
requires hardware extensions and thus is evaluated using
simulations. Our methodology and framework is applicable
to current commodity multicore architectures. In addition,
our framework is not limited to cache contention but any
contention in the memory system that would impact perfor-
mance, and can be produced by our CSE.

In recent years, cache contention has received much re-
search attention. Most works focus on exploring the design
space of cache and memory proposing novel hardware solu-
tions or managing policies to alleviate the contention prob-
lem. Hardware techniques and related algorithms to enable
cache management such as cache partitioning and memory
scheduler are proposed [22, 12, 19, 16, 4]. Other hardware
solutions to guarantee fairness and QoS include [17, 10, 20].



Related to novel cache designs and architectural support, an-
alytical models to predict impact of cache sharing are also
proposed by [2]. In addition to new hardware cache man-
agement, approaches to managing shared cache through OS
are [21, 5]. Instead of novel hardware or software solution to
managing shared caches, our solution focuses on the other
side of the problem, namely the application’s inherent sensi-
tivity to interference on existing modern microarchitecture.

The idea of profiling applications and learning about their
memory-related characteristics from the profile to improve
performance and develop more effective compiler optimiza-
tions is rather common. Much work has been done for con-
structing a general framework for memory profiling of appli-
cations [18, 9], profiling techniques and methods to use such
profiling to improve performance or help develop better com-
pilers and optimizations [9, 24]. Our work is different that
we focuses on profiling program’s behavior in the presence
of cross-core interference.

Contention conscious scheduling schemes that guarantee
fairness and increase QoS for co-running applications or multi-
threaded application have been proposed [13, 6, 1]. Fedorova
et al. used cache model prediction to enhance the OS sched-
uler to provide performance isolation. There are also theo-
retical studies that investigate approximation algorithms to
optimally schedule co-running jobs on CMPs [11, 23].

7. CONCLUSION
In this paper, we present a methodology for profiling and

application’s sensitivity to cross-core performance interfer-
ence on current multicore microarchitectures by synthesiz-
ing contention. Our profiling framework is composed of a
lightweight runtime environment on which a host applica-
tion runs, along with a carefully designed contention syn-
thesis engine that executes on a neighboring core. We have
explored and evaluated five contention synthesis mechanisms
which include the random access of elements in a large ar-
ray, the random traversal of large linked data structures,
a real world fluid dynamics application, data movement in
3D object space commonly found in simulations and scien-
tific computing and finally, we reverse engineered lbm, found
its most contentious code, and further tweaked it to con-
struct a highly contentious synthesis engine. We have pre-
sented the design and implementation of these contention
synthesis mechanisms and demonstrated their impact on the
SPEC2006 benchmark suite on two real-world multicore ar-
chitectures. Finally we demonstrate how contention syn-
thesis can be used dynamically, using a bursty execution
method, to accurately characterize and applications cross-
core interference sensitivity.
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