
A Reactive Unobtrusive Prefetcher for Multicore and
Manycore Architectures

Jason Mars
University of Virginia

Daniel Williams
University of Virginia

Dan Upton
University of Virginia

Sudeep Ghosh
University of Virginia

Kim Hazelwood
University of Virginia

ABSTRACT
Processor performance continues to out pace memory per-
formance by a large margin. The growing popularity of mul-
ticore and manycore architectures further exacerbates this
problem. The challenge of keeping the processor(s) fed with
data becomes more difficult. One approach for mitigating
this gap is to employ software-based speculative prefetch-
ing. Software dynamic prefetchers are able to identify more
complex patterns than hardware prefetchers, while retain-
ing the ability to respond to dynamic program behavior.
However, modern techniques incur prohibitively high appli-
cation overheads to detect and to exploit these data access
patterns, and do little to accommodate multicore and many-
core architectures.

In this work, we present an unobtrusive software prefetcher
that takes advantage of underutilized cores to improve the
performance of neighboring cores. We leverage multicore
and manycore design to decouple the tasks of profiling, pat-
tern detection and prefetching away from the application.
Our approach takes advantage of cache coherence snoop-
ing mechanisms at the ISA level such that the cache miss
patterns can be observed by a neighboring processor core.
With this capability, it is possible to create a reactive solu-
tion that complements a hardware prefetcher, while isolating
the tasks of pattern recognition and prefetching from alter-
ing the code or perturbing the performance of the running
application. This allows our prefetching engine to be seam-
lessly deployed by the OS to any free core to assist neigh-
boring cores, and terminated if those cores are needed. We
call our approach unobtrusive reactive prefetching.

In this paper, we outline our system, discuss our hard-
ware extensions, and present our unobtrusive speculative hot
stream extraction and prefetching algorithms for detecting
and mitigating recurring cache miss patterns. Using an ag-
gressive hardware prefetcher baseline our unobtrusive core
hopping prefetcher is able to reduce the number of cache
misses by an average of 26% and in our best case our tech-
nique reduces the miss rate by 84%.

1. INTRODUCTION
Recent advances in processor design have resulted in a

growing gap between processor and memory performance.
The number of processor cores on a single chip is grow-
ing rapidly while our system memory architecture lags be-
hind. The primary solutions to this growing problem have

included hierarchical caches and hardware prefetching to
overlap memory stalls with useful computation. While these
solutions have been effective for certain applications (with
the notable exception of pointer-chasing applications), we
are now reaching a point of diminishing returns. We must
develop novel approaches in order to realize any significant
performance gains in the future or to handle complex data
access patterns effectively.

Meanwhile, trends in computer systems and architecture,
including multicore and manycore, are enabling new design
approaches that were infeasible until now. The ubiquity of
multicore processor designs means that new solutions can
be designed that leverage idle processor resources rather
than disrupting executing applications. And with manycore
architectures on the horizon new techniques are needed to
target the class of applications that exhibit thread level par-
allelism as they do not scale like applications that exhibit
data level and task level parallelism. In fact, the shared
cache configuration of processors that support shared mem-
ory has enabled an entirely new prefetching opportunity. A
prefetching lifeguard can be executed on an idle core to sup-
port neighboring cores that share the same cache coherence
mechanism. This enables performance gains on these neigh-
boring core. This approach is particularly beneficial when
executing on manycore systems where the OS can spawn
and schedule a number of these prefetcher lifeguard to as-
sist clusters of cores sharing a coherence bus. This prefetcher
can then be deployed onto a processor core to assist other
cores, or be seamlessly terminated if idle cores are reclaimed
by other applications. This is possible because our software
prefetching approach is unobtrusive. Software prefetching
occurs without perturbing the application code to add in-
strumentation or insert prefetching instructions, thus the
execution flow of the application remains uninterrupted.

In this paper, we discuss a reactive solution to the memory
and processor performance divide that leverages the features
and ubiquity of multicore and manycore processor design,
the power of adaptive unobtrusive analysis software, com-
bined with a simple extension to the cache coherence mech-
anism of existing and future architectures. We call our ap-
proach unobtrusive reactive prefetching (URPref). We use a
neighboring idle processor core to observe the miss patterns
on the cache coherence mechanism that occur while exe-
cuting an application. We then analyze the miss patterns
using a novel software dynamic prefetching engine that con-
tinuously profiles and adapts to application behavior. Our

URPref engine uses Sequitur [16] to extract hot streams in
cache misses (both fixed address patterns and strided pat-
terns). We then perform prefetching whenever we observe
the start (prefix) of a known miss pattern. We do not in-
sert prefetch instructions into the application itself; rather,
we perform the prefetching from the neighboring core di-
rectly into the application’s cache via new sideline channels.
These sideline channels build upon existing multicore and
manycore cache coherence protocols.

URPref is dynamic, adaptive, unobtrusive, and reactive.
We have chosen a dynamic approach because the applica-
tion’s memory access behavior presents prefetching oppor-
tunities that are unavailable with static prefetching algo-
rithms. URPref is adaptive in that our analysis is constantly
responding to application phases. It is unobtrusive because
it requires no instrumentation or other static or dynamic
code modifications to the running application, allowing it
to be spawned and terminated seamlessly anywhere on the
processor core grid. This is in contrast to current software
dynamic prefetching techniques [6, 13, 20, 21] which inter-
leave profiling with application code. Finally, URPref is
reactive because it only engages when the miss rate is high.
While other systems observe cache accesses in order to de-
tect patterns and strides, our system observes cache misses,
and thus only engages when patterns surface that the hard-
ware is unable to identify. As other researchers have con-
firmed, prefetching for pointer-chasing applications is a dif-
ficult problem that requires sophisticated detection mecha-
nisms that are very difficult to implement in hardware [8],
thus our software detection component can help mitigate
this complexity. In the case where the cache miss rate is
low or no patterns can be found in those misses, our system
allows the application to execute without disruptions.

The specific contributions of this paper include:

• An unobtrusive prefetching solution that profiles cache
misses, detects patterns, and performs prefetching with-
out directly perturbing the performance, or modifying
the code of an executing application, allowing it to be
spawned and terminated freely by the OS.

• Proposed hardware extensions that expose existing cache
coherence snooping protocols, including cross-core prefetch
instructions and a cache miss buffer.

• A pattern based approach to detect recurring miss pat-
terns and to adapt to phase changes by removing ex-
pired miss patterns.

The remainder of the paper is organized as follows. In Sec-
tion 2 we describe the necessary support needed for the un-
obtrusive reactive prefetching infrastructure, including the
novel hardware extensions mentioned above. Next, in Sec-
tion 3 we discuss our profiling and analysis algorithm for
detecting hot cross-core L1 cache miss patterns using Se-
quitur. In Section 4, we describe the prefetching algorithm
and our support for phase changes. Then, Section 5 de-
scribes our experimental framework and outlines our results
in terms of misses avoided. Finally, Section 6 discusses and
distinguishes our work from similar efforts and Section 7
concludes.

2. SUPPORT FOR URPREF
Both hardware and software must be altered slightly to

support URPref and leverage spare processor time on mul-

Figure 1: An overview of our system. Misses observed by
snooping on the bus are passed upwards by Snoopy to our
URPref engine. For example the URPref engine performs
analysis and initiates prefetching into the application core’s
L1.

ticore and manycore systems. This section describes the
mechanisms that must be in place to use URPref.

2.1 Hardware and ISA Support
As mentioned earlier, we propose exposing a cross-core

cache snooping mechanism in multicore and manycore ar-
chitectures. We build upon the cache coherence protocol
that already exists in modern multicore chips. An example
is shown in Figure 1, the bold line between core 1 and core 2
shows the existing bus used for cache coherence [11]. The
dashed lines represent our proposed extensions.

First, we introduce a Snoopy buffer for relaying cache miss
information to our URPref engine. Snoopy is a small hard-
ware buffer that contains a short FIFO window of the most
recent misses coming from the L1 of our neighboring core.
Snoopy can be seen as a simplified version of the “event
buffers” present in the work by Ganusov et al. [8]. Snoopy
differs in that it provides only misses and no associated PC
from the reorder buffer; thus we only need to connect our
small Snoopy buffer into the cache bus line. Since we do
not hold the PC associated with the miss or other book-
keeping information, we require less memory and hardware
complexity.

The URPref engine sits on any underutilized core that
shares the same cache coherence hardware as the applica-
tion. The engine then profiles and analyzes the miss infor-
mation received from Snoopy, and extracts the hot streams.
Finally, our URPref engine prefetches directly into the ap-
plication core’s cache, as indicated by the dotted line labeled
L1 Prefetch. Performing profiling, analysis, and prefetching
on a separate core helps to mitigate the profiling overhead.

Our technique requires two ISA extensions. First, we in-
troduce an instruction to read cache miss information from
the Snoopy miss buffer, implemented in a manner similar
to reading performance counters. The second ISA extension
is an instruction that allows one core to prefetch into the
L1 cache of its neighbor core, similar in form to existing
prefetch instructions prevalent on current hardware [11].

2.2 Operating System Support
As indicated in Figure 1, the application and URPref en-

gine run as separate processes (on separate processor cores)
without explicit synchronization support. The host OS or
virtual execution environment (VEE) controls both the UR-

Pref Engine and the target application and has several ex-
plicit responsibilities. First, the OS must be aware of the re-
lationship between an application and a corresponding UR-
Pref engine. This is necessary in a multitasking environment
to guarantee that the URPref engine and the application run
concurrently. Second, the OS or VEE must ensure that the
URPref component is executing on a core that is located
on the same cache coherence bus as the application. Addi-
tionally, the OS must ensure that URPref does not usurp
resources from other active processes. Therefore, if the OS
is unable to find a spare core with a usable Snoopy chan-
nel, it should disable URPref. Fortunately the URPref algo-
rithm can operate successfully even after an application has
started, so benefits can resume once the neighboring core be-
comes free. If the OS chooses to halt the URPref engine, it
is not necessary to store URPref miss histories or any other
state. The system can tolerate gaps in cache misses, as it
regularly retires miss patterns to adapt to phase changes.

2.3 Scalability
The scalability of URPref relies on the scalability of the

underlying cache coherence protocols. In many systems, at
least one level of cache is private to the core but is still
kept coherent with other neighboring cores and with global
shared memory state. Since URPref merely requires an
interface to the existing coherence mechanism in order to
snoop cache issues, the approach is applicable to any cache
design that requires cache coherence information to be trans-
mitted to neighboring cores.

Many of todays multicore systems have private L1 caches
per core and a shared L2 cache [12, 17], so existing cache
coherence protocols tend to communicate L1 values. For
this reason, our current Snoopy prototype focuses on these
systems. However, the approach scales to any level of cache
that must be kept consistent between multiple cores. Our
approach also scales with the number of cores assuming that
the chip design supports localized shared memory between
neighboring cores.

3. DETECTING HOT DATA STREAMS WITH
SEQUITUR

The complete URPref solution leverages two key compo-
nents: (1) the Snoopy miss buffer to carry out the task
of profiling, and (2) a linear-time pattern-detection algo-
rithm called Sequitur developed by Nevill-Mannings and
Witten [16] to detect recurring miss patterns. Sequitur has
been shown to be effective at detecting hot streams in data
accesses by Chilimbi and Hirzel [5, 6]. In our work, we
extend these observations to apply Sequitur to cache misses
rather than cache accesses, which enables a more lightweight
and reactive solution.

We use Sequitur to organize the cache-miss information
into hot streams. A cache miss stream is considered hot
based on two factors: the length of the particular miss stream
and its frequency within the input sample window. Fre-
quently, a large percentage of the total misses of an applica-
tion are contained in a small portion of hot streams.

The URPref engine will continually look for new hot streams
even when other streams are being prefetched. Each new
miss from Snoopy is sent through a pattern-detection sys-
tem based on Sequitur. It is then analyzed to determine if
it forms a prefix for a prefetching stream. When a matching

Delta
Absolute

 1

 10

 100

 1,000

 10,000

 100,000

 1e+06

to
nt

o

sp
hi

nx

m
ilc

le
sl

ie
3dlb
m

hm
m

ergo

N
um

 M
is

se
s

P
re

di
ct

ed

Figure 2: The effects of using the miss deltas versus absolute
addresses on several benchmarks.

long data [5 0 0 0 0 0 0] ;

main () {
int i ;
for (i =0; i <5000000; i ++) {

data [i] = data [i] + i ;
}

}

Figure 3: Pseudocode for a simple array traversal. This
code is easily handled by both hardware prefetchers and our
URPref algorithm.

prefix is detected, the remainder of the hot stream will be
prefetched into the neighboring L1 cache. In the remainder
of this section, we discuss the details of the Sequitur system
for pattern detection.

3.1 Hot Data Miss Streams
A data miss stream is a sequence of data cache miss ad-

dresses that repeats throughout a given series of cache misses,
called a profiling window. A miss stream is considered hot
if it constitutes a given percentage of the profiling window.
Sequitur builds a context-free grammar of the cache miss
patterns. Each production in the grammar represents some
sequence repeating itself two or more times throughout the
sequence. The grammar productions are built miss-by-miss
for some number of misses, determined by the window size.
The hottest streams are then used to perform prefetching.
We calculate hotness by multiplying the number of times a
rule is used in the grammar (cold uses) by the number of
terminal symbols (misses).

In addition to detecting patterns from actual cache ad-
dresses, we also investigate detecting recurring deltas in sub-
sequent misses. In fact, we found that delta miss patterns
are more effective than absolute addresses. Figure 2 shows
that the number of misses or URPref engine is able to pre-
dict when using deltas versus when using absolute addresses.
This graph shows that using delta gives us more opportunity
when predicting misses. This makes sense given that abso-
lute addresses patterns are captured within delta patterns,
while the converse does not hold. In both cases, we are able
to detect patterns that are more complex than arithmetic or
geometric strides that are detected by hardware prefetchers.

To demonstrate the miss patterns that Sequitur can suc-
cessfully track, we present three code snippets of increasing
memory-access complexity (Figures 3–5). Figure 3 shows a

struct l i s t e l m {
long va l ;
struct l i s t e l m ∗ next ;

} ;
typedef struct l i s t e l m item ;

void main () {
long i ;
item ∗ cur = NULL, ∗ head = NULL;

for (i =1; i <=1000000; i ++) {
/∗ i n i t i a l i z e l i s t here assuming

each element i s a l l o c a t e d
at an a r b i t r a r y l o c a t i on in mem ∗/

}
cur = head ;
while (cur) {

cur−>va l = rand () % 40 ;
cur = cur−>next ;

}
cur = head ;
while (cur) {

cur−>va l ∗= 2;
cur = cur−>next ;

}
}

Figure 4: Pseudocode for a simple linked list traversal.
Hardware prefetchers are often ill-suited for arbitrarily com-
plex stride patterns, while our URPref algorithm can detect
and prefetch such patterns.

long mat [1 0 0 0] [1 0 0 0] ;

/∗ a r b i t r a r y s t r i d e ∗/
inl ine int a r b s t r i d e (int base) {

i f (base > 500) return 2 ;
i f (base > 300) return −24;
i f (base % 2 == 0) return 8 ;
return 1 ;

}

main () {
int i , j ;
for (i =0; i <1000; i++)

for (j =0; j <1000; j++)
mat [i] [(j+a r b s t r i d e (j))%1000] = i ∗ j ;

}

Figure 5: Pseudocode for an irregular access pattern. Hard-
ware prefetchers are ill-suited to such patterns, while our
URPref algorithm is often well suited.

simple array-traversal memory-access pattern that can be
detected and prefetched by most hardware stream prefetch-
ers, as well as our technique. Figure 4 shows a linked-
list access pattern that revisits the same nodes repeatedly.
This pattern is too complex for current hardware prefetch-
ers, although it is handled by many software-based dynamic
prefetchers. Finally, Figure 5 presents an irregular strided
pattern that cannot be detected using absolute addresses.
However, by examining the deltas between the accesses, Se-

Address: 30 42 20 12 12 24 2

Delta: 12 -22 -8 0 12 -22

Sequitur: S-> A -8 0 A
A-> 12 -22

S
Tree:

A A

Figure 6: Sequitur pattern recognition. Note the use of
address delta as a Sequitur key.

Snoopy

Seq Seq Seq Seq Seq

a

a
a

Profiling
Windows

Prefetching

Hot Streams

Figure 7: Simultaneous profiling and prefetching interac-
tion. The symbol a represents a miss coming from Snoopy.
This miss is processed by both the analysis and prefetching
engines. The hot streams that are detected in the analysis
is continuously fed to the prefetcher engine.

quitur is able to effectively detect the miss pattern. There-
fore, in the cases of highly-irregular access patterns, neither
stride prefetcher nor absolute-address pattern detection are
effective, while our URPref engine can successfully prefetch
the correct data.

3.2 Using Sequitur
Sequitur is a linear-time algorithm that incrementally in-

fers the compressibility and hierarchal nature of the miss
patterns coming from Snoopy. As we show in Figure 6, we
first determine the delta between adjacent misses. We use
these deltas as the symbols for which Sequitur will build
its grammar. In the figure, we show a tree representation
of the information provided by Sequitur. Any repetition
that occurs in the input results in a non-terminal being cre-
ated in the grammar. Repetitions involving non-terminals
create other non-terminals higher in the hierarchy. Each
non-terminal encodes a potentially hot cache miss stream.
Similar to previous work [5, 6], we measure the hotness of
each stream using Equation 1. Length is defined as the sum
of the number of terminals for a given non-terminal. For
example, in Figure 6, A’s length is two. Cold uses is de-
fined as the number of times the non-terminal appears in
the grammar. In our example, A’s cold uses are two. The
length times the cold uses of each non-terminal determines
the stream hotness. A’s hotness value would be four.

hotness = length× colduses (1)

We use a prefix to prefetch the remainder of the stream
speculatively. A prefix is composed of the first few symbols
of the hot stream. As we watch for misses from Snoopy we
look for prefixes and trigger prefetching whenever a prefix
is observed. Our URPref engine uses a prefix size of two for
hot streams of size four to six. For larger hot streams, we
use a prefix size of four, which we have determined to be an
effective size from careful tuning.

For our URPref engine to perform its profiling and pre-

Full
Sample?

Prefix ==
Hot Streams

Build
Grammar

Update Hot
Stream
Table

Resize?

Yes

No

Resize
WindowYes

Match? Tag Stream
as ActiveYes

Cache Coherence Protocol

PrefetchMiss

Figure 8: URPref Flow Diagram

fetching, we send every address received from Snoopy to
both our profiling and prefetching engines. Our profiling en-
gine accumulates a window of misses from Snoopy to build
the Sequitur grammar and extract hot streams. The size of
this window changes dynamically to normalize the number
of hot streams detected per window. If we find too few hot
streams in the current window, we double the window size;
if we find too many, we divide the window size by two. Our
prefetching engine keeps track of the last four misses and
continually tests for a match in the active hot stream table.
This table contains a set of extracted hot streams that re-
mains active. As our engine receives misses from Snoopy a
prefix window is maintained containing the last four misses.
After each miss this prefix window is used to search our
active hot stream table. If we find a match, the matching
stream is prefetched. This stream in our table is also marked
as still active. After a set window of misses all streams that
are unmarked are retired from the table.

The criteria we use to determine the streams to place in
our active hot stream table is that the stream must cover at
least 2% of our window and contain at least four misses. We
chose 2% after trying numerous alternatives. We want our
streams to be sufficiently prominent to reduce our chance of
prefetching unneeded addresses. However we must also be
careful to extract as many useful patterns as possible.

In Figure 7, profiling windows are demarcated by tic marks
within the profile stream. We build a Sequitur representa-
tion for each window. From this representation we extract
hot streams based on our criteria and place them in the ac-
tive hot stream table. This set of hot streams is then used by
our prefetching engine to detect stream prefixes and prefetch
while the profiler builds the next set of hot streams from the
next window. Any new hot streams are added to the table
and hot streams that are no longer active are retired. Af-
ter each window is processed, the system decides whether to
adapt the window size. This is determined by the number
of hot streams we find. In our experiments, we found that
a lower bound of 5 and an upper bound of 15 hot streams
in our table worked well. A flowchart representation of our
approach is depicted in Figure 8.

4. OFF CORE RESPONSE PREFETCHING
If no hot streams are present, our dynamic prefetcher re-

mains dormant. If hot streams become cold, our prefetcher
stops. This approach is very different than other software
prefetching approaches. Other systems modify the applica-
tion code statically, by way of the compiler, or dynamically,
by way of a runtime compilation system. When inserting
prefetching instructions into the application statically, these
prefetch directives must be conservative because no run-
time knowledge about the application is available. On the
other hand, when prefetching instructions are injected and
removed dynamically, overhead is incurred for these run-

 0

 100

 200

 300

 400

 500

av
er

ag
e

so
pl

ex

po
vr

ay

na
m

d

m
ilc

lb
m

ge
m

s

xa
la

n

sj
en

g

om
ne

tp
p

m
cf

lib
qu

an
tu

m

hm
m

er

h2
64

re
f

go
bm

k

gc
c

bz
ip

2

as
ta

r

N
um

be
r

of
 In

st
ru

ct
io

ns

997 570

Figure 9: The average number of instructions between two
misses. This shows the approximate slack we have in be-
tween misses to maximize the benefit when we react to miss
patterns.

time code modifications. Our approach avoids both of these
drawbacks.

4.1 Non-Intrusive Dynamic Prefetching
Performing analysis on a separate core is only the first

step; using the information obtained to carry out the pre-
fetching presents the new challenge of how to prefetch the
data to the other core. A simple solution would be to use the
analysis to rewrite the application text with explicit prefetch
instructions. Instead, we propose a remote prefetch instruc-
tion that can be executed on one core to prefetch directly
into another core’s cache. This allows the system to push
data directly into the application core’s cache without mod-
ifying the application code, thereby allowing the prefetcher
to adapt to phase changes.

Another challenge to performing prefetching on a sepa-
rate core is the asynchrony between application execution
and the prefetcher. In particular, URPref prefetches the
entire tail of a stream once a prefix is identified, without
respect to the expected latency of future misses. If the data
is fetched too late, the instruction using the memory might
have already requested it, thus making the prefetch redun-
dant. However, as shown by Figure 9, this issue arises infre-
quently in practice because many instructions occur between
misses on average. Even if the prefetch has not completed
by the time the instruction requests the memory, the load
latency will be decreased due to the prefetching of the en-
tire tail of the miss stream at once, thus many subsequent
prefetched addresses will be available in the cache.

4.2 Adaptive Response to Phase Changes
Detecting and responding to phase changes in a timely

manner is critical to achieving maximum performance and
reducing cache pollution due to incorrect prefetching. Fail-
ing to notice a phase change can cause the prefetching en-
gine to retain unnecessary state, and more importantly, to
prefetch incorrect data while evicting useful data. For in-
stance, consider the simple case where an application ac-
cesses memory in a pattern ABCDEF in the first phase, and
that the URPref engine prefetches DEF when addresses A, B
and C miss. In a later phase, the application may see the
pattern ABCGHI, where DEF and GHI map to the same cache
lines. If the prefetching engine fails to adapt, it will incor-
rectly prefetch DEF; in the extreme case, the accesses may

Application

Pin

SnoopySim

CacheSim URP Engine

HW Prefetcher
Figure 10: The URPref Simulation Framework. We use Pin,
a binary instrumentation tool, and a heavily modified ver-
sion of Pin’s dcache simulator with hardware prefetching as
our simulation infrastructure.

happen in a loop and cause GHI to miss every iteration.
Some dynamic optimization systems have approached phase

detection by sampling the program counter and determining
that a phase change has occurred if the sampled PC deviates
from the previously-sampled range by more than a given tol-
erance [13]. Later work [7] suggested better phase detection
could be accomplished by targeting sampling around specif-
ically optimized regions.

The URPref engine automatically handles changing phases
via continuous profiling. In each execution window, all in-
active hot streams are removed from the active hot stream
table. The engine then processes the current grammar and
repopulates the active hot stream table. The new table is
then used to drive prefetching in the next window. Because
of this, there is at most a one-window latency between en-
tering a new phase and being able to prefetch.

One potential side-effect of prefetching based on profiling
data from the last window of the previous phase is incorrect
prefetching leading to cache pollution. This may happen if
the data streams in both phases share a common prefix; if, as
in the example above, the first phase has a hot data stream
ABCDEF and the second phase has a memory access pattern
ABCGHI, the prefetching engine would incorrectly prefetch
addresses DEF. However, as we will show later, the low per-
centage of mispredicted streams on average suggests this is
not a common case. Meanwhile, in the case where the pre-
fixes are different, the engine will not issue any prefetch
instructions.

5. EXPERIMENTAL RESULTS
To test the effectiveness of the URPref Engine, we used the

Pin dynamic instrumentation framework to implement our
simulation infrastructure. Pin [15] is a binary instrumen-
tation system that examines and possibly instruments all
instructions immediately before they execute. As we show
in Figure 10, we implement our Snoopy mechanism using
a cache simulator built as a plug-in to Pin. We used Pin’s
API to instrument all loads and stores within the running
application; we then feed that information into our cache
simulator, which is a plug-in Pintool. If we miss in the L1
our cache simulator sends that miss information through
Snoopy to our URPref Engine. Our URPref Engine contin-
ually analyzes these misses and sends any resulting prefetch
directives to our cache simulator. The cache simulator re-
ports the accuracy (hit rate) of our approach while our UR-
Pref engine measures other important information, such as
the hot stream extraction rate and the prefetch predication
accuracy.

To gather our results, we executed 17 applications from

 1e+10

 1e+11

 1e+12

 1e+13

xa
la

n

to
nt

o

so
pl

ex

sj
en

g

po
vr

ay

om
ne

tp
p

na
m

d

m
ilc

m
cf

lib
qu

an
tu

m

lb
m

hm
m

er

h2
64

re
f

go
bm

k

ge
m

s

gc
c

bz
ip

2

as
ta

r

T
ot

al
 M

is
s

C
ou

nt

Figure 11: The total number of misses per benchmark.

Table 1: Baseline Cache Hierarchy
Cache Size Associativity

L1 Data 256KB 256
L2 Data 2MB 4
Prefetch Buffer 2 Streams

the SPEC2006 benchmark suite [9]. Each benchmark was
compiled with gcc optimization level 2 (-O2) and run to
completion on of our simulation infrastructure using the ref-
erence inputs. In the case were there were multiple inputs,
we used the first input listed. Figure 11 shows the baseline
number of cache misses that occur during the execution of
each of our benchmarks without prefetching.

5.1 Cache Simulation
The structure of our simulated cache is summarized in Ta-

ble 1. The L2 is a 2MB, 4-way associative data cache that
uses a round robin replacement policy. The L1 is a 256KB
256-way associative cache. We use this highly associative
cache as an upper bound on performance attainable through
the hardware cache by removing the effect of conflict misses
as much as possible. In order to fairly compare against
modern microprocessors, we also implemented a hardware
prefetch engine that consisted of a strided prefetcher that
keeps track of two arithmetic strides within recent memory
accesses. Because the cache simulation is not cycle accurate,
our baseline prefetch engine is optimistic, meaning that re-
gardless of the timing between strided accesses, the data in
the prefetch buffer is assumed to be available. We compare
our URPref approach against the above aggressive baseline
hardware configurations.

5.2 URPref Engine Simulation
When simulating our URPref Engine, we begin with a

minimum window size to analyze and to extract hot streams.
We then adaptively scale the size of the window if we receive
too few or too many hot streams. This adaptation allows us
to determine a suitable granularity automatically to detect
hot miss streams. By default URPref doubles the current
window if it observes less than five hot streams, and halves
the window if it sees more than fifteen hot streams. We also
set the upper and lower bounds on the window size to be no
less than 50 and no more than 3000.

A stream is identified as hot based on its coverage over the
entire window. Recall that we defined the stream’s hotness
as the product of its length and cold uses (occurrences in

 0

 2

 4

 6

 8

 10

 12

 50 100 150 200

N
um

be
r

of
 P

at
te

rn
s

Time

gcc.phase data

Figure 13: Number of hot streams detected per window over
the execution of gcc.

Sequitur’s grammar). We identify a stream to be hot if it
covers at least 2% of the window size.

To measure the effectiveness of the URPref Engine, we ex-
amine the reduction in miss rate due to URPref prefetching.
We also examine the accuracy of our predictions and and
the cache pollution that results from miss predictions. Ad-
ditionally we present data on the observed phases in cache
miss behavior using URPref hot stream extraction rates.

5.3 Miss Reduction
Figure 12 shows the effectiveness of our approach on SPEC-

2006 integer and floating point benchmarks. This graph con-
trasts our aggressive hardware baseline with and without use
of a hardware stride prefetcher, to this same baseline when
using our URPref approach. In every case, URPref’s per-
formance equals or exceeds that of the hardware prefetcher,
in many cases, by a large margin. To calculate our overall
improvement we use the harmonic mean. As the last cluster
of bars show, just using that hardware prefetcher alone gives
us a 6% improvement. However, when using our URPref ap-
proach the mean miss rate reduction is 26% when using the
hardware prefetcher, and 30% when only using the URPref
engine.

At first glance, it may seem counter intuitive to have a
better improvement when using URPref without the hard-
ware prefetcher. However, when the hardware prefetcher is
enabled, the quantity and quality of cache miss information
that is sent to the URPref is reduced. This results in fewer
prefetches from the URPref engine and slightly more cache
pollution, as will be shown in the next section.

Our URPref approach works particularly well on libquantum
with a 84% reduction in cache misses. This suggests that
libquantum has data access behavior that contains patterns
that are too complex for the hardware prefetcher. Lib-
quantum is the simulation of a quantum computer [9]. It
has some non-trivial access patterns through matrices and
we suspect this is the source of the problematic miss pat-
terns; our research into specifically identifying these patterns
is ongoing.

5.4 Phases Observed
In Figure 13, we show the phase changes in miss pre-

dictability of gcc, a benchmark representing the type of ap-
plication for which our approach is effective. The phases are
based on the number of hot streams our URPref engine was
able to extract from Sequitur per cache miss window, there-
fore points on the x-axis point in the graph represents the
average number of streams over 10,000 windows. From this

URPref response time
slack to 1st miss
slack to 2nd miss

 0

 500

 1,000

 1,500

 2,000

so
pl

ex

po
vr

ay

na
m

d

m
ilc

lb
m

ge
m

s

xa
la

n

sj
en

g

om
ne

tp
p

m
cf

lib
qu

an
tu

m

hm
m

m
er

h2
64

re
f

go
bm

k

gc
c

bz
ip

2

as
ta

r

N
or

m
al

iz
ed

 C
yc

le
 C

ou
nt

Figure 14: Response time to successfully prefetch.

data we can see the regularity and predictability of that our
URPref engine can detect throughout the execution of the
application. A consistently high number of patterns implies
we are in a hot code region.

5.5 Pattern Recognition and Prefetch Response
As mentioned earlier, the application and our URPref en-

gine run simultaneously. Therefore it is important to de-
termine whether the URPref prefetching occurs in time for
the application to use those data elements. To answer this
question, we measure the number of cycles it takes our UR-
Pref engine to go from reading a miss to prefetching the first
few elements of the hot stream. We use PAPI [2] on the In-
tel Xeon architecture to read the processor’s performance
counters. To simulate the timing of a read from the snoopy
FIFO, we executed a RDTSC instruction. Because this is a
read from a register that is not on the common execution
path, we believe this provides an upper bound for timing
the snoopy FIFO. Timing this microbenchmark, the UR-
Pref engine takes just under 100 cycles to progress from the
miss to the prefetch of the first element. We call this the
response time of the URPref engine to detect and to respond
to observing a hot pattern. To see how this compares to the
average slack of each benchmark, we use PAPI to calculate
the average CPI for that benchmark and multiply it by the
average number of instructions between two misses as it is
shown in Figure 9. This gives us the average number of cy-
cles between two misses for each benchmark. In Figure 14
we compare the URPrefs response time to this slack for each
benchmark.

As we can see in Figure 14 in most cases the URPref
engine is able to recognize and respond to hot streams with
plenty of time to spare. And although we are not able to
respond in time for the first miss with mcf or hmmer, by the
second miss in the stream we are able to prefetch in time.
Considering that streams range from 6 elements to as much
as 100+ elements, our URPref engine is efficient enough to
prefetch effectively.

5.6 Cache Pollution
Figures 15 and 16 show the L1 data elements prefetched

by the URPref engine. They are separated into two groups.
The first group contains successful prefetches, data elements
that were used shortly after being prefetched. The second
group shows data elements that were not used shortly after
being prefetched. We call these prefetch ‘hits’ and prefetch
‘misses’, and they indicate how much our technique pol-
lutes the cache. Figure 15 shows on average 95% of the

no prefetch
hardware prefetch
hardware + URPref
URPref only

 0

 0.2

 0.4

 0.6

 0.8

 1

ha
rm

ea
n

so
pl

ex

po
vr

ay

na
m

d

m
ilc

lb
m

ge
m

s

xa
la

n

sj
en

g

om
ne

tp
p

m
cf

lib
qu

an
tu

m

hm
m

er

h2
64

re
f

go
bm

k

gc
c

bz
ip

2

as
ta

r

N
or

m
al

iz
ed

 M
is

se
s

Figure 12: Reduction in misses. All results are normalized to the miss rate without prefetching.

misses
hits

 0

 20

 40

 60

 80

 100

 120

av
er

ag
e

so
pl

ex

po
vr

ay

na
m

d

m
ilc

lb
m

ge
m

s

xa
la

n

sj
en

g

om
ne

tp
p

m
cf

lib
qu

an
tu

m

hm
m

er

h2
64

re
f

go
bm

k

gc
c

bz
ip

2

as
ta

r

H
its

 v
s.

 M
is

se
s

Figure 15: Addresses successfully vs unsuccessfully pre-
dicted by URPref.

misses
hits

 0

 20

 40

 60

 80

 100

 120

av
er

ag
e

so
pl

ex

po
vr

ay

na
m

d

m
ilc

lb
m

ge
m

s

xa
la

n

sj
en

g

om
ne

tp
p

m
cf

lib
qu

an
tu

m

hm
m

er

h2
64

re
f

go
bm

k

gc
c

bz
ip

2

as
ta

r

H
its

 v
s.

 M
is

se
s

(w
/ H

W
 P

re
f)

Figure 16: Accuracy of URPref when hardware prefetching
is enabled.

data prefetched by our engine is used by our application
shortly after it is prefetched, when not using a hardware
prefetcher. Similarly Figure 16 shows that when coupled

with a hardware prefetcher, 90% of our prefetched data is
used. This helps to explain why Figure 12 demonstrated
a performance degradation when using the URPref engine
with versus without a hardware prefetcher. However, the
overall performance improvement of URPref is over 25%,
either way.

6. RELATED WORK
The work presented in our paper combines two research

areas, prefetching and run-time optimization. Software pre-
fetching methods can be divided into two main solutions,
inserting explicit prefetch instructions [4, 6, 13] or using
precomputation or helper threads [13, 14, 20, 21]. Run-
time optimization systems [1, 3, 15] provide opportunities
for instrumenting and modifying code while it executes; this
opens opportunities for adaptive behavior not available at
compile time.

6.1 Software Prefetching
Ganusov and Burtscher [8] propose a mechanism to use

cache miss events derived from hardware to drive software
prefetching. Their approach involves leveraging hardware
prefetching techniques at the software level to drive pre-
fetching helper threads, by adding an event buffer. Our
work is similar to theirs in that we use hardware information
to drive software prefetching; however, rather than adding
structures to the hardware, our approach simply leverages
existing information. Further, we can drive prefetching for
more complex access patterns than can be detected using
standard hardware techniques.

Chilimbi and Hirzel [6] also used a Sequitur-based method
in a dynamic optimization system to direct prefetching. Our
work differs from theirs in that while they sample small parts
of the execution using bursty tracing [10], we are able to
profile the execution of the entire program. This increases
opportunities for detecting and adapting to phase changes.
In addition, because our approach does not require instru-
menting the program and duplicating code, we are able to
obtain lower overheads in terms of time and space usage.
Finally, we have shown that we can successfully detect pat-
terns in cache misses, while previous approaches focused on

patterns in cache accesses.
Zhang et al. [21] propose using small hardware modifi-

cations along with the Trident dynamic optimization sys-
tem [19] to guide prefetching threads. Our work differs from
theirs in several ways. First, whereas they propose adding
additional hardware to collect information about delinquent
loads, our work leverages existing hardware for cache co-
herence on a chip multiprocessor (CMP). While their ap-
proach focuses on improving the performance of frequently-
delinquent loads in hot traces, we profile and make decisions
based on longer memory access patterns across the whole ap-
plication. Finally, because we use a reactive method based
on these patterns rather than looking into the future with
precomputation threads, we are able to avoid the overhead
of generating specialized precomputation code and monitor-
ing it to ensure that it stays closely synchronized with the
main thread.

Solihin et al. [18] proposed using user-level memory threads
to do correlational prefetching into the L2 cache. However
their work was focused on using correlational prefetching as
opposed to using pattern recognition on sequences of misses.
Also the hardware changes required for their approach dif-
fers from those required by our URPref approach. We take
advantage of already existing hardware to do cross-core in-
trospection.

6.2 Dynamic Optimization
Dynamic optimization systems such as Dynamo [1], Dy-

namoRIO [3], ADORE [13], Trident [19], and Pin [15] pro-
vide run-time opportunities for code instrumentation and
modification. In our work, by moving monitoring for pre-
fetching into a dynamic optimization environment, we can
implement more sophisticated policies than could be imple-
mented in hardware alone.

Zhang et al. [20] also presented work on analyzing hot
traces in a dynamic optimization environment to insert pre-
fetching instructions. Like our work, their work involves
hardware feedback to help guide decisions. However, their
proposal requires adding additional hardware, whereas we
only require a modification to expose the existing informa-
tion on a hardware CMP. In addition, we are able to run
our prefetching separately instead of having to modify the
application’s code to include prefetch instructions.

Lu et al. [13] analyzed load access patterns in the ADORE
dynamic optimization system. They also perform detection
on a core separate from the main application core. Sim-
ilarly to Zhang’s work, and unlike our system, they focus
primarily on code regions with delinquent loads and insert-
ing prefetch instructions. Again, our work is able to detect
patterns across the entire application and handle prefetching
without modifying the application’s code.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have presented our unobtrusive reactive

prefetching engine which utilizes multicore architectures to
perform direct prefetching from one processor core to an-
other. We accomplish this using our Snoopy interface, which
exposes the cache coherence protocols to the software layer,
and by using the Sequitur algorithm, which performs mem-
ory access pattern analysis using an adaptive dynamic pre-
fetching algorithm. By offloading analysis and prefetching
to a separate core, we avoid rewriting the application’s code
and can profile continuously without introducing any over-

head in the main application. We are able to prefetch with a
high accuracy based on knowledge of previous misses, includ-
ing automatic reaction to phase changes, and can success-
fully predict more complex patterns than a hardware stride
prefetcher. Our prefetching solution reduces the strain on
the memory subsystem, thus increasing data cache hit rates
and reducing overall processor stalls.

The current version of our URPref engine detects patterns
and performs prefetching based on misses. Future extensions
include more sophisticated analysis based on miss context,
or the pattern of misses with respect to hits in surround-
ing cache accesses. In addition, we would like to leverage
our interface for applications beyond prefetching. For in-
stance, the patterns dynamically extracted from the appli-
cation may be used to guide re-layout of memory.

8. REFERENCES
[1] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A

transparent dynamic optimization system. In ACM
Conference on Programming Language Design and
Implementation, pages 1–12, Vancouver, British
Columbia, Canada, 2000.

[2] S. Browne, J. Dongarra, N. Garner, G. Ho, and
P. Mucci. A portable programming interface for
performance evaluation on modern processors. Int’l
Journal of High Performance Computing Applications,
14(3):189–204, 2000.

[3] D. Bruening, T. Garnett, and S. Amarasinghe. An
infrastructure for adaptive dynamic optimization. In
First Int’l Symposium on Code Generation and
Optimization, pages 265–275, March 2003.

[4] D. Callahan, K. Kennedy, and A. Porterfield. Software
prefetching. In Proceedings of the fourth international
conference on Architectural support for programming
languages and operating systems, pages 40–52, Santa
Clara, California, April 1991.

[5] T. M. Chilimbi. Efficient representations and
abstractions for quantifying and exploiting data
reference locality. In PLDI ’01: Proceedings of the
ACM SIGPLAN 2001 conference on Programming
language design and implementation, pages 191–202,
New York, NY, USA, 2001. ACM Press.

[6] T. M. Chilimbi and M. Hirzel. Dynamic hot data
stream prefetching for general-purpose programs.
SIGPLAN Not., 37(5):199–209, 2002.

[7] A. Das, J. Lu, and W.-C. Hsu. Region monitoring for
local phase detection in dynamic optimization
systems. In CGO ’06: Proceedings of the International
Symposium on Code Generation and Optimization,
pages 124–134, Manhattan, NY, USA, March 2006.

[8] I. Ganusov and M. Burtscher. Efficient emulation of
hardware prefetchers via event-driven helper
threading. In PACT ’06: Proceedings of the 15th
International Conference on Parallel Architectures and
Compilation Techniques, pages 144–153, Seattle,
Washington, September 2006.

[9] J. L. Henning. SPEC CPU2006 benchmark
descriptions. SIGARCH Computer Architecture News,
34(4):1–17, 2006.

[10] M. Hirzel and T. Chilimbi. Bursty tracing: A
framework for low-overhead temporal profiling. In 4th
ACM Workshop on Feedback-Directed and Dynamic

Optimization (FDDO-4), December 2001.

[11] Intel Corporation. IA-32 Intel r© Architecture Software
Developer’s Manual, Volume 3: System Programming
Guide. Order #253668-019, March 2006.

[12] R. Kumar, V. Zyuban, and D. M. Tullsen.
Inteconnections in multi-core architectures:
Understanding mechanisms, overheads and scaling. In
ISCA ’05: Proceedings of the 32nd International
Symposium on Computer Architecture, Madison,
Wisconsin, June 2005.

[13] J. Lu, A. Das, W.-C. Hsu, K. Nguyen, and S. G.
Abraham. Dynamic helper threaded prefetching on
the sun ultrasparc cmp processor. In MICRO 38:
Proceedings of the 38th Annual IEEE/ACM
International Symposium on Microarchitecture, pages
93–104, Barcelona, Spain, November 2005.

[14] C.-K. Luk. Tolerating memory latency through
software-controlled pre-execution in simultaneous
multithreading processors. In ISCA ’01: Proceedings
of the 28th annual international symposium on
Computer architecture, pages 40–51, Göteborg,
Sweden, 2001. ACM Press.

[15] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: Building customized program
analysis tools with dynamic instrumentation. In ACM
Conference on Programming Language Design and
Implementation, pages 190–200, Chicago, IL, June
2005.

[16] C. G. Nevill-Manning and I. H. Witten. Identifying
hierarchical structure in sequences: A linear-time
algorithm. Journal of Artificial Intelligence Research,
7:67–82, 1997.

[17] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson,
and K. Chang. The case for a single-chip
multiprocessor. In ASPLOS-VII: Proceedings of the
seventh international conference on Architectural
support for programming languages and operating
systems, pages 2–11, Cambridge, Massachusetts,
United States, 1996. ACM Press.

[18] Y. Solihin, J. Lee, and J. Torrellas. Using a user-level
memory thread for correlation prefetching, 2002.

[19] W. Zhang, B. Calder, and D. M. Tullsen. An
event-driven multithreaded dynamic optimization
framework. In 14th Int’l Conference on Parallel
Architectures and Compilation Techniques, pages
87–98, St. Louis, Missouri, 2005.

[20] W. Zhang, B. Calder, and D. M. Tullsen. A
self-repairing prefetcher in an event-driven dynamic
optimization framework. In 6th Int’l Symposium on
Code Generation and Optimization, pages 50–64, New
York, New York, 2006.

[21] W. Zhang, D. M. Tullsen, and B. Calder. Accelerating
and adapating precomputation threads for efficient
prefetching. In 13th Int’l Conference on High
Performance Computer Architecture, Phoenix,
Arizona, February 2007.

