
9

Evaluating Indirect Branch Handling Mechanisms in Software
Dynamic Translation Systems

JASON D. HISER, DANIEL W. WILLIAMS, WEI HU, JACK W. DAVIDSON,
and JASON MARS, University of Virginia
BRUCE R. CHILDERS, University of Pittsburgh

Software Dynamic Translation (SDT) is used for instrumentation, optimization, security, and many other
uses. A major source of SDT overhead is the execution of code to translate an indirect branch’s target address
into the translated destination block’s address.

This article discusses sources of Indirect Branch (IB) overhead in SDT systems and evaluates techniques
for overhead reduction. Measurements using SPEC CPU2000 show that the appropriate choice and con-
figuration of IB translation mechanisms can significantly reduce the overhead. Further, cross-architecture
evaluation of these mechanisms reveals that the most efficient implementation and configuration can be
highly dependent on the architecture implementation.

Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distribution, Maintenance and
Enhancement—Documentation; H.4.0 [Information Systems Applications]: General

General Terms: Experimentation, Measurement, Performance

Additional Key Words and Phrases: Fast returns, IBTC, indirect branch, indirect jump, return cache, sieve,
software dynamic translation

ACM Reference Format:
Hiser, J. D., Williams, D. W., Hu, W., Davidson, J. W., Mars, J. and Childers, B. R. 2011. Evaluating indirect
branch handling mechanisms in software dynamic translation systems. ACM Trans. Architec. Code Optim.
8, 2, Article 9 (July 2011), 28 pages.
DOI = 10.1145/1970386.1970390 http://doi.acm.org/10.1145/1970386.1970390

1. INTRODUCTION

Software Dynamic Translation (SDT) is a technology that enables software malleability
and adaptivity at the instruction level by providing facilities for runtime monitor-
ing and code modification. Many useful systems have been built that apply SDT,

This article extends the authors’ previous work entitled “Evaluating Indirect Branch Handling Mechanisms
in Software Dynamic Translation Systems” published in Proceedings of the International Symposium on
Code Generation and Optimization (CGO’07).
This material is based on research sponsored by Air Force Research Laboratory under agreement num-
ber FA8750-07-2-0029 and the National Science Foundation under grants CNS-0305144, CNS-0305198,
CNS-0551492, CNS-0509115, CNS-0305198, and CNS-0551560. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of Air Force Research Laboratory or the U.S.
Government.
Authors’ addresses: J. D. Hiser (corresponding author), D. W. Williams, W. Hu, J. W. Davidson, and J. Mars,
Computer Science Department, University of Virginia, 151 Engineer’s Way, Charlottesville, VA 22904; email:
hiser@virginia.edu; B. R. Childers, University of Pittsburgh, Pittsburgh, PA.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 1544-3566/2011/07-ART9 $10.00

DOI 10.1145/1970386.1970390 http://doi.acm.org/10.1145/1970386.1970390

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 9, Publication date: July 2011.

9:2 J. D. Hiser et al.

including optimizers, security checkers, binary instruction set translators, and program
instrumenters. For example, in Apple Computer’s transition from a PowerPC platform
to an Intel platform, they use a software dynamic translator. This translator, called
Rosetta, converts PowerPC instructions into IA-32 instructions and optimizes them
[Apple Computers 2006; Transitive Corporation Ltd. 2006]. The translator is integrated
directly into the operating system, making the conversion transparent to the user.
Other binary translators include Transmeta’s code morphing system that translates
IA-32 instructions to VLIW instructions [Ditzel 2000], UQDBT that dynamically trans-
lates Intel IA-32 binaries to run on SPARC processors [Ung and Cifuentes 2000], DAISY
that translates PowerPC instructions to VLIW instructions [Ebcioğlu and Altman 1997;
Ebcioğlu et al. 2001], and a variety of others [Zheng and Thompson 2000; Baraz
et al. 2003; Gschwind et al. 2000; Chernoff et al. 1998]. Computer architecture tools
like Shade and Embra use SDT to implement high-performance simulators [Cmelik
and Keppel 1994], while Mojo and Dynamo dynamically optimize native binaries to
improve performance [Bala et al. 2000; Chen et al. 2000]. SDT has been used to ensure
the safe execution of untrusted binaries [Kiriansky et al. 2002; Scott and Davidson
2001b; 2001a; Scott et al. 2003; Hu et al. 2009].

Despite many compelling SDT applications, a sometimes critical drawback of the
technology is the execution overhead incurred when running an application under the
control of an SDT system. The mediation of program execution adds overhead, possibly
in the form of time, memory size, disk space, or network traffic. For an SDT system
to be viable, its overhead must be low enough that the cost is worth the benefit. For
example, a SDT system might be used to protect critical server applications. If the
protection system overhead is high, total ownership costs will be increased (e.g., the
number of servers necessary for a desired throughput rate will be increased to offset the
overhead). If the protection system imposes only a small overhead, say a few percent
or less, then it is more likely to be used. Consequently, it is vital that SDT overhead be
minimal if the technology is to be widely applied.

A major source of SDT overhead stems from the handling of Indirect Branches
(IBs). Consider the graphs in Figure 1 which show the overhead (normalized to native
execution) of a high-quality SDT system with naı̈ve IB translation on an Opteron 244
processor, and the number of IBs per second executed by each benchmark. Naı̈ve IB
translation means that the SDT system regains control during each IB and performs
the steps necessary to emulate the IB. Inspection of the graphs shows that there is
a strong correlation between the IB execution rate and the overhead incurred by the
SDT system; applications with high IB execution rates incur high SDT overhead. For
example, 253.perlbmk shows that with 19.4 million IBs executed per second, that the
SDT system runs 39.4 times slower than native execution. Our results (presented in
Section 5) show that efficient handling of IBs can improve performance to as little as
3% slower than native execution.

To address this problem, this work evaluates methods for efficiently handling IBs in
SDT systems. This article makes the following contributions.

—Comprehensive evidence of the importance of efficiently handling IBs on different
processor architectures.

—A thorough analysis of different IB translation mechanisms, including data cache
handling, instruction cache handling, and a mixed method, on three popular proces-
sors.

—Algorithmic descriptions and example implementations of proposed techniques for
handling IBs.

—A direct comparison between several mechanisms to exploit the regularity of return-
type indirect branches.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 9, Publication date: July 2011.

Evaluating Indirect Branch Handling Mechanisms 9:3

Fig. 1. Overhead of SDT with naı̈ve IB translation (normalized to native execution) and IB execution rate
(in millions of indirect branches per section). Overhead is calculated by dividing the execution time with
SDT to the execution time without SDT. For example, 253.perlbmk executes nearly 40 times slower than
native execution and has 20 million IBs per second.

—A novel improvement on standard inline cache entires which gains as much as 10%
execution time improvement on some benchmarks, and up to 36% improvement on
254.gap from the SPEC benchmark suite.

—Experimental evidence on three architectures (Sparc ULTRASparc-IIi, Intel Pentium
4 Xeon, and AMD Opteron 244) that the best method for handling IBs depends on
the features of the target architecture such as addressing modes, branch predictors,
cache sizes, and the ability to efficiently preserve architecture state.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 9, Publication date: July 2011.

9:4 J. D. Hiser et al.

Fig. 2. Strata virtual machine translating and executing application instructions.

A key finding from our evaluation is the observation that no single method for handling
IBs is always the best across architectures and programs. The best method for an
architecture/program is highly dependent on the underlying processor capabilities.

The remainder of this article is organized as follows. Section 2 gives a brief overview of
SDT and Section 3 has a detailed description of the IB handling mechanisms evaluated
in this article. Section 4 describes the experimental framework in which the IB handling
mechanisms are evaluated and Section 5 presents our findings. Sections 6 and 7 discuss
related work and summarize our conclusions.

2. SOFTWARE DYNAMIC TRANSLATION OVERVIEW

This section describes some of the basic features of dynamic translation systems which
are important for understanding the experiments presented later. For an in-depth
discussion of these systems, please refer to previous publications [Bruening et al. 2003;
Luk et al. 2005; Scott and Davidson 2001b].

Most dynamic translators operate by repeatedly translating instructions, then ex-
ecuting the translated instructions. An examplar, Strata, is shown in Figure 2. Each
time the translator encounters a new instruction address (i.e., PC), it first checks to
see if the address has been translated into the code cache. The code cache is a soft-
ware instruction cache that stores portions of code that have been translated from the
application text. The code cache is made up of fragments, which are the basic unit
of translation. If the translator finds that a requested PC has not been previously
translated, it allocates a fragment and begins translation. When an end-of-fragment
condition is met (e.g., an IB is encountered), the translator emits any trampolines that
are necessary. Trampolines are code segments inserted into the code cache to transfer
control back to the translator. Most Control Transfer Instructions (CTIs) are initially
translated to trampolines (unless its target is already in the code cache). Once a CTI’s
target instruction becomes available in the code cache, the trampoline is replaced with
a CTI that branches directly to the destination in the code cache. This mechanism is
called fragment linking and avoids significant overhead associated with returning to
the translator after every fragment [Witchel and Rosenblum 1996; Cmelik and Keppel
1994; Bruening 2004; Scott and Davidson 2001b].

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 9, Publication date: July 2011.

Evaluating Indirect Branch Handling Mechanisms 9:5

Fig. 3. IBTC lookup algorithm and corresponding implementation for the IA-32.

3. INDIRECT BRANCH TRANSLATION

A fundamental operation performed by an SDT system is translation of branch target
addresses. The SDT system must map an application branch target address to the
appropriate code cache address.

t(AddrApplication) → AddrcodeCache

Translation of direct branches is simple because the mapping of target addresses is
one-to-one and can be done at translation time. On the other hand, translation of IBs is
more difficult. The mapping is many-to-many (each indirect branch maps an arbitrary
number of application addresses to an equal number of code cache addresses) and must
be done at execution time. The many-to-many nature of indirect branches necessitates
that the SDT system generate efficient code to perform this mapping.

A variety of IB handling mechanisms have been used in SDT systems. The techniques
can be classified into three main categories: data cache hashing (Section 3.1), instruc-
tion cache hashing (Section 3.2), and inline instruction cache handling (Section 3.3).
For some types of indirect branches, namely return instructions, an SDT system can
benefit from the predictable use patterns. Section 3.4 discusses some special mecha-
nisms for translating return instructions, but Sections 3.1 through 3.3 first discuss the
generic IB translation strategies.

3.1. Indirect Branch Translation Cache

An Indirect Branch Translation Cache (IBTC) is a data structure used to translate the
target of an IB to the corresponding code cache address [Scott et al. 2003]. An IBTC
is a list of pairs of addresses: an application address and its corresponding code cache
address. The left side of Figure 3 shows pseudocode for performing an IB translation
using an IBTC, and the right side of Figure 3 gives the Intel IA-32 implementation.

The IBTC lookup code first needs to save some architecture state, as the IB transla-
tion code cannot safely modify any registers. For the IA-32 instruction set, saving state
includes saving the eflags via the pushf instruction. For the SPARC, saving state is
more complicated because the current register window must be saved, and if the branch

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 9, Publication date: July 2011.

9:6 J. D. Hiser et al.

target address is in the register window, it must be stored in a thread-safe temporary
location before any save instruction.

After saving the context, the IB target is loaded into a temporary register. Another
temporary is used to calculate the index into the IBTC table by masking based on the
size of the table (TABLE MASK). The appropriate IBTC entry is computed by adding the
index to the base address of the IBTC table (IBTC TABLE START). The application target
address is compared against the IBTC entry. If the entry matches the target address
(an IBTC hit), the corresponding fragment address is loaded, the application state is
restored, and control is transferred to the target fragment. If the entry does not match
(an IBTC miss), control is transferred to the translator so the target fragment can be
built and a new entry made in the IBTC.

There are many IBTC design options. One option is whether the system should
reprobe on a conflict miss in the IBTC. The initial design of our SDT system’s IBTC
treated the IBTC much like a hardware cache, meaning that if there was a conflict
miss, the translator would be invoked to replace the conflicted cache entry. If conflict
misses are a large part of the remaining overhead, the IBTC can be implemented as
a traditional hashtable and be reprobed on a conflict miss, thus reducing the cost of
frequent conflicts.

Another important design choice is whether to use a single, large IBTC shared
between all IBs, or to use a small fixed-size individual IBTC for each IB (nonshared).
Empirical tests revealed that it was difficult to determine a good fixed size for individual
IBTCs because some IBs only have a few targets, and therefore only require a small
IBTC. Other IBs have many targets which could lead to a high number of conflict misses.
This observation led to the idea of nonshared, adaptively sized IBTC. An adaptive IBTC
doubles in size when a conflict miss occurs. This IBTC model allows IBs with few targets
to remain small while avoiding conflict and capacity misses for IB translations with
many targets.

3.2. Sieve

The sieve is a translation technique that uses code to map an application’s IB target
address to a code cache target [Sridhar et al. 2005]. The sieve is essentially an open
hashing technique implemented solely with instructions [Sedgewick 1983]. The left
side of Figure 4 gives the pseudocode for an implementation of the translation code
that a dynamic translator would generate and place in the code cache. The right side
of Figure 4 gives the SPARC implementation.

For each IB encountered during the translation process, the dynamic translator emits
code to store the branch target address and transfer control to the sieve dispatch code
(at label SieveDispatchBlock). The sieve dispatch code is created during initialization
of the code cache. When executed, this code saves any application state required, reloads
the application IB target address, and uses this address to calculate an index (using a
simple mask) into the sieve jump table. The last instruction of the SieveDispatchBlock
is an IB to an entry in the sieve jump table selected by the index.

The sieve jump table (at label SIEVE JUMP TABLE) contains jump instructions that
jump either to a ReturnToTranslator block or to a sieve bucket. Each sieve bucket com-
pares the application target address to a previously seen target address, and branches
directly to the appropriate code cache destination if the targets match. If the match
fails, control is transferred to the subsequent sieve bucket. The last sieve bucket in
each chain contains a branch to the ReturnToTranslator block. This block is reached
if the target of the IB target has not been translated. The ReturnToTranslator block
invokes the dynamic translator to create a new sieve bucket entry and update the
appropriate entry in the sieve jump table to jump to it. In the pseudocode presented,
the third entry in the sieve jump table has been modified to jump to SieveBucket01.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 9, Publication date: July 2011.

Evaluating Indirect Branch Handling Mechanisms 9:7

Fig. 4. Sieve algorithm and corresponding implementation for the SPARC.

Initially, all the jumps in the sieve jump table point to the ReturnToTranslator block.
As IBs are processed, the translator fills the table with jumps to an initial sieve bucket.
As with all open hashing implementations, the efficiency of the scheme depends on the
keys (i.e., the IB target addresses) being uniformly distributed over the bucket table
(i.e., the sieve jump table).

Like the IBTC implementation, the sieve implementation must be carefully crafted
to be efficient. One interesting artifact to note is that the sieve never compares two
address values. Instead, the sieve repeatedly compares one address value to a constant.
Additionally, only one temporary is needed, so the overhead of the context save and
restore may be lower than other techniques. Finally, it should be noted that the sieve
uses code space while the IBTC uses data space and the efficiency of the techniques
could be dependent on the relative amounts of I-cache and D-cache available on the
target machine. Thus, some machines may perform better with the sieve than with an
IBTC and vice versa.

3.3. Indirect Branch Inlining

Instead of relying exclusively on either an IBTC or sieve hash, it is possible to emit
inline code to do a tag compare and appropriate transfer instruction sequence. Using
one or more inline cache entries can be advantageous if many IBs resolve to a few
targets most of the time. IB inlining is done by comparing the IB target to the inlined
target address. If the target does not match, the inlining code can be followed with

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 9, Publication date: July 2011.

9:8 J. D. Hiser et al.

<save minimal application state>
t1 = loadBranchTarget()
if(t1 == STORED_TARGET) {

<restore minimal application state>
goto CODE_CACHE_ADDRESS

}

Fig. 5. Pseudocode for IB inlining.

another such inline, or another IB handling mechanism. If the hit rate of an inline
cache entry is high enough, execution of the inline cache entry (which is shorter than
a full data or instruction hash lookup) can save significant time and cache pollution.
The pseudocode for IB inlining is shown in Figure 5. STORED TARGET is the application
address corresponding to the CODE CACHE ADDRESS in the code cache. Since this target
address is potentially unknown at fragment-creation time, the SDT system creates an
empty code template until the decision can be made about how to use inline cache
entries.

There are a number of parameters to consider when using inline cache entries. First,
how many inline targets should be used? Is a fixed number of inline cache entries
appropriate, or should the amount of inlining be dynamically determined? How many
times should the IB translation be executed before the inlined targets are selected? Is it
advantageous to handle IBs resulting from indirect calls differently from IBs resulting
from indirect branches? Section 5.4 empirically evaluates these options.

3.4. Translating Return Instructions

Return instructions are the most frequently executed type of indirect branch. It has
been long known that most programs use function return statements in predictable
ways. Nearly every return statement transfers control to the location immediately
after a corresponding call statement. Many architectures, such as IA-32, SPARC, and
MIPS, exploit this pattern via special instructions to perform function call and return
operations. Hardware designers implement highly accurate branch predictors that
achieve near-perfect prediction rates for return instructions using a return address
stack [Skadron et al. 1998]. SDT systems can also take advantage of this pattern
predictability to reduce the overhead of maintaining control when mimicking the effects
of a return instruction. Sections 3.4.1 through 3.4.3 examine three mechanisms that
exploit the predictable patterns of return instructions.

3.4.1. Return Address Translation Stack. The Return Address Translation Stack (RATS)
is a mechanism that exploits the predictable nature of return instructions much like a
hardware return address stack [Hazelwood and Klauser 2006]. The translation of a call
instruction pushes an application and fragment cache return address into a buffer. A
return’s translation pops these values and verifies their validity and transfers control
appropriately if they are correct. If incorrect, a generic IB translation technique is used
as a backup mechanism.

Figure 6 shows the pseudocode for the RATS. Note that each call/return pair requires
writing and reading two pointers to the RATS. Further, since the table is maintained
as a stack, an update of the stack’s head pointer needs to be performed for each call
and return. Checking for over- or underflow can be achieved by allocating a page for
the RATS and using hardware page protections to disallow read or write accesses to
adjacent pages.

In general, because of the high overhead associated with maintaining the stack
pointer and instrumenting both the call and return instructions, this mechanism has

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 9, Publication date: July 2011.

Evaluating Indirect Branch Handling Mechanisms 9:9

Fig. 6. Pseudocode and IA-32 assembly for the RATS.

significant overhead even though it can have a very high hit-rate. An appropriately
sized sieve or IBTC is generally faster. The next section describes several optimizations
on the RATS to make it more competitive with generic IB translation techniques.

3.4.2. Return Cache. The return cache is a mechanism to exploit the regularity of return
instructions, first presented by Sridhar [2005]. In the return cache implementation, a
table of fragment cache return addresses is maintained (accessed by a hash function
using the containing function’s entry point). Figure 7 shows the pseudocode for the
translations of an application’s call and return instructions, along with the IA-32 and
SPARC assembly code. As the figure shows, the translation for each call instruction
updates the table and return instructions are translated to use the value in the table.
A return instruction’s translation does not verify that the value in the table is correct
when the translation executes. Instead, the translation blindly jumps to the location
specified in the table. In most cases, this will be the correct address. In some cases
(such as recursive function calls, odd uses of return instructions, or cache collisions)
the fragment return address in the table will be incorrect. To maintain proper pro-
gram semantics, the instructions at the destination verify that the control transfer
was correct (empty entries in the table jump to a block which uses a generic backup
mechanism). Since the address is frequently correct, this verification can be done very
inexpensively using an instruction sequence similar to an inline cache entry. If the
address is not correct, the branch is treated as a generic indirect branch via a backup
mechanism such as the sieve or IBTC.

This mechanism, in essence, uses a software cache to cache the top of the RATS
at the expense of a possibly higher miss rate. However, using a cache instead of a
stack avoids having to update stack pointers. Instead, indexing into the cache can be
performed at translation time and avoids repeatedly performing these operations at

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 9, Publication date: July 2011.

9:10 J. D. Hiser et al.

Fig. 7. Pseudocode and assembly for the return cache. Italicized parts represent the inline cache entry to
verify the return address is correct.

fragment-execution time. Likewise, by speculatively jumping to the fragment return
address, the need to store the application return address at the call site can be avoided.

3.4.3. Fast Returns. An alternate mechanism to using a RATS or return cache is to use
a mechanism called fast returns. Instead of exploiting the pattern of calls and returns,
fast returns exploits the fact that a return address generated by a call is rarely used
except by a return instruction.

Instead of translating a call instruction to push the application’s return address,
the fragment address is stored into the return address location. Return instructions
are left untranslated to simply return to the fragment cache return address and con-
tinue execution unchecked. Such a translation avoids much, if not all, of the overhead
associated with translating return instructions.

For the majority of call/return pairs, the fast return technique is effective because the
return address is only used by the return instruction. There are a few cases where the
address stored by a call instruction is used differently, and must be handled as a special
case if fast returns are used. One example of this behavior is data access for position-
independent code in some versions of glibc for IA-32 machines. Data is accessed based

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 9, Publication date: July 2011.

Evaluating Indirect Branch Handling Mechanisms 9:11

on an offset from the current PC, which is not known when the code is generated. To
identify the current PC, the system calls a thunk, which simply loads the return address
into a given register and then returns, thus placing the callee’s PC into a predetermined
register. If fast returns are implemented, the register loads a fragment cache address
and the address of the associated data is calculated incorrectly. Fortunately the code
for a thunk function is easy to identify when the fragment is translated. The SDT is
able to identify the thunks and place the application address in the register directly.

Two other constructs that must be handled for the safe execution of fast returns
are C++ exceptions and setjmp()/longjmp() functions. These constructs alter control
flow from one function to another function somewhere up the call chain. One way to
implement such a feature is to use the return address values to “walk the stack” up
to the desired stack frame. If the return address is a fragment address, the walk up
the stack can be corrupted and cause the program to fail. Like the thunk code, this
behavior is recognizable at translation time, and the SDT can emit code to fix the stack
when an exception or long jump occurs.

4. EXPERIMENTAL PARAMETERS

To evaluate the mechanisms for handling IBs described in Section 3, we used a va-
riety of machines, compilers, and benchmarks. The techniques described in Section 3
were implemented and evaluated within the Strata dynamic binary translation frame-
work [Scott and Davidson 2001b]. Sections 4.1 and 4.2 discuss our assumptions, ma-
chines, compilers, compiler options, and benchmarks we used for evaluation purposes.

4.1. Machines

The techniques presented in Section 3 were evaluated on three platforms: an Intel
Pentium 4 Xeon [Intel 2005], a Sun UltraSPARC-IIi [Sun Microsystems 1997], and an
AMD Opteron 244 [Advanced Micro Devices 2006]. The Pentium 4 Xeon data cache
is 8KB and 4-way associative, while the instruction caching mechanism is an 80K
micro-op trace cache. The UltraSparc-IIi data cache is 16KB direct-mapped, while the
instruction cache is 16KB, two-way set associative. On the Opteron both the data and
instruction caches are 64KB, two-way associative.

The compiler used on the Pentium 4 Xeon is gcc version 3.3. On the Opteron the
compiler is gcc version 4.0.2. For both of these machines, the compiler options are
-fomit-frame-pointer -O3. The compiler used on the UltraSPARC-IIi machines is the
SUNWspro cc compiler using options -fast -xO5. Strata was configured with a 4MB
code cache which was sufficiently large to run all applications.

4.2. Benchmarks

The full set of SPEC CPU2000 benchmarks was used for evaluation in this work
[Standard Performance Evaluation Corporation 2011]. Since all benchmarks have a
significant number of return instructions per second, we use the full suite when evalu-
ating return handling mechanisms. For mechanisms applied to nonreturn instructions,
most graphs report results (the SPEC number as reported by runspec for three runs)
only for the SPEC benchmarks that execute a significant number of IBs, namely:
177.mesa, 176.gcc, 186.crafty, 252.eon, 253.perlbmk, 254.gap, and 255.vortex.
For these graphs, we also report the geometric mean (ave) of the seven benchmarks.
For graphs that do include the entire SPEC suite, we report the geometric mean of
the SPEC number for the integer benchmarks (int ave), floating-point benchmarks (fp
ave), and the entire SPEC CPU2000 suite (spec ave). All results are normalized to
native execution time (i.e., the execution time of the application not running under
SDT control).

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 9, Publication date: July 2011.

9:12 J. D. Hiser et al.

Table I. IB Handling Mechanisms and Configuration Choices

Mechanism Choice Description
IBTC Table size Maximum number of target address translations in the

table
Lookup placement Lookup code placed in each fragment or in a separate

function
Reprobing Check next entry for a translation on a conflict miss
Adaptively sizing Grow IBTC on a conflict miss
Sharing One table for all indirects or separate tables for each in-

direct
Sieve Size Number of buckets in the sieve
Inline Inline amount Maximum number of target address translations to inline

in the fragment
Target selection Sequence of inlined entries ordered by time or frequency

(earlier/hotter translations occur earlier in the sequence)
Profiling Pre-computed from a previous run with the same data set

(ideal) or online during a short sampling period (online
profile)

Indirect type Determine inline amount, target selection, and profiling
amount separately for indirect calls and other indirect
branches

Fall back Mechanism to handle a miss on all inlined translations
Return Cache Size Number of entries in the return cache table
Fast Returns No options
RATS No options

Fig. 8. Indirect branches executed per second on Pentium 4 Xeon. Note that the bar for call instructions
represents only indirect call instructions.

5. EXPERIMENTAL RESULTS

This section evaluates the different IB handling techniques discussed in Section 3.
Table I summarizes the configuration options for each IB handling mechanism.

Figure 8 shows the indirect branch rate for return, and call instructions, and the re-
maining indirect branches (mostly for switch/case type statements). The figure shows

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 9, Publication date: July 2011.

Evaluating Indirect Branch Handling Mechanisms 9:13

Fig. 9. Return cache size on UltraSPARC-IIi.

that return instructions are the most common type of indirect branch in most applica-
tions. Consequently, we choose to study them first.

5.1. Return Handling Mechanisms

Section 5.1.2 compares the return handling mechanisms (RATS, return cache, and
fast returns), but first it is necessary to find the proper size for the return cache in
Section 5.1.1.

5.1.1. Return Cache. We first evaluate the size of the return cache. Figure 9 shows the
performance of Strata on an UltraSPARC-IIi machine, configured with a 16K-entry
sieve to handle nonreturn instructions (which we later show to be satisfactory for
handling nonreturn instructions). The size of the return cache varies from 1K entries
to 128K entries. As the figure shows, there is little performance gain as the size of the
table reaches 4K entries. Some benchmarks start to show performance degradation
as the size grows, relating to data cache pollution. When the table size reaches 128K
entries, the constant needed to index the table exceeds the immediate field of the
SPARC’s instruction set. Consequently, updating the table for indirect call instructions
takes an extra instruction, and some slowdown is observed for benchmarks with many
indirect calls (253.perlbmk, 254.gap, and 177.mesa).

We considered not updating the return cache for indirect call instructions because the
update is significantly more expensive than updates for direct call instructions. How-
ever, skipping these updates would likely cause the corresponding return instruction to
miss in the return cache, and fall back to the backup indirect branch handling mecha-
nism (the sieve in this case). Experimentally, we found that not updating caused minor
slowdown in benchmarks with indirect call instructions (detailed results omitted).

Overall results for the Pentium 4 Xeon are shown in Figure 10. Results generally
trend the same as for the UltraSPARC-IIi, with the exception of the 16K-entry return
cache. For the 16K-entry return cache, saving and restoring the eflags register can
be avoided when calculating the index into return cache for indirect call instructions.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 9, Publication date: July 2011.

9:14 J. D. Hiser et al.

Fig. 10. Return cache size on Pentium 4 Xeon.

Avoiding saving/restoring of flags is discussed more in Section 5.3. Results on the AMD
Operton are the similar and are omitted.

5.1.2. Comparison. Figures 11 and 12 show the comparison between the return cache,
fast returns, the sieve, and the IBTC for the UltraSPARC-IIi and Pentium 4 Xeon,
respectively.

On the UltraSPARC-IIi, the tuned return cache is more expensive than simply using
a sieve or IBTC. The main reason for the poor return cache performance is the SPARC’s
ISA’s limited addressing modes. Because there is no support for pointer-sized (32-bit)
immediates, it becomes necessary to save a register and use multiple instructions to
generate the address to store into the return cache (see Figure 7), and likewise, to load
the value to which to return takes a spare register and multiple instructions. Lastly,
the pointer-sized comparisons to verify the return cache entry take a spare register and
extra instructions. Consequently, there is significant extra overhead associated with
using the return cache.

However, the IA-32 machines support loading and storing a pointer-sized constant
using an immediate address in just one instruction. Because of the machine’s efficient
support for the operations to update and access the return cache’s table, performance
for these machines is greatly enhanced. The benchmarks with the most return in-
structions per second (177.mesa, 253.perlbmk, 254.gap, and 252.eon) see the largest
improvements.

On all machines, though, fast returns vastly outperform the return cache (Operton
244 results are omitted). Such performance is not unexpected: fast returns yields no
overhead for most call/return pairs. Experiments using hardware performance coun-
ters indicate that instruction count is greatly reduced. Further, we find that branch
predictor performance is improved; the hardware is able to use its hardware return
address prediction mechanism for return instructions. For the SPEC benchmark suite,
the potential loss-of-control or incorrect execution issues with fast returns never was
a problem, demonstrating that for some benchmarks, fast returns are a viable option.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 9, Publication date: July 2011.

Evaluating Indirect Branch Handling Mechanisms 9:15

Fig. 11. Comparison of return handling mechanisms on UltraSPARC-IIi.

Fig. 12. Comparison of return handling mechanisms on Pentium 4 Xeon.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 9, Publication date: July 2011.

9:16 J. D. Hiser et al.

Fig. 13. Performance with varying IBTC sizes (Pentium 4 Xeon).

Fig. 14. Placement of code to perform IBTC lookups (Pentium 4 Xeon).

As the return cache is an optimzation on the RATS, we expect the return cache to
be more effective. To verify this conclusion, we implemented the RATS for the IA-32
instruction set, and found it was 7% slower than the return cache. Though hit rates for
the RATS mechanism were near 100%, often with only one miss even in the reference
runs of the program, the high instruction count made the mechanism less efficient.

The remainder of the experiments use the fast return mechanism for return
instructions.

5.2. IBTC

5.2.1. Table Size. First, an appropriate size for a shared IBTC was determined by
increasing the size of the IBTC table until performance ceased to improve. Figure 13
shows the results for the Pentium 4 Xeon. As the figure shows, a small IBTC table yields
very poor performance, especially in 253.perlbmk. With 8K entries, nearly all of the
performance gain is realized. At 32K entries, no additional performance improvement is
observed. Results are similar on the UltraSPARC-IIi and Opteron 244 and are omitted
due to space constraints.

5.2.2. Lookup Code Placement. Second, we determined if the placement of the IBTC
lookup code affects performance. Figure 14 shows the results of placing the lookup
code inline in the fragment (first bar) versus creating an out-of-line function to perform
the lookup (second bar) on the Pentium 4 Xeon. The data shows that some benchmarks
benefit slightly from placing the lookup code in a separate function. Other bench-
marks show slight degradation in performance. In general, lookup code placement is a
time/space trade-off. The best choice depends on the constraints of the system and the
properties of the individual benchmark. On average, no significant difference between
inline code and using an out-of-line function can be seen. This result holds on the

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 9, Publication date: July 2011.

Evaluating Indirect Branch Handling Mechanisms 9:17

Fig. 15. Performance of IBTC reprobing on conflict (Pentium 4 Xeon).

Fig. 16. Performance with adaptive resizing of IBTC (Pentium 4 Xeon).

AMD and Sun machines and the detailed results are omitted. Subsequent experiments
evaluate IBTC options using inline IBTC lookup code.

5.2.3. Reprobing. Next, we considered the benefit of reprobing the IBTC to handle
conflicts. Figure 15 shows the performance on the Pentium 4 Xeon of reprobing a
1K-entry IBTC (first two bars) and 32K-entry IBTC (second two bars). The data shows
that reprobing provides significant benefits to a 1K-entry IBTC, nearly equaling the
performance of a 32K-entry IBTC. For large IBTC sizes, however, reprobing provides
little benefit. Consequently, we believe that reprobing would be a beneficial addition to
any IB handling mechanism in a space-constrained system [Moore et al. 2009]. Results
on the UltraSPARC-IIi and Opteron 244 are similar and are omitted. Since we use an
IBTC large enough to avoid most conflicts, we do not enable the reprobing mechanism
for the subsequent IBTC experiments.

5.2.4. Resizing and Sharing. Reprobing the IBTC seems to be an efficient way to deal
with conflicts as long as conflicts are rare. It is possible to completely avoid all conflicts
by resizing an IBTC when a conflict is detected. Figure 16 shows the results of assigning
a small IBTC (8 entries) to each IB and doubling the size of the IBTC on any conflict
for the Pentium 4 architecture. The figure shows that adaptively resizing an IBTC
adds little benefit over a large nonadaptive, shared IBTC. Another experiment, not
shown, set the initial size of an individual, adaptive IBTC much larger (512 entries).
No performance benefits were noted.

To summarize, we find that a large (32K entries), shared IBTC with inline lookup
code provides the greatest reduction in overhead. Having nonshared, or adaptively
sized IBTCs yields little benefit. Using an efficient reprobe mechanism can effectively
deal with conflicts in a smaller (1K entries) IBTC.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 9, Publication date: July 2011.

9:18 J. D. Hiser et al.

Fig. 17. Sieve size experiment (UltraSPARC-IIi).

Fig. 18. Sieve size experiment (Pentium 4 Xeon).

5.3. Sieve

The sieve, as described in Section 3.2 and in previous work [Sridhar et al. 2005], has
been implemented for all the machines we use for evaluation. We evaluated sieve
sizes from 1 entry up to 128K entries. Figure 17 shows the results obtained on the
UltraSPARC-IIi. The data shows that there is no further performance gain after 1K en-
tries. In some cases, performance degrades after 1K entries because the and operations
(see Figure 4) are more expensive. Due to the size of the TABLE MASK and restrictions on
the size of an immediate in an instruction, extra instructions are required to generate
the constant for the operation.

Figure 18 shows the results on the Pentium 4 Xeon. Like the UltraSPARC-IIi, per-
formance levels off after 1K entries, with one notable exception. The 16K-entry sieve
achieves significant performance improvement. 254.gap’s overhead improves from 2.02
times longer than native execution for the 8K-, 32K-, or 128K-entry sieve to only 18%
longer than native execution for the 16K-entry sieve. The 16K-entry sieve performs
significantly better because the save and restore of the eflags register can be avoided.
Being able to avoid the save/restore of the flags is a result of being able to use the

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 9, Publication date: July 2011.

Evaluating Indirect Branch Handling Mechanisms 9:19

(a) inline first target (b) inline best target

Fig. 19. Inline hit rate for 1 to 5 entries (Opteron 244).

movzwl instruction (which extracts the lower 16 bits of a register for zero-extending a
16-bit quantity, yet does not affect the flags) for the masking operation instead of the
and instruction (which does modify the eflags register). On the Pentium, the cost of the
save and restore of the flags is considerable, the 16K-entry sieve provides significant
benefits. Results on the AMD Athlon show the same trend as the Xeon and are omitted
due to space constraints.

Since the sieve implementation already supports efficient reprobing, choosing the
correct size is the only configuration parameter to consider. To summarize, a 1K-entry
sieve for the UltraSPARC-IIi is best as it avoids the extra instruction for the and
operations, while a 16K-entry sieve is best on the Opteron and Xeon as it avoids the
use pushf and popf instructions.

5.4. Inline Cache Entries

The next option is how to use inline cache entries. Figure 19 shows hit rates of inline
cache entries on the Opteron using two policies for selecting the inline entry. The left
graph in the figure shows the hit rates when the first dynamically executed target(s)
is used in the inline cache entry(s). The right part shows the hit rates when the best
choice (most frequently executed) for an inline target is inlined. Our results (not shown)
indicate that naı̈vely choosing the first target causes over 60% of all cache accesses in
the integer benchmarks to miss when one address translation is done as an inline
cache entry. By using the ideal inline targets (which obviously are not available at
translation time), the inline entries miss rate drops to just 40% for one inline target.
The floating-point benchmarks do much better, but these benchmarks have few IBs, so
even a very high hit rate does not affect overall performance.

Since one inline entry does not have a high hit rate for some benchmarks, it is possible
that inlining more entries may increase the overall hit rate. To get a sense of how the
number of inline entries affects hit rate, hit rates for various amounts of inlining,
ranging from 1 to 5 entries, were measured. Figure 19 shows the hit rate generally
increases as more entries are inlined using the naı̈ve target selection method. For
example, in 177.mesa, the hit rate quickly approaches 100%. In other benchmarks, with
a greater distribution of indirect targets, the hit rate does not increase as dramatically.
In 253.perlbmk, the hit rate largely levels off after the second inlined entry. Even when
using the ideal target selection mechanism and five inline targets, hit rates do not
always reach 90%.

Although hit rates indicate how well inlining may work, the location and instruction
cost of which inline cache entry the hit occurs also affects performance. In the worst
case, the last entry in the inline sequence might be hit. Hitting in the last inline cache

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 9, Publication date: July 2011.

9:20 J. D. Hiser et al.

(a) inline first target (b) inline best target

Fig. 20. Average instruction count for 1 to 5 inline entries (Opteron 244).

entry is expensive because several entries have to be traversed before getting to the
last one.

Figure 20 shows the average number of instructions needed to satisfy an IB transla-
tion for inline depths of 1 to 5 on the Opteron using both target selection mechanisms,
based on the Instruction Count (IC) of hitting a particular inline entry and its local
hit rate. Both sieve and IBTC lookups take approximately 17 instructions, depicted as
a flat line in the figure. As shown, inlining reduces IC as compared to the IBTC on
several benchmarks. For instance, 177.mesa has an improvement. In other cases, the
change in IC is small. In 253.perlbmk, the count increases. On average, inlining one
entry takes 14.6 instructions and inlining two entries takes 13.3. The relative change
is small, and beyond two entries, there is little apparent benefit.

Because ideal target selection is impossible to implement a priori, we need to de-
termine if an approximation to this scheme is worthwhile. To measure the effect of
ideal target selection approximation, dynamic instruction scheduling, caching effects,
and other machine considerations, we implemented an online profiling technique for
IBs. The branch translation is executed a specified number of times, and then the
best (most frequently executed during the online profiling) target(s) are selected and
inlined. Since performing online profiling takes time, we considered using online pro-
filing up to 300 executions of each IB. Beyond that point we began to see performance
degradation and concluded no further online profiling was beneficial. Based on the re-
sults shown in Figure 19 and 20, we consider inlining 0 to 3 targets. Furthermore, we
also considered call-type IBs separately from switch-type IBs as they may demonstrate
different profiling and inlining behavior. Lastly, we considered allowing the translator
to dynamically choose (based on the instruction count of inline cache entries and the
backup mechanism) the number of inline entires once the profile selection is complete.
Thus, if the profile indicates there are no dominate IB targets, the translator is free
to rewrite the IB translation to use no inline entries, effectively avoiding any further
overhead from frequently missing in the inline cache entry.

The detailed results (omitted due to space restrictions) indicate that call-type and
switch-type IBs indeed show different behavior. The most beneficial option for switch-
type instructions is to profile a modest amount, about 30 executions of the IB, and then
allow the translator to choose the amount of inlining. Indirect calls seem to have more
static behavior and inlining the first two targets provides the best speedup. For indirect
calls, profiling, even a small amount, provides no additional benefits. Dynamically
selecting the amount of inlining provided no benefit for call-type IB translations.

Figure 21 compares no inlining, the best switch-type inlining, the best call-type
inlining, and the combination of the best switch and call inlining when using the

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 9, Publication date: July 2011.

Evaluating Indirect Branch Handling Mechanisms 9:21

Fig. 21. Inlining results for Opteron 244.

sieve as a backup translation mechanism on the Opteron. The figure shows that
switch inlining can provide modest improvements, about 2% on average for the key
benchmarks while some benchmarks see up to 4% improvement. Call inlining provides
more benefit, 5% on average. Using a call inlining technique for 254.gap provides quite
dramatic improvement on the Opteron. Experiments using hardware performance
counters (omitted) demonstrate that this improvement is because the Opteron has a
high misprediction rate for IBs, and the call inlining helps the processor mispredict
the target less frequently.

Even though the indirect call and switch inlining techniques are apparently indepen-
dent, the combination of the two techniques frequently yields performance worse than
call inlining alone. Hardware performance counter experiments (omitted) show that
this performance degradation is because inline entries take up significant instruction
cache space. Combined, their potential gain in performance is erased by the increased
instruction cache miss rate.

Interestingly, the Opteron is the only machine where using inline cache entries
yields significant benefits. We find that the same configuration of inlining is best
on the UltraSPARC-IIi and Xeon processors, but the use of inlining seems to yield
little benefit. In fact, since the SPARC ISA has no instructions which support 32-bit
constants, the inline entry requires extra instructions to generate the 32-bit addresses
needed for the inline entry. Consequently, the inline cache entries are too expensive,
and actually cause significant slowdowns for some benchmarks. The Xeon, which does
support the 32-bit constants like the Opteron processor, sees no significant benefits;
average results vary by less than 1%. We believe the Xeon does not see the benefits
of the Opteron because the Xeon has a more sophisticated branch/trace predictor and
the Pentium’s trace cache is less tolerant to the increase in instruction cache pressure
caused by the inline cache entries.

One last option that we considered was having the inline miss code (the sieve lookup
code in the case of the Opteron) overwrite an inline entry. We found that this indeed
provided a higher hit rate for the cache inline entry, but significant slowdowns overall,
on the order of 2 to 5 times slower than native execution. The problem with dynamically
updating the inline entries frequently is that the instruction cache must be flushed for
every update of an inline entry. A single, frequently executed branch with a target that
changes often will cause cache flushes too frequently for the instruction cache to ever
perform well. Consequently, we disregard dynamic updating of inline cache entries
once the initial targets have been selected.

To summarize, we find that cache inline entries can sometimes be effective at
reducing overhead in dynamic translation systems. A small amount of online profiling,
30 executions, is needed for switch inlining to dynamically select the best amount

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 9, Publication date: July 2011.

9:22 J. D. Hiser et al.

Fig. 22. Sieve vs. IBTC on UltraSPARC-IIi.

Fig. 23. Sieve vs. IBTC on Pentium 4 Xeon.

Fig. 24. Sieve vs. IBTC on Opteron 244.

of inlining. Call inlining should be performed using the first two dynamically taken
targets, avoiding the profiling overhead.

5.5. Comparison

Now that we have explored the design and parameter space for IBTCs, the sieve, and
branch target inlining, we examine which mechanism is most appropriate for each
machine. For this evaluation, we compare the execution time of the benchmarks with
different IB translation mechanisms, as well as the memory overhead for each tech-
nique. Other factors may be of importance in some systems. Due to space restrictions,
we only consider performance and memory overhead.

Figures 22, 23, and 24 compare an IBTC to a sieve implementation on the Ultra-
SPARC-IIi, Opteron 244, and Pentium 4 Xeon, respectively. For the UltraSPARC-IIi,
the sieve has worse performance than the IBTC. The SPARC’s limited addressing

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 9, Publication date: July 2011.

Evaluating Indirect Branch Handling Mechanisms 9:23

Fig. 25. Memory sizes for different IB techniques for the Opteron 244.

modes and fast context saves/restores make the sieve ineffective. The Xeon machine
shows that the sieve would be a loss, except that the ability to avoid saving the flags
provides a large win. Interestingly, on the Opteron 244, the sieve and IBTC perform
similiarly on most benchmarks when the flags are saved. However, like the Xeon, once
the save/restore of the flags is avoided the sieve performs much better.

Figure 25 shows the estimated memory consumption of each technique. The estimate
includes exact information for all data required for the technique. The size also includes
an estimate of the size of code (held in the fragment cache) for IB translations. Code size
is estimated based on event counts (such as sieve transfer blocks generated) multiplied
by the typical size of the translation. Code size estimates may slightly differ from the
exact code size because the size of assembled instructions may vary due to different
addressing modes, etc.

The first two bars of the figure show a shared IBTC (32K-entry) and a sieve (16K-
entry). For both bars, the total size is dominated by the hash table required for the
technique. Consequently the sieve has a smaller memory footprint due to its smaller
table size. The next two bars show the overhead of using one inline cache entry for
each indirect call translation, as detected to be most beneficial in Section 5.4. The
memory size of the inline cache entries is insignificant compared to the size of the
backup mechanism used. On average, the inline cache entries consume only 3.6K of
code space.

The fifth and sixth bars in the graph represent the total size needed when the shared
IBTC and sieve, respectively, are used without the fast return mechanism. We see that
there is significant growth in the size required, even though the table sizes remain
the same. This growth corresponds to longer IB translations for return instructions,
as well as more sieve transfer blocks. Since there are a significant number of return
instructions translated, these longer translations and more sieve transfer blocks result
in this significant overall increase in memory consumption. It is interesting to note that

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 9, Publication date: July 2011.

9:24 J. D. Hiser et al.

Fig. 26. Performance with best configuration.

the size difference between the shared IBTC and the sieve remains approximately the
same as when using fast returns. This similar growth can be explained by the IBTC
having a larger IB translation, while the sieve requires additional transfer blocks.
These two differences ultimately require approximately the same amount of memory.

The last 4 bars of the figure show the shared IBTC and sieve with return cache
and RATS mechanisms. Note that the relative position of the sieve and shared IBTC
bars remains approximately the same for both the return cache and RATS. The figure
shows, though, that the table size no longer dominates the total size of the techniques.
The table size for the RATS is only 12K bytes compared to the return cache’s 128K
bytes, yet the RATS always has a higher memory consumption. This trend can be
explained by the fact that the translation for the RATS is significantly larger than
for the return cache. Further, both the return cache and the RATS need additions
to the translations of call instructions (both direct and indirect). Consequently, both
techniques are more closely tied to the number of unique call and return instructions
that are translated than other techniques. Ultimately the longer translations for the
RATS hurt both performance and memory consumption compared to other techniques.

The results in this section demonstrate that the performance benefit from a par-
ticular method of handling IBs varies with the architecture and program. There is
no single best mechanism and careful attention must be paid to the selection of the
mechanism to get good performance. In fact, simply moving from the best data cache
hashing mechanism to a carefully crafted instruction cache hashing scheme reduces
SPEC INT2000 average overhead significantly; over 50% of the overhead is removed
(19% to 9%) on the Xeon processor. Likewise, the overall SPEC overhead on the Opteron
can be reduced by 50% (4% to 2%). With careful selection of the mechanism, the average
overhead of a SDT system for the SPEC benchmarks can be reduced to just 3.5% on
the UltraSPARC-IIi, 4.5% on the Xeon, and 2.2% on the Opteron (Figure 26).

To verify that our results are broadly applicable to modern, object-oriented bench-
marks, we also verified our results with the SPEC CPU2006 benchmark suite. We
found no significant difference in the mechanism or configuration that should be used

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 9, Publication date: July 2011.

Evaluating Indirect Branch Handling Mechanisms 9:25

Table II. Recommendations for Configuration Choices

Mechanism Choice Description
Table size 8K entries does well, 32K entries gets maximum benefit
Lookup placeup code inside fragment

IBTC Reprobing Use reprobing with small IBTC tables (e.g., 1K) when
memory constrained

Adaptively resizing Shared, fixed 32K-entry table over non-shared, adaptive
Sharing Shared, fixed 32K-entry table over non-shared adaptive

Sieve Size Size based on generated lookup code. SPARC: use a 1K-
entry sieve to avoid extra and instruction, Pentium and
Opteron: use a 16K-entry sieve to avoid pushf instruction

Inline amount Use from zero to three inline translations
Target selection For call-type indirects, use a naive policy (inline two en-

tires). For switch-type indirects, use profile guided policy
Inline Profiling For switch-type indirects, use online profiling with a

threshold of 30 executions
Indirect type Distinguish call-type from switch-type to handle effi-

ciently
Fall back Select based on target architecture

Return Cache Size 4K entries avoid conflicts, but larger may be needed to
avoid extra instructions. Use only when ISA supports 32-
bit immediate and immediate addressing

Fast Returns Use when viable

for these benchmarks. Overall overhead for the SPEC CPU2006 benchmarks on the
Opteron 244 machine were 13% and 5% when using the 16K-entry sieve with the 16K-
entry return cache and fast returns, respectively. One notable difference is that the fast
return mechanism is unsuitable for two benchmarks (471.omnetpp and 453.povray)
due to nonstandard use of the application’s return address (for exception handling
purposes).

Our findings indicate that SDT can have extremely low overhead for many bench-
marks. These low overheads make SDT a feasible and beneficial technology in many
settings. Since modern machines have gigabytes of memory, we make final recommen-
dations based on performance alone. Table II summarizes the recommended configu-
ration options.

6. RELATED WORK

Dynamic binary translation is a popular area of study, with a large design space,
resulting in much research exploring design trade-offs. Trace layout [Duesterwald
and Bala 2000; Hiniker et al. 2005], code cache management [Hazelwood and Smith
2003; 2004; Zhou et al. 2005; Kumar et al. 2005], and transparency [Bruening and
Amarasinghe 2005] have all been studied in detail. Much work has been also been
done investigating how SDT schemes can handle IBs, and a good overview of these
options is given by Smith and Nair [2005]. Part of the motivation of this work is the
fact that there are many options for handling IBs, but it is very difficult to compare
any two techniques directly. In practice, most systems have chosen a single technique
for handling IBs and therefore are unable to directly compare their technique to other
techniques that have been developed.

Bruening [2004] and Bruening et al. [2003] detail numerous general design choices
for handling IBs, including transparency issues with using the stack for scratch storage
and choosing proper hashes to minimize data cache pressure. He also looks at IA-32-
specific issues including a method to do comparisons on the IA-32 without altering the
eflags, and also techniques for minimizing the cost of saving eflagswhen it is required.

Both Dynamo [Bala et al. 2000] and Daisy [Ebcioğlu and Altman 1997; Ebcioğlu et al.
2001] use chains of inlined comparisons to handle IBs. Pin uses a technique similar to

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 9, Publication date: July 2011.

9:26 J. D. Hiser et al.

our IBTC with inlining [Luk et al. 2005]. The sieve was first introduced by HDTrans as
a method for doing IB handling without polluting the data cache [Sridhar et al. 2005].
These are all pure software techniques for handling IBs. Kim and Smith [2003] have
examined hardware techniques.

7. CONCLUSIONS

Software Dynamic Translation (SDT) is a powerful technique in which a running binary
is dynamically modified to provide a variety of benefits. Binaries can be dynamically
translated to new systems, protected from malicious intrusion, dynamically optimized,
or instrumented to collect a variety of statistics. One major deterrent to more pervasive
use of SDT is the overhead associated executing the program within an SDT system.

Handling IBs efficiently has been shown to be extremely important to having an
efficient dynamic translation system. Furthermore, a variety of techniques have been
proposed, but a thorough, cross-platform comparison of techniques has been lacking.
This work addresses that issue by fully describing, implementing, and evaluating a
variety of IB handling mechanisms. We use a publicly available, retargetable SDT
system, three common architectures, and the full suite of SPEC CPU2000 benchmarks.
Our findings indicate that fast returns are a viable option for a variety of benchmarks
and provide significant runtime overhead reduction. When they are not viable, the best
option for handling return instructions depends highly on the architectural support for
32-bit constants.

Our findings also indicate that for nonreturn instructions, moderately sized hashes
provide most of the runtime benefit. Furthermore, placement of the code to perform the
hash lookup (inline and duplicated, versus out of line with extra instructions) is of little
importance. We do find, however, that data cache hashing is the most useful technique
across platforms. What is more important, however, is choosing a set of instructions
that is efficient on the target machine. For example, the saving and restore of the
eflags on the Pentium 4 Xeon and Opteron 244 is so costly that avoiding the save
and restore of the flags is significantly more important than instruction cache or data
cache handling. Lastly, we find that a novel approach to using an inline cache entry
can provide a performance benefit based on the underlying processor organization,
removing as much as 50% of the overhead (4% to 2% for all of the SPEC benchmark
suite) on an AMD Opteron.

REFERENCES

ADVANCED MICRO DEVICES. 2006. AMD website on Opterons. http://www.amd.com/us-en/Processors/
ProductInformation/0,,30_118_8826,0%0.html.

APPLE COMPUTERS. 2006. Apple website on Rosetta. http://www.apple.com/rosetta/.
BALA, V., DUESTERWALD, E., AND BANERJIA, S. 2000. Dynamo: A transparent dynamic optimization system. In

Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’00). ACM Press, New York, 1–12.

BARAZ, L., DEVOR, T., ETZION, O., GOLDENBERG, S., SKALETSKY, A., WANG, Y., AND ZEMACH, Y. 2003. IA-32 execu-
tion layer: A two-phase dynamic translator designed to support IA-32 applications on Itanium R©-based
systems. In Proceedings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture.
IEEE Computer Society, 191.

BRUENING, D. 2004. Efficient, transparent, and comprehensive runtime code manipulation. Ph.D. thesis, MIT.
BRUENING, D. AND AMARASINGHE, S. 2005. Maintaining consistency and bounding capacity of software code

caches. In Proceedings of the International Symposium on Code Generation and Optimization (CGO’05).
IEEE Computer Society, Los Alamitos, CA, 74–85.

BRUENING, D., GARNETT, T., AND AMARASINGHE, S. 2003. An infrastructure for adaptive dynamic optimization.
In Proceedings of the 1st International Symposium on Code Generation and Optimization. 265–275.

CHEN, W.-K., LERNER, S., CHAIKEN, R., AND GILLIES, D. 2000. Mojo: A dynamic optimization system. In Proceed-
ings of the ACM Workshop on Feedback-Directed and Dynamic Optimization (FDDO-3).

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 9, Publication date: July 2011.

Evaluating Indirect Branch Handling Mechanisms 9:27

CHERNOFF, A., HERDEG, M., HOOKWAY, R., REEVE, C., RUBIN, N., TYE, T., YADAVALLI, S. B., AND YATES, J. 1998.
FX!32: A profile-directed binary translator. IEEE Micro 18, 2, 56–64.

CMELIK, B. AND KEPPEL, D. 1994. Shade: A fast instruction-set simulator for execution profiling. In Proceedings
of the ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems. ACM Press,
New York, 128–137.

DITZEL, D. R. 2000. Transmeta’s Crusoe: Cool chips for mobile computing. In Hot Chips XII. Stanford Uni-
versity. IEEE Computer Society Press.

DUESTERWALD, E. AND BALA, V. 2000. Software profiling for hot path prediction: Less is more. In Proceedings of
the 9th International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-IX). ACM Press, New York, 202–211.

EBCIOĞLU, K. AND ALTMAN, E. 1997. DAISY: Dynamic compilation for 100% architectural compatibility. In
Proceedings of the 24th Annual International Symposium on Computer Architecture (ISCA’97). ACM
Press, New York, 26–37.

EBCIOĞLU, K., ALTMAN, E., GSCHWIND, M., AND SATHAYE, S. 2001. Dynamic binary translation and optimization.
IEEE Trans. Comput. 50, 6, 529–548.

GSCHWIND, M., ALTMAN, E. R., SATHAYE, S., LEDAK, P., AND APPENZELLER, D. 2000. Dynamic and transparent
binary translation. Comput. 33, 3, 54–59.

HAZELWOOD, K. AND KLAUSER, A. 2006. A dynamic binary instrumentation engine for the ARM architecture.
In Proceedings of the International Conference on Compilers, Architecture and Synthesis for Embedded
Systems (CASES’06). ACM, New York, 261–270.

HAZELWOOD, K. AND SMITH, J. E. 2004. Exploring code cache eviction granularities in dynamic optimization
systems. In Proceedings of the International Symposium on Code Generation and Optimization (CGO’04).
IEEE Computer Society, Los Alamitos, CA, 89.

HAZELWOOD, K. AND SMITH, M. D. 2003. Generational cache management of code traces in dynamic optimization
systems. In Proceedings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO’36). IEEE Computer Society, Los Alamitos, CA, 169.

HINIKER, D., HAZELWOOD, K., AND SMITH, M. D. 2005. Improving region selection in dynamic optimization
systems. In Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO’38). IEEE Computer Society, Los Alamitos, CA, 141–154.

HU, W., WILLIAMS, D., DAVIDSON, J. W., HISER, J. D., KNIGHT, J. C., AND NGUYEN-TUONG, A. 2009. Security through
diversity: Leveraging virtual machine technology. IEEE Secu. Priv. 7, 1, Special Issue on IT Monoculture
26–33.

Intel 2005. IA-32 Intel Architecture Optimization Reference Manual.
KIM, H.-S. AND SMITH, J. E. 2003. Hardware support for control transfers in code caches. In Proceedings of the

36th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’36). IEEE Computer
Society, Los Alamitos, CA, 253.

KIRIANSKY, V., BRUENING, D., AND AMARASINGHE, S. 2002. Secure execution via program shepherding. In Pro-
ceedings of the 11th USENIX Security Symposium.

KUMAR, N., BRUCE R, C., WILLIAMS, D., DAVIDSON, J., AND SOFFA, M. 2005. Compile-Time planning for overhead
reduction in software dynamic translators. Int. J. of Parall. Program. 33, 2, 103–114.

LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER, A., LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZELWOOD, K.
2005. Pin: Building customized program analysis tools with dynamic instrumentation. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’05).
ACM Press, New York, 190–200.

MOORE, R. W., BAIOCCHI, J. A., CHILDERS, B. R., DAVIDSON, J. W., AND HISER, J. D. 2009. Addressing the challenges
of dbt for the arm architecture. In Proceedings of the ACM Conference on Languages Compilers and Tools
for Embedded Systems (LCTES’09).

SCOTT, K. AND DAVIDSON, J. 2001a. Low-Overhead software dynamic translation. Tech. CS-2001-18. July.
SCOTT, K. AND DAVIDSON, J. 2001b. Strata: A software dynamic translation infrastructure. In Proceedings of

the IEEE Workshop on Binary Translation.
SCOTT, K., KUMAR, N., VELUSAMY, S., CHILDERS, B., DAVIDSON, J. W., AND SOFFA, M. L. 2003. Retar-

getable and reconfigurable software dynamic translation. In Proceedings of the International Sym-
posium on Code Generation and Optimization (CGO’03). IEEE Computer Society, Los Alamitos, CA,
36–47.

SEDGEWICK, R. 1983. Algorithms. Addison-Wesley.
SKADRON, K., AHUJA, P., MARTONOSI, M., AND CLARK, D. 1998. Improving prediction for procedure returns with

return-address-stack repair mechanisms. In Proceedings of the 31st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’31). 259–271.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 9, Publication date: July 2011.

9:28 J. D. Hiser et al.

SMITH, J. AND NAIR, R. 2005. Virtual Machines: Versatile Platforms for Systems and Processes. Morgan
Kaufmann.

SRIDHAR, S., SHAPIRO, J. S., AND BUNGALE, P. P. 2005. HDTrans: A low-overhead dynamic translator. In
Proceedings of the Workshop on Binary Instrumentation and Applications. IEEE Computer Society.

STANDARD PERFORMANCE EVALUATION CORPORATION. SPEC CPU2000 Benchmarks. http://www.specbench.org/
osg/cpu2000.

Sun Microsystems 1997. UltraSPARC-IIi User’s Manual. Sun Microsystems.
TRANSITIVE CORPORATION LTD. 2006. Transitive website. http://www.transitive.com/.
UNG, D. AND CIFUENTES, C. 2000. Machine-Adaptable dynamic binary translation. In Proceedings of the ACM

Workshop on Dynamic Optimization (Dynamo’00).
WITCHEL, E. AND ROSENBLUM, M. 1996. Embra: Fast and flexible machine simulation. In Proceedings of the ACM

SIGMETRICS International Conference on Measurement and Modeling of Computer Systems. 68–79.
ZHENG, C. AND THOMPSON, C. 2000. PA-RISC to IA-64: Transparent execution, no recompilation. IEEE

Comput. 33, 3, 47–52.
ZHOU, S., CHILDERS, B. R., AND SOFFA, M. L. 2005. Planning for code buffer management in distributed virtual

execution environments. In Proceedings of the 1st ACM/USENIX International Conference on Virtual
Execution Environments (VEE’05). ACM Press, New York, 100–109.

Received May 2009; revised September 2010; accepted February 2011

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 2, Article 9, Publication date: July 2011.

