
Abstract

Software Dynamic Translation (SDT) systems are used for
program instrumentation, dynamic optimization, security,
intrusion detection, and many other uses. As noted by many
researchers, a major source of SDT overhead is the execution of
code which is needed to translate an indirect branch’s target
address into the address of the translated destination block.

This paper discusses the sources of indirect branch (IB) over-
head in SDT systems and evaluates several techniques for over-
head reduction. Measurements using SPEC CPU2000 show
that the appropriate choice and configuration of IB translation
mechanisms can significantly reduce the IB handling overhead.
In addition, cross-architecture evaluation of IB handling mecha-
nisms reveals that the most efficient implementation and config-
uration can be highly dependent on the implementation of the
underlying architecture.

1. Introduction

Software dynamic translation (SDT) is a technology
that enables software malleability and adaptivity at the
instruction level by providing facilities for run-time moni-
toring and code modification. Many useful systems have
been built that apply SDT, including optimizers, security
checkers, binary instruction set translators, and program
instrumenters. For example, in Apple Computer’s transition
from a PowerPC platform to an Intel platform, they use a
software dynamic translator. This translator, called Rosetta,
converts PowerPC instructions into IA-32 instructions and
optimizes them [7, 19]. The translator is integrated directly
into the operating system, making the conversion transpar-
ent to the user. Other binary translators include Transmeta’s
Code Morphing System that translates IA-32 instructions
to VLIW instructions [9], UQDBT that dynamically trans-
lates Intel IA-32 binaries to run on SPARC processors [30],
and DAISY that translates PowerPC instructions to VLIW
instructions [11]. Computer architecture tools like Shade
and Embra use SDT to implement high-performance simu-
lators [6], while Mojo and Dynamo dynamically optimize
native binaries to improve performance [1, 5]. Recently,
SDT has been used to ensure the safe execution of untrusted
binaries [17, 21, 22, 24].

Despite many compelling SDT applications, a some-
times critical drawback of the technology is the execution

overhead incurred when running an application under the
control of a SDT system. The mediation of program execu-
tion adds overhead, possibly in the form of time, memory
size, disk space, or network traffic. For a SDT system to be
viable, its overhead must be low enough that the cost is
worth the benefit. For example, a SDT system might be
used to protect critical server applications. If the protection
system overhead is high, total ownership costs will be
increased (e.g., the number of servers necessary for a desired
throughput rate will be increased to offset the overhead). If
the protection system imposes only a small overhead, say a
few percent or less, then it is more likely to be used. Conse-
quently, it is vital that SDT overhead be minimal if the
technology is to be widely applied.

A major source of SDT overhead stems from the han-
dling of indirect branches (IBs). Consider the graphs in Fig-
ure 1 which shows the overhead (normalized to native
execution) of a high-quality SDT system with naïve IB
translation on an Opteron 244 processor, and the number of
IBs per second executed by each benchmark. Inspection of
the graphs show that there is a strong correlation between
the IB execution rate and the overhead incurred by the SDT
system—applications with high IB execution rates incur
high SDT overhead.

To address this problem, this work evaluates methods
for efficiently handling IBs in SDT systems. This paper
makes the following contributions:
• Comprehensive evidence of the importance of effi-

ciently handling IBs on different processor architec-
tures;

• A thorough analysis of different IB translation mecha-
nisms, including data cache handling, instruction cache
handling, and a mixed method, on three popular pro-
cessors;

• Algorithmic descriptions and example implementations
of proposed techniques for handling IBs;

• A novel improvement on standard inline cache entries
which gains as much as 10% execution time improve-
ment on some benchmarks, and up to 36% improve-
ment on 254.gap from the SPEC benchmark suite;
and

• Experimental evidence that the best method for han-
dling IBs depends on the features of the target architec-

Evaluating Indirect Branch Handling Mechanisms
in Software Dynamic Translation Systems

Jason D. Hiser, Daniel Williams Jason Mars, Bruce R. Childers
Wei Hu, Jack W. Davidson
Department of Computer Science Department of Computer Science

University of Virginia University of Pittsburgh
{hiser,dww4s,wh5a,jwd}@cs.virginia.edu jom5x@cs.virginia.edu, childers@cs.pitt.edu

ture such as addressing modes, branch predictors, cache
sizes and the ability to efficiently preserve architecture
state.

A key finding from our evaluation is the observation that no
single method for handling IBs is always the best across
architectures and programs. The best method for an archi-
tecture/program is highly dependent on the underlying pro-
cessor capabilities.

The remainder of this paper is organized as follow. Sec-
tion 2 gives a brief overview of SDT and Section 3 has a
detailed description of the IB handling mechanisms evalu-
ated in this paper. Section 4 describes the experimental
framework in which the IB handling mechanisms are evalu-
ated and Section 5 presents our findings. Sections 6 and 7
discuss related work and summarize our conclusions.

2. Software Dynamic Translation Overview

This section describes some of the basic features of
dynamic translation systems which are important for under-
standing the experiments presented later. For an in-depth
discussion of these systems, please refer to previous publica-
tions [4, 20, 21].

Most dynamic translators operate as a co-routine with
the application they are controlling. Each time the translator
encounters a new instruction address (i.e., PC), it first
checks to see if the address has been translated into the code
cache. The code cache is a software instruction cache that
stores portions of code that have been translated from the
application text. The code cache is made up of fragments,

which are the basic unit of translation. If the translator finds
that a requested PC has not been previously translated, it
allocates a fragment and begins translation. When an end-
of-fragment condition is met (e.g., an IB is encountered),
the translator emits any trampolines that are necessary.
Trampolines are code segments inserted into the code cache
to transfer control back to the translator. Most control
transfer instructions (CTIs) are initially translated to tram-
polines (unless its target is already in the code cache). Once
a CTI’s target instruction becomes available in the code
cache, the trampoline is replaced with a CTI that branches
directly to the destination in the code cache. This mecha-
nism is called fragment linking and avoids significant over-
head associated with returning to the translator after every
fragment [2, 21].

3. Indirect Branch Translation

A fundamental operation performed by an SDT system
is translation of branch target addresses. The SDT system
must map an application branch target address to the appro-
priate code cache address.

Translation of direct branches is simple because there is
only one branch target address. For IBs, the branch target
address is computed at execution time which necessitates
that the SDT system generate efficient code to perform the
mapping at execution time.

A variety of IB handling mechanisms have been used in
SDT systems. The techniques can be classified into three
main categories: data cache hashing (Section 3.1), instruc-

Figure 1: Overhead of SDT with naïve IB translation.

0

10
20

30

40

168.wupwise

171.swim

172.mgrid

173.applu

177.mesa

178.galgel
179.art

183.equake

187.facerec

188.ammp

189.lucas

191.fm
a3d

200.sixtrack

301.apsi

164.gzip
175.vpr

176.gcc
181.mcf

186.crafty

197.parser

252.eon

253.perlbmk

254.gap

255.vortex

256.bzip2

300.twolf
fp ave

int ave ave

BenchmarkRuntime (Normalized to Native Execution) Millions of IBs/Sec

R
un

tim
e

(N
or

m
al

iz
ed

)

M
ili

io
ns

 o
f I

B
/S

ec
an

d

0
10
20
30
40

basicmath
bitcount

qsort
susan

jpeg
lame

typeset
tiff2

bw
tiffd

ither

tiffm
edian

dijkstra
patricia

ghostscript
rsynth

strin
gsearch pgp

rijn
dael

sha
CRC32

FFT
adpcm gsm

apache
BIND

sendmail

Runtime (Normalized to Native Execution) Millions of IB/Sec ServersMiBench

R
un

tim
e

(N
or

m
al

iz
ed

)
an

d
M

ili
io

ns
 o

f I
B

/S
ec

) 47.2

tion cache hashing (Section 3.2), and inline instruction
cache handling (Section 3.3).

3.1. Indirect Branch Translation Cache
An Indirect Branch Translation Cache (IBTC) is a data

structure used to translate the target of an IB to the corre-
sponding code cache address [23]. An IBTC is a list of pairs
of addresses—an application address and its corresponding
code cache address. The left side of Figure 2 shows pseudo-
code for performing an IB translation using an IBTC, and
the right side of Figure 2 gives the IA-32 implementation.

The IBTC lookup code first needs to save some archi-
tecture state, as the IB translation code cannot safely modify
any registers. For the IA-32 instruction set, saving state
includes saving the eflags via the pushf instruction. For
the SPARC, saving state is more complicated because the
current register window must be saved, and if the branch
target address is in the register window, it must be stored in
a thread safe temporary location before any save instruc-
tion.

After saving the context, the IB target is loaded into a
temporary register. Another temporary is used to calculate
the index into the IBTC table by masking based on the size
of the table (TABLE_MASK). The appropriate IBTC entry is
computed by adding the index to the base address of the
IBTC table (IBTC_TABLE_START). The application target
address is compared against the IBTC entry. If the entry
matches the target address (an IBTC hit), the corresponding

fragment address is loaded, the application state is restored,
and control is transferred to the target fragment. If the entry
does not match (an IBTC miss), control is transferred to the
translator so the target fragment can be built and a new
entry made in the IBTC.

There are many IBTC design options. One option is
whether the system should reprobe on a conflict miss in the
IBTC. The initial design of our SDT system’s IBTC treated
the IBTC much like a hardware cache, meaning that if there
was a conflict miss, the translator would be invoked to
replace the conflicted cache entry. If conflict misses are a
large part of the remaining overhead, the IBTC can be
implemented as a traditional hashtable and be reprobed on a
conflict miss, thus reducing the cost of frequent conflicts.

Another important design choice is whether to use a
single, large IBTC shared between all IBs, or to use a small
fixed-size individual IBTC for each IB (non-shared).
Empirical tests revealed that it was difficult to determine a
good fixed size for individual IBTCs because some IBs only
have a few targets, and therefore only require a small IBTC.
Other IBs have many targets which could lead to a high
number of conflict misses. This observation led to the idea
of non-shared, adaptive IBTC. An adaptive IBTC doubles
in size when a conflict miss occurs. This IBTC model allows
IBs with few targets to remain small while avoiding conflict
and capacity misses for IB translations with many targets.

Figure 2: IBTC lookup algorithm and corresponding implementation for the IA-32.

<save minimal application state>
branchTarget=loadBranchTarget()
index = calculateIndex(branchTarget)

 pushf ; save state
 push eax ; save scratch registers
 push ebx
 mov eax, DWORD PTR [eax] ; move target to eax
 mov ebx,eax ; save target
 and eax,TABLE_MASK
 lea eax, DWORD PTR [eax*8+IBTC_TABLE_START]

// check if target addr has already been translated
if (branchTarget == lookupTable[index].appAddress) {
 // hit: load code cache target, rst. state, and jump
 codeCacheAddr = lookupTable[index].codeCacheAddress
 <restore minimal application state>
 goto codeCacheAddr
 // not reachable
} else {
 // miss: transfer back to translator
 // application code at branchTarget
 <save full application state>
 call translator(branchTarget)
 // not reachable
}

 cmp ebx,DWORD PTR [eax] ; compare tag (app. address)
 jne L2 ; jump if miss
L1: ; IBTC hit
 mov eax,DWORD PTR [eax+4] ; load code cache address
 mov [&bta_loc], eax ; store in memory
 pop ebx ; restore context
 pop eax
 popf
 jmp [bta_loc] ; jump via memory
L2: ; IBTC miss, return to translator
 pop ebx ; restore minimal context
 pop eax
 popf
 pusha ; save full context
 pushf
 push DWORD PTR [eax] ; pass target PC
 push fragment_address ; pass from fragment address
 push reenter_code_cache ; tail call optimization
 jmp buildFrag ; call buildFrag(targPC,fragAddr)

Pseudo-Code IA-32 Implementation

3.2. Sieve
The sieve is a translation technique that uses code to

map an application’s IB target address to a code cache target
[27]. The sieve is essentially an open hashing technique
implemented solely with instructions [25]. The left side of
Figure 3 gives the pseudo-code for an implementation of the
translation code that a dynamic translator would generate
and place in the code cache. The right side of Figure 3 gives
the SPARC implementation.

For each IB encountered during the translation process,
the dynamic translator emits code to store the branch target
address and transfer control to the sieve dispatch code (at
label SieveDispatchBlock). The sieve dispatch code is
created during initialization of the code cache. When exe-
cuted, this code saves any application state required, reloads
the application IB target address, and uses this address to

calculate an index into the sieve jump table. The last instruc-
tion of the SieveDispatchBlock is an IB to an entry in
the sieve jump table selected by the index.

The sieve jump table (at label SIEVE_JUMP_TABLE)
contains jump instructions that jump either to a return to
translator block or to a sieve bucket. Each sieve bucket com-
pares the application target address to a previously seen tar-
get address, and branches directly to the appropriate code
cache destination if the targets match. If the match fails,
control is transferred to the subsequent sieve bucket. The
last sieve bucket in each chain contains a branch to the
ReturnToTranslator block. This block is reached if the
target of the IB target has not been translated. The
ReturnToTranslator block invokes the dynamic transla-
tor to create a new sieve bucket entry and update the appro-
priate entry in the sieve jump table to jump to it. In the

Figure 3: Sieve algorithm and corresponding implementation for the SPARC.

 <store branchTarget>
 goto SieveDispatchBlock
 ...

 st %o0,[%sp+-44] ; save registers
 st %o1,[%sp+-48]
 add %g1,%g0,%o0 ; calc target into %o0
 sethi %hi(bta_loc), %o1
 st %o0,[%o1+%lo(bta_loc)] ; store to memory
 ld [%sp+-44],%o0 ; reload registers for
 ld [%sp+-48],%o1 ; delay slot insn
 ba SieveDispatchBlock ; jump to sieve
 delay_slot_insn ; execute delay slot insn
 …

SieveDispatchBlock:
 <save partial application state>
 branchTarget = loadBranchTarget()
 // calculate index into sieve jump table
 // and jump there
 t1 = calculateIndex(branchTarget)
 goto t1+SIEVE_JUMP_TABLE
 // not reachable
 …

SieveDispatchBlock:
 save %sp,-96,%sp ; save context
 sethi %hi(bta_loc),%o0 ; load target
 ld [%o0+%lo(bta_loc)],%o0
 srl %o0,2,%o1 ; calculate index into table
 and %o1,TABLE_MASK,%o1
 sll %o1,2,%o1
 sethi %hi(SIEVE_JUMP_TABLE),%o2
 add %o2,%lo(SIEVE_JUMP_TABLE),%o2
 jmpl %o2+%o1,%g0 ; jump to sieve table entry
 nop
 ; not reachable

SIEVE_JUMP_TABLE:
 goto ReturnToTranslator
 goto ReturnToTranslator
 goto SieveBucket01
 goto ReturnToTranslator
 …

SIEVE_JUMP_TABLE:
 ba,a ReturnToTranslator
 ba,a ReturnToTranslator
 ba,a SieveBucket01
 ba,a ReturnToTranslator
 …

SieveBucket01:
 t1 = loadBranchTarget()
 if (t1 == APPLICATION_PC_01) {
 <restore partial application state>
 goto CODE_CACHE_ADDR_01
 }
 goto SieveBucket02
 …

SieveBucket01:
 sethi %hi(0x1c338),%o3
 or %o3,%lo(0x1c338),%o3 ; Application_addr_01 to reg
 sub %o0,%o3,%o5 ; compare %o0 and %o3
 brz,a %o5,0xfe8081a8 ; jump to target if equal
 restore ; rstr cntxt if xfer to trgt
 ba,a ReturnToTranslator
 …

ReturnToTranslator:
 <save full application state>
 call translator(t1);
 // not reachable

ReturnToTranslator:
 sethi %hi(sieve_to_update),%o2
 or %o2,%lo(sieve_to_update),%o2
 ; %o1 already set to target address
 call translatorSparc
 or %g0,o,%o1 ; no from fragment available for sieve
 ; not reachable

Pseudo-Code Sparc Implementation

pseudo-code presented, the third entry in the sieve jump
table has been modified to jump to SieveBucket01.

Initially, all the jumps in the sieve jump table point to
the ReturnToTranslator block. As IBs are processed,
the translator fills the table with jumps to an initial sieve
bucket. As with all open hashing implementations, the effi-
ciency of the scheme depends on the keys (i.e., the IB target
addresses) being uniformly distributed over the bucket table
(i.e., the sieve jump table).

Like the IBTC implementation, the sieve implementa-
tion must be carefully crafted to be efficient. One interesting
aspect to note is that the sieve never compares two arbitrary
values. Instead, the sieve repeatedly compares one arbitrary
value to a constant. Additionally, only one temporary is
needed, so the overhead of the context save and restore may
be lower. Finally, it should be noted that the sieve uses code
space while the IBTC uses data space and the efficiency of
the techniques could be dependent on the relative amounts
of I-cache and D-cache available on the target machine.
Thus, some machines may perform better with the sieve
than with an IBTC and vice versa.

3.3. Indirect Branch Inlining
Instead of relying exclusively on either an IBTC or

sieve hash, it is possible to emit code to do a tag compare
and transfer on a match using only immediate values held
within the instruction sequence itself. Using one or more
inline cache entries can be advantageous if many IBs resolve
to a few targets most of the time. IB inlining is done by
comparing the IB target to the inlined target address. If the
target does not match, the inlining code can be followed
with another such inline, or another IB handling mecha-
nism. If the hit rate of an inline cache entry is high enough,
execution of the inline cache entry (which is shorter than a
full data or instruction hash lookup) can save significant
time and reduce cache pollution.

The pseudocode for IB inlining is shown in Figure 4.
STORED_TARGET is the application address corresponding
to the CODE_CACHE_ADDRESS in the code cache. Since this
target address is potentially unknown at fragment-creation
time, the SDT system creates an empty code template until
the decision can be made about how to use inline cache
entries.

There are a number of parameters to consider when
using inline cache entries. One question is how many inline
targets should be used? Is a fixed number of inline cache

entries appropriate, or should the amount of inlining be
dynamically determined? How many times should the IB
translation be executed before the inlined targets are
selected? Do call-type IBs need to be treated separately
from switch-type IBs? Section 5.3 empirically evaluates
these options.

4. Experimental Parameters

To evaluate the mechanisms for handling IBs described
in Section 3, we used a variety of machines, compilers, and
benchmarks. The techniques described in Section 3 were
implemented and evaluated within the Strata dynamic
binary translation framework [21]. Sections 4.1–4.3 discuss
our assumptions, machines, compilers, compiler options,
and benchmarks we used for evaluation purposes.

4.1. Return Instructions
Return instructions are a special kind of IB that SDT

systems can handle efficiently. Instead of emitting a complex
sequence of instructions to handle returns like a generic IBs,
returns are left untranslated and copied directly into the
code cache. Normally leaving return instructions untrans-
lated would cause the translator to lose control of the run-
ning application after the first return instruction is executed,
since control would transfer back to an application text
address. Control is maintained by translating call instruc-
tions (both direct and indirect) specially. Call instructions
normally write their return address into a specified location
(e.g., the stack or a special register). Calls are translated to
write the corresponding code cache return address. Such
translation causes the return instruction to return to another
fragment within the code cache, and the translator retains
control.

Since we have chosen to enable this fast return mecha-
nism, return instructions do not undergo the normal IB
translation and are effectively removed from consideration
in our experiments. As return instructions are the most
common type of IB, we believe this to be the best choice.
The predictable nature of return instructions makes a variety
of return-specific optimizations possible, such as a shadow
stack or a return cache as presented by Sridhar [27]. Thus, we
believe return instructions should be handled separately and
consider research about choosing the best translation mech-
anism for returns to be separate from the work presented
here.

4.2. Machines
The techniques presented in Section 3 were evaluated

on three platforms—an Intel Pentium IV Xeon [15], a Sun
UltraSPARC-IIi [29], and an AMD Opteron 244 [8]. The
Pentium IV Xeon data cache is 8KB and 4-way associative,
while the instruction caching mechanism is an 80K micro-
op trace cache. The UltraSparc-IIi data cache is 16KB
direct-mapped, while the instruction cache is 16KB, two-

1. <save minimal application state>
2. t1 = branchTarget
3. if(t1 == STORED_TARGET) {
4. <restore minimal application state>
5. goto CODE_CACHE_ADDRESS
6. }

Figure 4: Pseudo-code for IB inlining.

way set associative. On the Opteron both the data and
instruction caches are 64KB, two-way associative.

The compiler used on the Pentium IV Xeon is gcc ver-
sion 3.3. On the Opteron the compiler is gcc version 4.0.2.
For both of these machines, the compiler options are -
fomit-frame-pointer -O3. The compiler used on the
UltraSPARC-IIi machines is the SUNWspro cc compiler
using options -fast -xO5. Strata was configured with a
4MB code cache which was sufficiently large to run all
applications.

4.3. Benchmarks
The full set of SPEC CPU2000 benchmarks was used

for evaluation in this work [28]. However, as Figure 1
shows, SDT overhead is directly related to the rate of execu-
tion of IBs. Consequently, most graphs report results (the
SPEC number for 3 runs) only for the SPEC benchmarks
that execute a significant number of IBs, namely:
177.mesa, 176.gcc, 186.crafty, 252.eon, 253.per-
lbmk, 254.gap, and 255.vortex. For these graphs, we
also report the geometric mean (ave) of the seven bench-
marks. For graphs that do include the entire SPEC suite, we
report the geometric mean of the SPEC number for the
integer benchmarks (int ave), floating-point benchmarks (fp
ave) and the entire SPEC CPU2000 suite (spec ave). All
results are normalized to native execution time.

5. Experimental Results

This section evaluates the different IB handling tech-
niques discussed in Section 3. Table 1 summarizes the con-
figuration options for each IB handling mechanism.

5.1. IBTC
5.1.1. Table Size. First, an appropriate size for a shared
IBTC was determined by increasing the size of the IBTC
table until performance ceased to improve. Figure 5 shows
the results for the Pentium IV Xeon. As the figure shows, a

small IBTC table yields very poor performance, especially in
253.perlbmk. With 8K entries, nearly all of the perfor-
mance gain is realized. At 32K entries, no additional perfor-
mance improvement is observed. Results are similar on the
UltraSPARC-IIi and Opteron 244 and are omitted due to
space constraints.

5.1.2. Lookup code placement. Second, we determined if
the placement of the IBTC lookup code effects perfor-
mance. Figure 6 shows the results of placing the lookup code
inline in the fragment (first bar) versus creating an out-of-
line function to perform the lookup (second bar) on the
Pentium IV Xeon. The data shows that some benchmarks
benefit slightly from placing the lookup code in a separate
function. Other benchmarks show slight degradation in per-
formance. In general, lookup code placement is a time/space
trade-off. The best choice depends on the constraints of the
system and the properties of the individual benchmark. On
average, no significant difference between inline code and
using an out-of-line function can be seen. This result holds
on the AMD and Sun machines and the detailed results are
omitted. Subsequent experiments evaluate IBTC options
using inline IBTC lookup code.

5.1.3. Reprobing. Next, we considered the benefit of
reprobing the IBTC to handle conflicts. Figure 7 shows the
performance on the Pentium IV Xeon of reprobing a 1K-
entry IBTC (first two bars) and 32K-entry IBTC (second
two bars). The data shows that reprobing provides signifi-
cant benefits to a 1K-entry IBTC, nearly equaling the per-
formance of a 32K-entry IBTC. For large IBTC sizes
however, reprobing provides little benefit. Consequently, we
believe that reprobing would be a beneficial addition to any
IB handling mechanism in a space-constrained system.
Results on the UltraSPARC-IIi and Opteron 244 are simi-
lar and are omitted. Since we use an IBTC large enough to
avoid most conflicts, the reprobing mechanism was not

enabled for the subsequent IBTC experiments.

Table 1: IB handling mechanisms and configuration choices.

Mechanism Choice Description

IBTC

Table size Maximum number of target address translations in the table

Lookup placement Lookup code placed in each fragment or in a separate function

Reprobing Check next entry for a translation on a conflict miss

Adaptively sizing Grow IBTC on a conflict miss

Sharing One table for all indirect branches or separate tables for each indirect branch

Sieve Size Number of buckets in the sieve

Inline

Inline amount Maximum number of target address translations to inline in the fragment

Target selection Sequence of inlined entries ordered by time or frequency (earlier/hotter translations occur earlier
in the sequence)

Profiling Pre-computed from a previous run with the same data set (ideal) or online during a short sam-
pling period (online profile)

Indirect type Determine inline amount, target selection, and profiling amount separately for indirect calls and
other indirect branches

Fall back Mechanism to handle a miss on all inlined translations

5.1.4. Resizing and Sharing. Reprobing the IBTC seems to
be an efficient way to deal with conflicts as long as conflicts
are rare. It is possible to completely avoid all conflict misses
by resizing an IBTC when a collision is detected on a cold
miss. Figure 8 shows the results of assigning a small IBTC
(8-entry) to each IB and doubling the size of the IBTC on

any conflict for the Pentium IV architecture. The figure
shows that adaptively resizing an IBTC adds little benefit
over a large non-adaptive, shared IBTC.

To summarize, we find that a large (32K entries),
shared IBTC with inline lookup code gains the most bene-
fit. Having non-shared, or adaptively sized IBTCs yields lit-
tle benefit. Using an efficient reprobe mechanism can
effectively deal with conflicts in a smaller (1K entries)
IBTC.

5.2. Sieve
The sieve, as described in Section 3.2 and in previous

work [27], has been implemented for all the machines we
use for evaluation. We evaluated sieve sizes from 1 entry up
to 128K entries. Figure 9 shows the results obtained on the
UltraSPARC-IIi. The data shows that there is no further
performance gain after 1K entries. In some cases, perfor-
mance degrades after 1K entries because the and operation
(see Figure 3) is more expensive. Due to the size of the
TABLE_MASK and restrictions on the size of an immedi-
ate in an instruction, extra instructions are required to gen-
erate the constant for the operation.

Figure 10 shows the results on the Pentium IV Xeon.
Like the UltraSPARC-IIi, performance levels off after 1K
entries, with one notable exception. The 16K-entry sieve
achieves significant performance improvement. 254.gap’s
overhead improves from 2.02 times longer than native exe-
cution for the 8K-, 32K-, or 128K-entry sieve to only 18%
longer than native execution for the 16K-entry sieve. The
16K-entry sieve performs significantly better because the
save and restore of the eflags register can be avoided by
using the MOVZWL instruction (which does not affect the
flags) instead of the AND instruction (which does write the
eflags register). On the Pentium, the cost of the save and
restore of the flags is considerable, the 16K-entry sieve pro-
vides significant benefits. Results on the AMD Opteron

Figure 5: Performance with varying IBTC sizes
(Pentium).

Figure 6: Placement of code to perform IBTC look-
ups (Pentium).

Figure 7: Performance of IBTC reprobing on con-
flict (Pentium).

0.6
1

1.4
1.8
2.2
2.6

3
3.4

177.mesa
176.gcc

186.crafty
252.eon

253.perlbmk
254.gap

255.vortex ave

R
un

tim
e

(N
or

m
al

iz
ed

)

1k 8k 32k 128k

0.8
1

1.2
1.4
1.6
1.8

2

177.mesa
176.gcc

186.crafty
252.eon

253.perlbmk
254.gap

255.vortex ave

R
un

tim
e

(N
or

m
al

iz
ed

)

32K IBTC w/inling lookup 32k IBTC w/out of line lookup

0.6
1

1.4
1.8
2.2
2.6

3

177.mesa
176.gcc

186.crafty
252.eon

253.perlbmk
254.gap

255.vortex ave

R
un

tim
e

(N
or

m
al

iz
ed

)

1k w/o reprobe 1K w/reprobe
32K w/o reprobe 32K w/reprobe

Figure 8: Performance with adaptive resizing of
IBTC (Pentium).

0.8
1

1.2
1.4
1.6
1.8

2

177.mesa
176.gcc

186.crafty
252.eon

253.perlbmk
254.gap

255.vortex ave

R
un

tim
e

(N
or

m
al

iz
ed

)

shared 32K-entry IBTC w /o resizing
non-shared 8-entry IBTC w /resizing

show the same trend as the Xeon and are omitted due to
space constraints.

Since the sieve implementation already supports effi-
cient reprobing, choosing the correct size is the only config-
uration parameter to consider. To summarize, a 1K-entry
sieve for the UltraSPARC-IIi is best as it avoids the extra
instruction for the and operation, while a 16K-entry sieve is
best on the Opteron and Xeon as it avoids the use pushf
and popf instructions.

5.3. Inline Cache Entries
The next option is how to use inline cache entries. Fig-

ure 11 shows hit rates of inline cache entries on the Opteron
using two policies for selecting the inline entry. The left
graph in the figure shows the hit rates when the first
dynamically executed target(s) is used in the inline cache
entry(s). The right part shows the hit rates when the best
choice (most frequently executed) for an inline target is
inlined. Our results (not shown) indicate that naively choos-
ing the first target causes over 60% of all accesses in the
integer benchmarks to miss when one address translation is
done as an inline cache entry. By using the ideal inline tar-
gets (which are not available at translation time), the inline
entries miss rate drops to just 40% for one inline target. The
floating-point benchmarks do much better, but these bench-
marks have few IBs, so even a very high hit rate does not
affect overall performance.

Since one inline entry does not have a high hit rate for
some benchmarks, it is possible that inlining more entries
may increase the overall hit rate. To get a sense of how the
number of inline entries affects hit rate, hit rates for various
amounts of inlining, ranging from 1 to 5 entries were mea-
sured. Figure 11 shows the hit rate generally increases as
more entries are inlined using the naïve target selection
method. For example, in 177.mesa, the hit rate quickly
approaches 100%. In other benchmarks, with a greater dis-
tribution of indirect targets, the hit rate does not increase as
dramatically. In 253.perlbmk, the hit rate largely levels off
after the second inlined entry. Even when using the ideal
target selection mechanism and five inline targets, hit rates
do not always reach 90%.

Although hit rates indicate how well inlining may
work, the location and instruction cost of which inline cache
entry the hit occurs is important. In the worst case, the last
entry in the inline sequence might be hit. Yet, hitting in the
last inline cache entry is expensive because several entries
have to be traversed before getting to the last one.

Figure 12 shows the average number of instructions
needed to satisfy an IB translation for inline depths of 1 to 5
for the Opteron using both target selection mechanisms,
based on the instruction count (IC) of hitting a particular
inline entry and its local hit rate. Both sieve and IBTC look-
ups take approximately 17 instructions, depicted as a flat
line in the figure. As shown, inlining reduces IC as com-

Figure 9: Sieve size experiment (UltraSPARC-IIi).

Figure 10: Sieve size experiment (Pentium).

0.6
1.0
1.4
1.8
2.2
2.6

177.mesa 176.gcc 186.crafty 252.eon 253.perlbmk 254.gap 255.vortex ave

R
un

tim
e

(N
or

m
al

iz
ed

)

1 16 64 256 1K 8K 16K 32K 128K Entries

0.6

1

1.4

1.8

2.2

2.6

177.mesa 176.gcc 186.crafty 252.eon 253.perlbmk 254.gap 255.vortex ave

R
un

tim
e

(N
or

m
al

iz
ed

)

1 16 64 256 1k 8k 16k 32k 128k Entries

pared to the IBTC on several benchmarks. For instance,
177.mesa has an improvement. In other cases, the change
in IC is small. In 253.perlbmk, the count increases. On
average, inlining one entry takes 14.6 instructions and inlin-
ing two entries takes 13.3. The relative change is small, and
beyond two entries, there is little apparent benefit.

Because ideal target selection is impossible to imple-
ment a priori, we need to determine if an approximation to
this scheme is worthwhile. To measure the affect of ideal
target selection approximation, dynamic instruction sched-
uling, caching effects, and other machine considerations, we
implemented an online profiling technique for IBs. The
branch translation is executed a specified number of times,
and then the best (most frequently executed during the
online profiling) target(s) are selected and inlined. Since
performing online profiling takes time, we considered using
online profiling up to 300 executions of each IB. Beyond
that point we began to see performance degradation and
concluded no further online profiling was beneficial. Based
on the results shown in Figure 11 and Figure 12, we con-
sider inlining 0 to 3 targets. Furthermore, we also consid-

ered call-type IBs separately from switch-type IBs as they
may demonstrate different profiling and inlining behavior.
Lastly, we considered allowing the translator to dynamically
choose (based on the instruction count of inline cache
entries and the backup mechanism) the number of inline
entries once the profile selection is complete. Thus, if the
profile indicates there are no dominate IB targets, the trans-
lator is free to re-write the IB translation to use no inline
entries, effectively avoiding any further overhead from fre-
quently missing in the inline cache entry.

The detailed results (omitted due to space restrictions)
indicate that call-type and switch-type IBs indeed show dif-
ferent behavior. The most beneficial option for switch-type
instructions is to profile a modest amount, about 30 execu-
tions of the IB, and then allow the translator to choose the
amount of inlining. Indirect calls seem to have more static
behavior and inlining the first two targets provides the best
speedup. For indirect calls, profiling, even a small amount,
provides no additional benefits. Dynamically selecting the
amount of inlining provided no benefit for call-type IB
translations.

a) Inline First Target b) Inline Best Target

Figure 11: Inline hit rate for 1 to 5 entries (Opteron).

a) Inline First Target b) Inline Best Target

Figure 12: Average instruction count for 1 to 5 inline entries (Opteron).

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Inline Depth

H
it

ra
te

177.mesa 176.gcc 186.crafty
253.perlbmk 254.gap 255.vortex

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Inline Depth

H
it

R
at

e

177.mesa 176.gcc 186.crafty
253.perlbmk 254.gap 255.vortex

7
12
17

22
27
32

1 2 3 4 5

Inline Depth

Av
g

In
st

r.
C

ou
nt

177.mesa 176.gcc 186.crafty
253.perlbmk 254.gap 255.vortex
average ibtc only

7
12
17
22
27
32

1 2 3 4

Inline Depth

Av
g

In
st

r.
C

ou
nt

177.mesa 176.gcc 186.crafty
253.perlbmk 254.gap 255.vortex
average ibtc only

Figure 13 compares no inlining, the best switch-type
inlining, the best call-type inlining, and the combination of
the best switch and call inlining when using the sieve as a
backup translation mechanism on the Opteron. The figure
shows that switch inlining can provide modest improve-
ments, about 2% on average for the key benchmarks while
some benchmarks see up to 4% improvement. Call inlining
provides more benefit, 5% on average. Using a call inlining
technique for 254.gap provides quite dramatic improve-
ment on the Opteron. Experiments using hardware perfor-
mance counters (omitted) demonstrate that this
improvement is because the Opteron has a high mispredic-
tion rate for IBs, and the call inlining helps the processor
mispredict the target less frequently.

Even though the indirect call and switch inlining tech-
niques are apparently independent, the combination of the
two techniques frequently yields performance worse perfor-
mance than call inlining alone. Hardware performance
counter experiments (omitted) show that this performance
degradation is because inline entries take up significant
instruction cache space. Combined, their potential gain in
performance is erased by the increased instruction cache
miss rate.

Interestingly, the Opteron is the only machine to see
significant benefits from using inline cache entries. We find
that the same configuration of inlining is best on the
UltraSPARC-IIi and Xeon processors, but the use of inlin-
ing seems to yield little benefit. In fact, since the SPARC
ISA has no instructions which support 32-bit constants,
extra instructions are required to generate the 32-bit
addresses required for the inline entry. Consequently, the
inline cache entries are too expensive, and actually cause sig-
nificant slowdowns for some benchmarks. The Xeon, which
does support the 32-bit constants like the Opteron proces-
sor, sees no significant benefits; average results vary by less
than 1%. Unlike the Opteron, the Xeon does not see the
benefits of inlining because the Xeon has a more sophisti-
cated branch/trace predictor and the Pentium’s trace cache is

less tolerant to the increase in instruction cache pressure
caused by the inline cache entries.

One last option we considered was having the inline
miss code (the sieve lookup code in the case of the Opteron)
overwrite an inline entry. We found that this indeed pro-
vided a higher hit rate for the cache inline entry, but signifi-
cant slowdowns overall, on the order of 2-5 times slower
than native execution. The problem with dynamically
updating the inline entries frequently is that the instruction
cache must be flushed for every update of an inline entry. A
single, frequently executed branch with a target that changes
often will cause frequent cache flushes. Consequently, we
disregard dynamic updating of inline cache entries once the
initial targets have been selected.

To summarize, we find that cache inline entries can
sometimes be effective at reducing overhead in dynamic
translation systems. A small amount of online profiling, 30
executions, is needed for switch inlining to dynamically
select the best amount of inlining. Call inlining should be
performed using the first two dynamically taken targets,
avoiding the profiling overhead.

5.4. Comparison
Now that we have explored the design and parameter

space for IBTCs, the sieve, and branch target inlining, we
examine which is most appropriate for each machine. For
this evaluation, we compare the execution time of the
benchmarks with different IB translation mechanisms.
Other factors may be of importance in some systems, in par-
ticular memory consumption. However, on today’s modern
processors with gigabytes of RAM, even the largest IB han-
dling mechanisms consume relatively little memory. Thus,
due to space restrictions, we only consider performance.

Figure 14, Figure 15, and Figure 16 compare an IBTC
to a sieve implementation on the UltraSPARC-IIi, Opteron
244, and Pentium IV Xeon, respectively. On the UltraS-
PARC-IIi, the sieve under performs the IBTC. The
SPARC’s limited addressing modes and fast context saves/
restores make the sieve ineffective. The Xeon machine
shows that the sieve would be a loss, except that the ability
to avoid saving the flags provides a large win. Interestingly,
on the Opteron 244, the sieve and IBTC perform equally
well when the flags are saved. However, like the Xeon, once
the save/restore of the flags is avoided the sieve performs
much better.

The results in this section demonstrate that the perfor-
mance benefit from a particular method of handling IBs
varies with the architecture and program. There is no single
best mechanism and careful attention must be paid to the
selection of the mechanism to get good performance. In
fact, simply moving from the best data cache hashing mech-
anism to a carefully crafted instruction cache hashing
scheme reduces SPECint2000 average overhead signifi-

Figure 13: Inlining results for Opteron.

0.8
0.9

1
1.1
1.2
1.3
1.4

177.mesa
176.gcc

186.crafty
252.eon

253.perlbmk
254.gap

255.vortex

256.bzip2

300.twolf aveR
un

tim
e

(N
or

m
al

iz
ed

)
.

No Inlining Sw itch Inlining
Indirect Call Inlining Indirect Call+Sw itch Inlining

cantly; over 50% (19% to 9%) of the overhead is removed on
the Xeon processor. Likewise, the overall SPEC overhead
on the Opteron can be reduced by 50% (4% to 2% over-
head). With careful selection of the mechanism, the average
overhead of a SDT system for the SPEC benchmarks can be
reduced to just 3.5% on the UltraSPARC-IIi, 4.5% on the
Xeon and 2.2% on the Opteron (Figure 17). These low
overheads make SDT a feasible and beneficial technology in

many settings. Finally, Table 2 summarizes the recom-

mended configuration options.

6. Related Work

Dynamic binary translation is a popular area of study,
with a large design space, resulting in much research explor-
ing design trade-offs. Trace layout [10, 14], code cache
management [13, 12, 31, 18], and transparency [3] have all
been studied in detail. Much work has been also been done
investigating how SDT schemes can handle IBs, a good
overview of these options is given by Smith and Nair [26].
Part of the motivation of this work is that there are many
options when handling IBs, but it is very difficult to com-
pare any two techniques directly. In practice, most systems
have chosen a single technique for handling IBs and there-
fore are unable to directly compare their technique to other
techniques that have been developed.

Bruening details numerous general design choices for
handling IBs, including transparency issues with using the
stack for scratch storage and choosing proper hashes to min-
imize data cache pressure [2, 4]. He also looks at IA-32 spe-
cific issues including a method to do comparisons on the
IA-32 without altering the eflags, and also techniques for
minimizing the cost of saving eflags when it is required.

Both Dynamo [1] and Daisy [11] use chains of inlined
comparisons to handle IBs. Pin uses a technique similar to
our IBTC with inlining [20]. The sieve was first introduced
by HDTrans as a method for doing IB handling without
polluting the data cache [27]. These are all pure software
techniques for handling IBs. Kim and Smith have examined
hardware techniques [16].

7. Conclusions

Software dynamic translation (SDT) is a powerful
technique in which a running binary is dynamically modi-
fied to provide a variety of benefits. Binaries can be dynami-
cally translated to new systems, protected from malicious
intrusion, dynamically optimized, or instrumented to collect
a variety of statistics. One major deterrent to more pervasive
use of SDT is the overhead associated executing the pro-
gram within an SDT system.

Handling IBs efficiently has been shown to be
extremely important to having an efficient dynamic transla-
tion system. Furthermore, a variety of techniques have been
proposed, but a thorough, cross-platform comparison of
techniques has been lacking. This work addresses that issue
by fully describing, implementing, and evaluating a variety
of IB handling mechanisms. We use a publicly available,
retargetable SDT system, three common architectures and
the full suite of SPEC CPU2000 benchmarks. Our findings
indicate that moderately sized hashes provide most of the
runtime benefit. Furthermore, placement of the code to per-
form the hash lookup (inline and duplicated, versus out of

Figure 14: Sieve vs. IBTC on UltraSPARC-IIi.

Figure 15: Sieve vs. IBTC on Opteron 244.

Figure 16: Sieve vs. IBTC on Pentium IV Xeon.

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

177.mesa

176.gcc

186.crafty

252.eon

253.perlbmk

254.gap

255.vorte
x

ave

R
un

tim
e

(O
ve

rh
ea

d)

32K-Entry IBTC 1K-Entry Sieve

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

177.mesa
176.gcc

186.crafty
252.eon

253.perlbmk
254.gap

255.vortex

256.bzip2

300.twolf ave

R
un

tim
e

(N
or

m
al

iz
ed

)
.

32K-Entry IBTC 32K-Entry Sieve 16K-Entry Sieve

0.8
1

1.2
1.4
1.6
1.8

2
2.2

177.mesa
176.gcc

186.crafty
252.eon

253.perlbmk
254.gap

255.vortex ave

R
un

tim
e

(N
or

m
al

iz
ed

)

32k Entry IBTC 32k Entry Sieve 16k Entry Sieve

line with extra instructions) is of little importance. We do
find, however, that data cache hashing is the most useful
technique across platforms. What is more important, how-
ever, is choosing a set of instructions that is efficient on the
target machine. For example, the saving and restore of the
eflags on the Pentium IV Xeon and Opteron 244 is so
costly, that avoiding the save and restore of the flags is sig-
nificantly more important than instruction cache or data
cache handling. Lastly, we find that a novel approach to
using an inline cache entry can provide a performance bene-
fits based on the underlying processor organization, remov-
ing as much as 50% of the overhead (4% to 2% for all of the
SPEC benchmark suite) on an AMD Opteron.

8. Acknowledgements

This research was support by the National Science
Foundation under grants CNS–0305144, CNS–0524432,
CNS–0551560, CNS–0305198, CNS-0551492, CNS-
0509115, and CNS-0305198. The U.S. Government is
authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright notation
thereon.

9. References

[1] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia.
Dynamo: A transparent dynamic optimization system. In
PLDI ’00: Proceedings of the ACM SIGPLAN 2000 Conference
on Programming Language Design and Implementation, pages
1–12, New York, NY, USA, June 2000. ACM Press.

[2] Derek Bruening. Efficient, Transparent, and Comprehensive
Runtime Code Manipulation. PhD thesis, MIT, 2004.

[3] Derek Bruening and Saman Amarasinghe. Maintaining con-
sistency and bounding capacity of software code caches. In
CGO ’05: Proceedings of the International Symposium on Code
Generation and Optimization, pages 74–85, Washington, DC,
USA, 2005. IEEE Computer Society.

[4] Derek Bruening, Timothy Garnett, and Saman Amarasinghe.
An infrastructure for adaptive dynamic optimization. In CGO

’03: Proceedings of the International Symposium on Code Genera-
tion and Optimization, pages 265–275, March 2003.

[5] Wen-Ke Chen, Sorin Lerner, Ronnie Chaiken, and David
Gillies. Mojo: A dynamic optimization system. In Proceedings
of the ACM Workshop on Feedback-Directed and Dynamic Opti-

mization FDDO-3, December 2000.

Figure 17: Performance with best configuration.

Table 2: Recommendations for configuration choices.

Mechanism Choice Description

IBTC

Table size 8k entries does well, 32k entries gets maximum benefit

Lookup placement Place lookup code inside fragment

Reprobing Use reprobing with small IBTC tables (e.g., 1K) when memory constrained

Adaptively resizing Shared, fixed 32K-entry table does better than non-shared, adaptive

Sharing Shared fixed 32k entry table does better than non-shared adaptive

Sieve
Size Size based on generated lookup code. SPARC: use a 1K-entry sieve to avoid extra and instruc-

tion, Pentium and Opteron: use a 16K-entry sieve to avoid pushf instruction

Inline

Inline amount Use from zero to three inline translations

Target selection For call-type indirect branches, use a naive policy (inline two entries)
For switch-type indirect branches, use profile guided policy

Profiling For switch-type indirect branches, use online profiling with a threshold of 30 executions

Indirect type Distinquish call-type from switch-type to handle efficiently

Fall back Select based on target architecture

0.8
0.9
1.0
1.1
1.2
1.3
1.4

168.wupwise

171.swim

172.mgrid

173.applu

177.mesa

178.galgel
179.art

183.equake

187.facerec

188.ammp

189.lucas

191.fm
a3d

200.sixtrack
301.apsi

164.gzip
175.vpr

176.gcc
181.mcf

186.crafty

197.parser
252.eon

253.perlbmk
254.gap

255.vortex

256.bzip2

300.twolf
fp ave

int ave

spec aveR
un

tim
e

(N
or

m
al

iz
ed

)

Opteron 244 Call + Switch Inlining w/backup 16K Sieve UltraSPARC-IIi 32K Shared IBTC (No Inlining) Pentium IV Xeon 16K Sieve (No Inlining)

[6] Bob Cmelik and David Keppel. Shade: A fast instruction-set
simulator for execution profiling. In SIGMETRICS ’94: Pro-
ceedings of the 1994 ACM SIGMETRICS Conference on Mea-

surement and Modeling of Computer Systems, pages 128–137,
New York, NY, USA, May 1994. ACM Press.

[7] Apple Computers. Apple website on rosetta, 2006.

[8] Advanced Micro Devices. AMD website on opterons, 2006.

[9] David R. Ditzel. Transmeta’s Crusoe: Cool chips for mobile
computing. In IEEE, editor, Hot Chips 12: Stanford University,
Stanford, California, August 13–15, 2000, 1109 Spring Street,
Suite 300, Silver Spring, MD 20910, USA, 2000. IEEE Com-
puter Society Press.

[10] Evelyn Duesterwald and Vasanth Bala. Software profiling for
hot path prediction: less is more. In ASPLOS-IX: Proceedings of

the Ninth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 202–
211, New York, NY, USA, 2000. ACM Press.

[11] Kemal Ebcioglu and Erik Altman. DAISY: Dynamic compi-
lation for 100% architectural compatibility. In ISCA ’97: Pro-
ceedings of the 24th Annual International Symposium on

Computer Architecture, pages 26–37, New York, NY, USA,
1997. ACM Press.

[12] Kim Hazelwood and James E. Smith. Exploring code cache
eviction granularities in dynamic optimization systems. In
CGO ’04: Proceedings of the International Symposium on Code
Generation and Optimization, page 89, Washington, DC,
USA, 2004. IEEE Computer Society.

[13] Kim Hazelwood and Michael D. Smith. Generational cache
management of code traces in dynamic optimization systems.
In MICRO 36: Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture, page 169–179,
Washington, DC, USA, 2003. IEEE Computer Society.

[14] David Hiniker, Kim Hazelwood, and Michael D. Smith.
Improving region selection in dynamic optimization systems.
In MICRO 38: Proceedings of the 38th Annual IEEE/ACM

International Symposium on Microarchitecture, pages 141–154,
Washington, DC, USA, 2005. IEEE Computer Society.

[15] Intel. IA-32 Intel Architecture Optimization Reference Manual,
2005.

[16] Ho-Seop Kim and James E. Smith. Hardware support for
control transfers in code caches. In MICRO 36: Proceedings of

the 36th Annual IEEE/ACM International Symposium on
Microarchitecture, page 253, Washington, DC, USA, 2003.
IEEE Computer Society.

[17] Vladimir Kiriansky, Derek Bruening, and Saman Amaras-
inghe. Secure execution via program shepherding. In 11th

USENIX Security Symposium, August 2002.

[18] Naveen Kumar, Bruce R. Childers, Daniel Williams, Jack W.
Davidson, and Mary Lou Soffa. Compile-time planning for
overhead reduction in software dynamic translators. Interna-
tional Journal of Parallel Programming, 33(2):103–114, 2005.

[19] Transitive Corporation Ltd. Transitive website, 2006.

[20] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil,
Artur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa
Reddi, and Kim Hazelwood. Pin: building customized pro-
gram analysis tools with dynamic instrumentation. In PLDI
’05: Proceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 190–
200, New York, NY, USA, 2005. ACM Press.

[21] Kevin Scott and Jack Davidson. Strata: A software dynamic
translation infrastructure. In IEEE Workshop on Binary Trans-
lation, September 2001.

[22] Kevin Scott and Jack W. Davidson. Safe virtual execution
using software dynamic translation. In Proceedings of the 18th
Annual Computer Security Applications Conference, pages 209–
218, Las Vegas, NV, December 2002.

[23] Kevin Scott, N. Kumar, Bruce Childers, Jack W. Davidson,
and Mary Lou Soffa. Overhead reduction techniques for soft-
ware dynamic translation. In Proceedings of the 18th Interna-

tional Parallel and Distributed Processing Symposium, page 200.
IEEE Computer Society, 2004.

[24] Kevin Scott, Naven Kumar, Siva Velusamy, Bruce Childers,
Jack W. Davidson, and Mary Lou Soffa. Retargetable and
reconfigurable software dynamic translation. In CGO ’03: Pro-
ceedings of the International Symposium on Code Generation and

Optimization, pages 36–47, Washington, DC, USA, 2003.
IEEE Computer Society.

[25] Robert Sedgewick. Algorithms. Addison-Wesley, 1983.

[26] Jim Smith and Ravi Nair. Virtual Machines: Versatile Platforms
for Systems and Processes. Morgan Kaufmann, 2005.

[27] Swaroop Sridhar, Jonathan S. Shapiro, and Prashanth P. Bun-
gale. Hdtrans: A low-overhead dynamic translator. In Proceed-
ings of the 2005 Workshop on Binary Instrumentation and
Applications. IEEE Computer Society, September 2005.

[28] Standard Performance Evaluation Corporation. SPEC
CPU2000 Benchmarks. http://www.specbench.org/osg/
cpu2000.

[29] Sun Microsystems. UltraSPARC-IIi User’s Manual, 1997.
User’s Manual.

[30] David Ung and Cristina Cifuentes. Machine-adaptable
dynamic binary translation. In Proceedings of the ACM Work-
shop on Dynamic Optimization Dynamo ’00, 2000.

[31] Shukang Zhou, Bruce R. Childers, and Mary Lou Soffa.
Planning for code buffer management in distributed virtual
execution environments. In VEE ’05: Proceedings of the 1st
ACM/USENIX International Conference on Virtual Execution

Environments, pages 100–109, New York, NY, USA, 2005.
ACM Press.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

