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Mathematical theory of information transmission

Quantitative measure of information - entropy, mutual information etc.

Big picture: Transmit stochastic sources over noisy channels
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Distributed source coding. Sensor networks
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Ẑ1

Ẑ2
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Information Theory: An Introduction

Distributed Source Coding
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Ŷ n
2
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X1, X2, . . . , XK - Correlated across space, independent across time
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Ŷ n
L

E(d1(X
K
1
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Ŷ n
2
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Information Theory: An Introduction

Single user source coding

Xn
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Solved completely by Shannon
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Inner bound (tightness not known in general):

R1 ≥ I (X1;U | X2), R2 ≥ I (X2;V | X1)

R1 +R2 ≥ I (X1X2;UV )
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Random Codes for Distributed Source Coding

Typical proof techniques

Two parts to all problems - achievability and converse

Achievability proofs: Operations on the typical set

Quantization (source coding) and binning (channel coding)
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Quantization - Good source codes
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Random Codes for Distributed Source Coding

Quantization - Good source codes

Quantize X1 to U for a fixed PU |X1

Size of good code book: I (X1;U )
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Random Codes for Distributed Source Coding

Quantization - Good source codes

Quantize X1 to U for a fixed PU |X1

Codewords chosen at random. No structure.

U
n
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Random Codes for Distributed Source Coding

Binning - Good channel codes

Suppose X1 already quantized to U
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Random Codes for Distributed Source Coding

Binning - Good channel codes

Decoder knows X2 correlated to U

U
n
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Random Codes for Distributed Source Coding

Binning - Good channel codes

Can this side information be exploited?

U
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Random Codes for Distributed Source Coding

Binning - Good channel codes

Bin the codewords - Transmit only bin index

Each bin: Channel code for channel PX2|U with input U , output X2

U
n
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Random Codes for Distributed Source Coding

Binning - Good channel codes

Bin the codewords - Transmit only bin index

Code must “pack” the typical set of X2 well

U
n
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Random Codes for Distributed Source Coding

Binning - Good channel codes

Bin the codewords - Transmit only bin index

Size of each bin I (U ; X2). Binning done randomly

U
n
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Random Codes for Distributed Source Coding

Binning - Good channel codes

Bin the codewords - Transmit only bin index

Overall transmission rate R = I (X1;U )− I (U ; X2)

U
n
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Random Codes for Distributed Source Coding

Binning - Good channel codes

Bin the codewords - Transmit only bin index

Nesting of a “good” channel code in a “good” source code

U
n
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Random Codes for Distributed Source Coding

Random coding: Some observations

Random coding for distributed source coding
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Random coding: Some observations

Random coding for distributed source coding

Unstructured ensembles drawn from typical sets

Independent quantization followed by independent binning

Decoder given excess information

First reconstructs auxiliary random variables U ,V

Then computes Ŷ1 = g1(U ,V ), Ŷ2 = g2(U ,V )

Rate gains possible?
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A Distributed source coding example

Alice has the outcome of three fair coin tosses. She copies them and

sends the copy to Bob
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A Distributed source coding example

Alice has the outcome of three fair coin tosses. She copies them and

sends the copy to Bob

She makes at most one error while copying

Charlie wants to know only the location of the error (if any)

Alice and Bob talk to Charlie but not to each other

What is the minimum amount of information (bits) Charlie needs from

them?
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Nested Group Codes

Distributed source coding example contd.

Straightforward scheme - 3 bits each from Alice and Bob
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Distributed source coding example contd.

Straightforward scheme - 3 bits each from Alice and Bob

A better scheme: Alice sends her 3 bits with no compression

Bob bins his sequence as

00 01 10 11

000 001 010 100

111 110 101 011

Suppose Alice sends 001 and Bob sends 10, error in first location

Can we do even better?
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Distributed source coding example contd.

What if Alice also does the same binning?
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Nested Group Codes

The coding strategy explained

Two 3 bit sources X = X1 X2 X3,Y =Y1Y2Y3. Correlation wH (X ,Y )≤ 1
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Significant feature: Identical linear binning
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Korner-Marton Coding Scheme

Correlated binary random variables (X1, X2)
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Correlated binary random variables (X1, X2)

Decoder interested in lossless reconstruction of Z = X1 ⊕2 X2

AZ
n

X
n
1 Ak×n

AX
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X
n
2

AX
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Ak×n

Matrix A: puts different typical zn in different bins. k
n
≈ H (Z )

Associated code: Good channel code for additive noise Z
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Korner-Marton Coding Scheme

Correlated binary random variables (X1, X2)

Decoder interested in lossless reconstruction of Z = X1 ⊕2 X2

AZ
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X
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1 Ak×n

AX
n
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X
n
2

AX
n
2

Ak×n

Centralized encoder:

Compute Z = X1 ⊕X2. Compress to f (zn)

Transmit f (zn) to decoder. Decoder recovers zn
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Decentralized encoders:

Compress xn
1 and xn

2 and transmit

Decoder estimates zn from f1(xn
1 ), f2(xn
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Korner-Marton Coding Scheme

Correlated binary random variables (X1, X2)

Decoder interested in lossless reconstruction of Z = X1 ⊕2 X2

AZ
n

X
n
1 Ak×n

AX
n
1

X
n
2

AX
n
2

Ak×n

Identical linear binning:

Mimics centralized encoding

Correlated binning better than independent binning
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Nested Group Codes

Korner Marton coding scheme

Possible extensions:

Lossy coding

Will involve nesting of a good channel code in a good source code

Nesting to be done while maintaining linearity of channel code

Good nested linear codes

What about reconstructing Z = X ⊕4 Y

Example worked because ⊕2 is the group operation of the field F2

No field exists with group operation ⊕4

Group codes
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Linear codes: An Introduction
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Linear codes: An Introduction

Linear code C : Sum of any two codewords is another codeword

Traditionally, linear codes built over Galois fields, ex. F2 = {0,1}

More general: linear codes over Abelian groups Zpr

Pros: Linear code ensembles have fewer bad codebooks

Improvement in second order performance (error exponents)

More dramatic gains in multi terminal settings

Cons: Even in single user setting, bad first order performance

do not achieve Shannon rate-distortion function

do not achieve Shannon capacity cost function

Injection of some non-linearity seems necessary for optimality

D. Krithivasan (U of M) Oral Defense January 12, 2010 28 / 58



Nested Group Codes

Group codes: Codes over primary cyclic groups

Primary cyclic group Zpr - cyclic group of prime power cardinality
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Example: Z4 = {0,1,2,3} with addition modulo-4 group operation

Any abelian group G decomposable into primary cyclic groups

Suffices to prove coding theorems for Zpr

Group code defined via parity check matrix

C =

{
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= 0k
}

for some k ×n matrix H

D. Krithivasan (U of M) Oral Defense January 12, 2010 29 / 58



Nested Group Codes
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Primary cyclic group Zpr - cyclic group of prime power cardinality

Example: Z4 = {0,1,2,3} with addition modulo-4 group operation

Any abelian group G decomposable into primary cyclic groups

Suffices to prove coding theorems for Zpr

Group code defined via parity check matrix

C =

{

xn
∈Z

n
pr : H xn

= 0k
}

for some k ×n matrix H

Group code C over Zpr : C = ker(φ) for homomorphism φ : Zn
pr →Z

k
pr
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Nested Group Codes

Good Group Source Codes

Good group source code C1 for the triple (X ,U ,PXU )
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n
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Nested Group Codes

Good Group Source Codes

Good: Can find un ∈C1 jointly typical with xn

We showed:

Good group source codes

Exist for large n if 1
n log |C1| ≥ log pr − r |H (U |X )− log pr−1|+

Z
n

pr

D. Krithivasan (U of M) Oral Defense January 12, 2010 30 / 58



Nested Group Codes

Good Group Source Codes

Good: Can find un ∈C1 jointly typical with xn
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Good group source codes

Exist for large n if 1
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Nested Group Codes

Good Group Source Codes

Good: Can find un ∈C1 jointly typical with xn

Else: Bad performance

Good group source codes

Exist for large n if 1
n log |C1| ≥ r (log pr −H (U |X ))

Z
n
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Nested Group Codes

Good Group Source Codes

Good: Can find un ∈C1 jointly typical with xn

Linear code (r = 1) : Still not very good

Good linear source codes

Exist for large n if 1
n log |C1| ≥ (log p −H (U |X ))

Z
n
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Nested Group Codes

Good Group Source Codes

Good: Can find un ∈C1 jointly typical with xn

Larger than optimal code size: H (U )−H (U |X )

Good linear source codes

Exist for large n if 1
n log |C1| ≥ (log p −H (U |X ))
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n
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Nested Group Codes

Good Group Source Codes contd.

Linear code not Shannon-good for source coding

Z
n
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Nested Group Codes

Good Group Source Codes contd.

Linear code not Shannon-good for source coding

But contains a Shannon-good source code

Larger codebook due to binning entire space

Z
n
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Nested Group Codes

Good Group Source Codes contd.

Linear code not Shannon-good for source coding

But contains a Shannon-good source code

Penalty for imposing structure

Z
n
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Nested Group Codes

Good Group Source Codes contd.

Linear code not Shannon-good for source coding

But contains a Shannon-good source code

Group codes (r > 1) : more penalties for subgroups

Z
n

pr
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Good group channel code C2 for the triple (Z ,S ,PZ S )
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Good Group Channel Codes contd.
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Nested Group Codes

Good Group Channel Codes contd.

Each subgroup of Zpr : one term in maximization

0th term corresponds to H (Z |S)

Penalty for presence of subgroups

Linear code (r = 1): Still not good
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Exist for large n if 1
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Each subgroup of Zpr : one term in maximization

0th term corresponds to H (Z |S)

Penalty for presence of subgroups

Linear code (r = 1): Still not good
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Good Group Channel Codes contd.

Linear code not Shannon-good for channel coding
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Nested Group Codes

Good Group Channel Codes contd.

Linear code not Shannon-good for channel coding

But every coset (color) contains a Shannon-good channel code

Larger codebook for binning entire space
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Why bother with group codes?

Nesting one code within another helps overall performance
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Nested Group Codes

Why bother with group codes?

Nesting one code within another helps overall performance

(C1,C2) nested if C2 ⊂C1

Example: Wyner-Ziv problem using nested group codes

Ed(X1, Ŷ1) ≤ D1

Ŷ n
1Xn

1
f1(·)

R1

Xn
2

f2(·)
R2 ≥ H(X2)

R1 ≥ I (X1;U | X2) = I (X1;U )− I (X2;U )
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Nested Group Codes

Wyner-Ziv via group codes: Quantization

Group code good for (X1,U ,PX1U )
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Wyner-Ziv via group codes: Binning

Every coset (color) good channel code for (U ,X2,PU X2
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Nested Group Codes

Wyner-Ziv via group codes: Rate Region

Only coset leaders (colors) get transmitted
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Nested Group Codes

Wyner-Ziv via group codes: Rate Region

Only coset leaders (colors) get transmitted

Number of colors : I (X1;U )− I (U ; X2)
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Distributed Source Coding : An Inner Bound

Outline

1 Thesis Overview

2 Information Theory: An Introduction

3 Random Codes for Distributed Source Coding

4 Nested Group Codes
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Distributed Source Coding : An Inner Bound

Overview of the coding scheme

Fix test channels PX1 X2UV = PX1 X2
PU |X1

PV |X2

Decoder interested in some reconstruction function g (U ,V )

g (U ,V ) group operation in abelian group G: Nested group codes

What if it isn’t?

“Embed” g (U ,V ) in a suitable abelian group

Decompose G into primary cyclic groups G ∼=Zp
e1
1
⊕Zp

e2
2
· · ·⊕Z

p
ek
k

Encode sequentially using codes over Z
ei
pi

, 1 ≤ i ≤ k
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Distributed Source Coding : An Inner Bound

Coding Strategy

Nested group codes C2 <C11,C12
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n

log |C11| ≥

log pr − r |H (U |X1)− log pr−1|+

1
n log |C12| ≥

log pr − r |H (V |X2)− log pr−1|+

1
n

log |C2| ≤ log pr −

max0≤i<r

(

r
r−i

)

(H (Z )−H ([Z ]i ))
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Distributed Source Coding : An Inner Bound

Achievable Rates

Achievable rates

The set of tuples (R1,R2,D) that satisfy

R1 ≥ max
0≤i<r

( r

r − i

)

(H (Z )−H ([Z ]i ))− r |H (U |X )− log pr−1
|
+

R2 ≥ max
0≤i<r

( r

r − i

)

(H (Z )−H ([Z ]i ))− r |H (V |Y )− log pr−1
|
+

D ≥ Ed (X ,Y , g (U ,V ))

are achievable.

More general rate region possible by

Embedding in general groups and using digit decomposition

Alternative coding strategy - Encode (U ,V ) instead of Z
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Distributed Source Coding : An Inner Bound

Special cases

Lossless compression using group codes - achievable rates

Lossy compression for arbitrary sources and distortion measures using

group codes

Nested linear codes - Shannon rate-distortion bound for arbitrary

sources and additive distortion measures

Recovers known rate regions (using nested linear codes) of

Berger-Tung problem

Wyner-Ziv problem, Wyner-Ahlswede-Korner problem

Yeung-Berger problem

Slepian-Wolf problem, Korner-Marton problem
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Distributed Source Coding : An Inner Bound

A Lossless Reconstruction Example

X ,Y , Z - Quaternary random variables
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Distributed Source Coding : An Inner Bound

A Lossless Reconstruction Example

X ,Y , Z - Quaternary random variables

Quaternary rvs: X ,Y . Correlation: Y = X ⊕4 Z

Decoder: lossless reconstruction of Z = (X −Y ) mod 4

No linear code over Z4 - KM not possible
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Group based scheme in Z4 achieves
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Distributed Source Coding : An Inner Bound

A Lossless Reconstruction Example

X ,Y , Z - Quaternary random variables

Quaternary rvs: X ,Y . Correlation: Y = X ⊕4 Z

Decoder: lossless reconstruction of Z = (X −Y ) mod 4

Group based scheme in Z4 achieves

Rsum = 2max{H (Z ),2(H (Z )−H ([Z ]1))}

Can be lower than H (X ,Y )

Function can also be “embedded” in Z4,Z7,Z3
2,Z2

4

For every group : PX ,PZ such that that group gives best embedding

D. Krithivasan (U of M) Oral Defense January 12, 2010 44 / 58



Distributed Source Coding : An Inner Bound

PX PZ RZ4
RZ7

RZ2⊕Z2⊕Z2
RZ4⊕Z4

[ 1
4

1
4

1
4

1
4 ] [ 1

2 0 1
4

1
4 ] 3 3.9056 3.1887 3.5

[ 3
10

6
10

1
10

0] [0 4
5

1
20

3
20

] 2.3911 2.0797 2.4529 2.1796

[ 1
3

1
10

1
2

1
15 ] [ 3

7
1
7

1
7

2
7 ] 3.6847 4.5925 3.3495 3.4633

[ 9
10

1
30

1
30

1
30 ] [ 3

20
3
4

1
20

1
20 ] 2.308 2.7065 1.9395 1.7815

Table: Example distributions for which embedding in a given group gives the

lowest sum rate.
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Distributed Source Coding : An Inner Bound

Lossy Reconstruction of binary XOR

Correlated binary sources (X ,Y )
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Existence of “good” group codes
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Improves rate regions for certain distortion functions

Jointly Gaussian sources
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Codebook : Kernel of homomorphism from Gn to Gk?

Normal subgroup of Gn

Too stringent. No good codes exist.

Ensemble of subgroups of Gn
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Multi-terminal channel coding

Broadcast channels, interference channels

Might want to decode a function of interfering users’ messages

Structured codes will lead to better rate regions

Practical nested linear code constructions

Rich theory of LDPC, LDGM codes

Sub-optimal but fast decoding
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Reconstruction of binary sources equivalent to addition in F4.

⊕4 00 01 10 11

00 00 01 10 11

01 01 00 11 10

10 10 11 00 01

11 11 10 01 00

Table: Mapping for SW-coding

Treat binary sources as F4 sources.

Function to be reconstructed is Z = X̃ ⊕4 Ỹ .
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0 0 0

1 1 1

Table: First Digit of Z̃

⊕2 0 1

0 0 1

0 0 1

Table: Second Digit of Z̃

Use KM encoding for each “digit”

First digit can be encoded at rate H (X̃1)= H (X )

Second digit can be encoded at rate H (Ỹ2|X̃1)= H (Y |X )

D. Krithivasan (U of M) Oral Defense January 12, 2010 54 / 58



Additional Slides

Proof Techniques - Group Channel Codes

Existence proofs by ensemble averaging Pe over all φ : Zn
pr →Z

k
pr

D. Krithivasan (U of M) Oral Defense January 12, 2010 55 / 58



Additional Slides

Proof Techniques - Group Channel Codes

Existence proofs by ensemble averaging Pe over all φ : Zn
pr →Z

k
pr

Good group channel codes: Recover zn from φ(zn)

D. Krithivasan (U of M) Oral Defense January 12, 2010 55 / 58



Additional Slides

Proof Techniques - Group Channel Codes

Existence proofs by ensemble averaging Pe over all φ : Zn
pr →Z

k
pr

Good group channel codes: Recover zn from φ(zn)

Pe = P









⋃

z̃n∈An
ǫ (Z )

z̃n 6=zn

(φ(z̃n) =φ(zn))









D. Krithivasan (U of M) Oral Defense January 12, 2010 55 / 58



Additional Slides

Proof Techniques - Group Channel Codes

Existence proofs by ensemble averaging Pe over all φ : Zn
pr →Z

k
pr

Good group channel codes: Recover zn from φ(zn)

Pe ≤
∑

z̃n∈An
ǫ (Z )

z̃n 6=zn

P
(

φ(z̃n
− zn) = 0k

)

D. Krithivasan (U of M) Oral Defense January 12, 2010 55 / 58



Additional Slides

Proof Techniques - Group Channel Codes

Existence proofs by ensemble averaging Pe over all φ : Zn
pr →Z

k
pr

Good group channel codes: Recover zn from φ(zn)

Pe ≤
∑

z̃n∈An
ǫ (Z )

z̃n 6=zn

P
(

φ(z̃n
− zn) = 0k

)

Depends on which subgroup p i
Z

n
pr the term (z̃n − zn) belongs to

D. Krithivasan (U of M) Oral Defense January 12, 2010 55 / 58



Additional Slides

Proof Techniques - Group Channel Codes

Existence proofs by ensemble averaging Pe over all φ : Zn
pr →Z

k
pr

Good group channel codes: Recover zn from φ(zn)

Pe ≤
∑

z̃n∈An
ǫ (Z )

z̃n 6=zn

P
(

φ(z̃n
− zn) = 0k

)

Depends on which subgroup p i
Z

n
pr the term (z̃n − zn) belongs to

Suppose Z =Z8

D. Krithivasan (U of M) Oral Defense January 12, 2010 55 / 58



Additional Slides

Proof Techniques - Group Channel Codes

Existence proofs by ensemble averaging Pe over all φ : Zn
pr →Z

k
pr

Good group channel codes: Recover zn from φ(zn)

Pe ≤
∑

z̃n∈An
ǫ (Z )

z̃n 6=zn

P
(

φ(z̃n
− zn) = 0k

)

Depends on which subgroup p i
Z

n
pr the term (z̃n − zn) belongs to

Suppose Z =Z8

z̃n − zn ∈ 4Zn
8 =⇒ φ(z̃n − zn) ∈ 4Zk

8 =⇒ probability =
(

1
2

)k

D. Krithivasan (U of M) Oral Defense January 12, 2010 55 / 58



Additional Slides

Proof Techniques - Group Channel Codes

Existence proofs by ensemble averaging Pe over all φ : Zn
pr →Z

k
pr

Good group channel codes: Recover zn from φ(zn)

Pe ≤
∑

z̃n∈An
ǫ (Z )

z̃n 6=zn

P
(

φ(z̃n
− zn) = 0k

)

Depends on which subgroup p i
Z

n
pr the term (z̃n − zn) belongs to

Suppose Z =Z8

z̃n − zn ∈ 4Zn
8 =⇒ φ(z̃n − zn) ∈ 4Zk

8 =⇒ probability =
(

1
2

)k

z̃n − zn ∈ 2Zn
8 =⇒ φ(z̃n − zn) ∈ 2Zk

8 =⇒ probability =
(

1
4

)k

D. Krithivasan (U of M) Oral Defense January 12, 2010 55 / 58



Additional Slides

Proof Techniques - Group Channel Codes

Existence proofs by ensemble averaging Pe over all φ : Zn
pr →Z

k
pr

Good group channel codes: Recover zn from φ(zn)

Pe ≤
∑

z̃n∈An
ǫ (Z )

z̃n 6=zn

P
(

φ(z̃n
− zn) = 0k

)

Depends on which subgroup p i
Z

n
pr the term (z̃n − zn) belongs to

Estimate cardinality of (zn +p i
Z

n
pr )∩ An

ǫ (Z )

D. Krithivasan (U of M) Oral Defense January 12, 2010 55 / 58



Additional Slides

Proof Techniques - Group Channel Codes

Existence proofs by ensemble averaging Pe over all φ : Zn
pr →Z

k
pr

Good group channel codes: Recover zn from φ(zn)

Pe ≤
∑

z̃n∈An
ǫ (Z )

z̃n 6=zn

P
(

φ(z̃n
− zn) = 0k

)

Depends on which subgroup p i
Z

n
pr the term (z̃n − zn) belongs to

Estimate cardinality of (zn +p i
Z

n
pr )∩ An

ǫ (Z )

Equivalent to entropy maximization under affine constraints

D. Krithivasan (U of M) Oral Defense January 12, 2010 55 / 58



Additional Slides

Proof Techniques - Group Source Codes

Good group source code:

D. Krithivasan (U of M) Oral Defense January 12, 2010 56 / 58



Additional Slides

Proof Techniques - Group Source Codes

Good group source code:

P

([

∑

un∈An
ǫ (xn )

1{un∈C }

]

= 0

)

Group structure introduces dependencies

D. Krithivasan (U of M) Oral Defense January 12, 2010 56 / 58



Additional Slides

Proof Techniques - Group Source Codes

Good group source code:

P

([

∑

un∈An
ǫ (xn )

1{un∈C }

]

= 0

)

Group structure introduces dependencies

Suen’s inequality from random graph literature
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