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Thesis Overview

Coding: Structured vs Unstructured

@ Information theory - random unstructured codes ubiquitous

& Shannon's original proofs based on random codes

& Good performance. Exponential complexity
@ Structured codes - usually an afterthought

@ Try to attain random code performance using them

@ Usually poorer performance. Low complexity
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@ Unified way to use structured codes in many problems

@ Nesting of one linear code inside another

& No loss in performance vs unstructured codes in point-to-point setting

o Performance gains in multi-terminal settings

@ Existence proofs for “good” nested structured codes
@ One application of this framework

@ Distributed source coding
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Information Theory:An Introduction

@ Mathematical theory of information transmission
@ Quantitative measure of information - entropy, mutual information etc.

@ Big picture: Transmit stochastic sources over noisy channels
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Information Theory:An Introduction

@ Mathematical theory of information transmission
@ Quantitative measure of information - entropy, mutual information etc.

@ Split into modules. Shannon’s source channel separation
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@ Mathematical theory of information transmission
@ Quantitative measure of information - entropy, mutual information etc.

@ Channel coding. Stochastic channels
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Information Theory: An Introduction

Information Theory:An Introduction

@ Mathematical theory of information transmission
@ Quantitative measure of information - entropy, mutual information etc.

@ Distributed source coding. Sensor networks
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Distributed Source Coding
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® X1,X5,..., Xk - Correlated across space, independent across time
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Distributed Source Coding
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Distributed Source Coding

X7 R
fi() I 14
Xy U R %
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fa() E(dy(XE Y3)) < Dy |4
c E(dy(XE, Y1) <Dy | V7
Xp U Rr
fel)

@ Goal: Characterize Z2 using single-letter information quantities

o Very hard to solve completely

@ Provide computable inner bounds
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Information Theory: An Introduction

Single user source coding

- AL - sEax <Dy -

@ Solved completely by Shannon

R, = min I(Xy; 1)
Pyﬂxl : [Ed(leYl)SDl
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Information Theory: An Introduction

Slepian-Wolf problem
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Information Theory: An Introduction

Slepian-Wolf problem

Xt Ry Yy
— A0 T Bdy(X, V) <e|—
X R A Y

@ Lossless reconstruction of both sources
Ry = H(X|Y), Ry, = H(Y|X)
Ri+Ry=H(X,Y)
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Wyner-Ziv problem
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Wyner-Ziv problem

X1 R Yn
R 10 I RS R Py A

— D - ‘

@ Lossy reconstruction with decoder side information

@ Auxiliary random variable U with Markov chain U-X; - X5

R 2 I(X3; U | Xo) = 1(Xy; U) - 1(Xp; U)
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Information Theory: An Introduction

Berger-Tung problem
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Information Theory: An Introduction

Berger-Tung problem
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@ Auxiliary random variables U,V with U-X1 - X, -V
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Information Theory: An Introduction

Berger-Tung problem

Xn
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— fa)
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Ed(X, Y1) <Dy |-

Edy(X5,Ys) < Dy | »

@ Inner bound (tightness not known in general):

Ri=2I1(X1;;U|X2), Ro=I(Xo; V| X1)
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D. Krithivasan (U of M)

Random Codes for Distributed Source Coding

Typical proof techniques

@ Two parts to all problems - achievability and converse
@ Achievability proofs: Operations on the typical set

@ Typical set: Set of probabilistically significant sequences
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Random Codes for Distributed Source Coding

Typical proof techniques

@ Two parts to all problems - achievability and converse

@ Achievability proofs: Operations on the typical set

@ Very complex. No low-dimensional characterization
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Random Codes for Distributed Source Coding

Typical proof techniques

@ Two parts to all problems - achievability and converse

@ Achievability proofs: Operations on the typical set

@ Quantization (source coding) and binning (channel coding)
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Wyner-Ziv problem - Revisited

X1 R Yn
R 10 I RS R Py A

— D - ‘

o First to use auxiliary random variable
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— D - ‘

@ Encoder does not know X,: Markov chain U-X; - X5
@ Combines aspects of both source and channel coding

@ Source coding: Quantize X; to U
@ Channel coding: Decode U at decoder using X
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Quantization - Good source codes

@ Quantize X; to U for a fixed Pyx,

@ Code must “cover” typical set of X; well
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Quantization - Good source codes

@ Quantize X; to U for a fixed Pyx,

@ Size of good code book: I(X;;U)
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Random Codes for Distributed Source Coding

Quantization - Good source codes

@ Quantize X; to U for a fixed Pyx,

@ Codewords chosen at random. No structure.
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Random Codes for Distributed Source Coding

Binning - Good channel codes
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Random Codes for Distributed Source Coding

Binning - Good channel codes

@ Can this side information be exploited?

Oral Defense

D. Krithivasan (U of M)

January 12, 2010

19 / 58



Random Codes for Distributed Source Coding

Binning - Good channel codes

@ Bin the codewords - Transmit only bin index

Oral Defense

D. Krithivasan (U of M)

January 12, 2010

19 / 58



Random Codes for Distributed Source Coding

Binning - Good channel codes

@ Bin the codewords - Transmit only bin index

@ Each bin:

Oral Defense

D. Krithivasan (U of M)

January 12, 2010

19 / 58



Random Codes for Distributed Source Coding

Binning - Good channel codes

@ Bin the codewords - Transmit only bin index

@ Each bin: Channel code for channel Py, ; with input U, output X

u*n
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Random Codes for Distributed Source Coding

Binning - Good channel codes

@ Bin the codewords - Transmit only bin index

@ Code must “pack” the typical set of X, well
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Random Codes for Distributed Source Coding

Binning - Good channel codes

@ Bin the codewords - Transmit only bin index

@ Size of each bin I(U; X3). Binning done randomly
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Random Codes for Distributed Source Coding

Binning - Good channel codes

@ Bin the codewords - Transmit only bin index

@ Overall transmission rate R = I(Xy;U) — I[(U; X5)

D. Krithivasan (U of M) Oral Defense January 12, 2010

19 / 58



Random Codes for Distributed Source Coding

Binning - Good channel codes

@ Bin the codewords - Transmit only bin index

@ Nesting of a “good” channel code in a “good” source code
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Random Codes for Distributed Source Coding

Random coding: Some observations

@ Random coding for distributed source coding
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Random coding: Some observations

@ Random coding for distributed source coding

& Unstructured ensembles drawn from typical sets

o Independent quantization followed by independent binning
@ Decoder given excess information

o First reconstructs auxiliary random variables U,V
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Random Codes for Distributed Source Coding

Random coding: Some observations

@ Random coding for distributed source coding

& Unstructured ensembles drawn from typical sets

o Independent quantization followed by independent binning
@ Decoder given excess information

o First reconstructs auxiliary random variables U,V
o Then computes V= g1(U, V), ¥, = £(U,V)

@ Rate gains possible?
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Nested Group Codes

A Distributed source coding example

@ Alice has the outcome of three fair coin tosses. She copies them and

sends the copy to Bob
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Nested Group Codes

A Distributed source coding example

@ Alice has the outcome of three fair coin tosses. She copies them and

sends the copy to Bob
@ She makes at most one error while copying
@ Charlie wants to know only the location of the error (if any)
@ Alice and Bob talk to Charlie but not to each other

@ What is the minimum amount of information (bits) Charlie needs from

them?
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Nested Group Codes

Distributed source coding example contd.

@ Straightforward scheme - 3 bits each from Alice and Bob

D. Krithivasan (U of M) Oral Defense January 12, 2010 23 / 58



Nested Group Codes

Distributed source coding example contd.

@ Straightforward scheme - 3 bits each from Alice and Bob

@ A better scheme: Alice sends her 3 bits with no compression

D. Krithivasan (U of M) Oral Defense January 12, 2010

23 / 58



Nested Group Codes

Distributed source coding example contd.

@ Straightforward scheme - 3 bits each from Alice and Bob

@ A better scheme: Alice sends her 3 bits with no compression

@ Bob bins his sequence as

D. Krithivasan (U of M) Oral Defense January 12, 2010

23 / 58
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Distributed source coding example contd.

@ Straightforward scheme - 3 bits each from Alice and Bob

@ A better scheme: Alice sends her 3 bits with no compression
00 01 10 11

@ Bob bins his sequence as 000 001 010 100
111 110 101 011
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Distributed source coding example contd.

@ Straightforward scheme - 3 bits each from Alice and Bob

@ A better scheme: Alice sends her 3 bits with no compression

00 01 10 11
@ Bob bins his sequence as 000 001 010 100

111 110 101 011

@ Suppose Alice sends 001 and Bob sends 10, error in first location
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Nested Group Codes

Distributed source coding example contd.

@ Straightforward scheme - 3 bits each from Alice and Bob

@ A better scheme: Alice sends her 3 bits with no compression

00 01 10 11
@ Bob bins his sequence as 000 001 010 100

111 110 101 011

@ Suppose Alice sends 001 and Bob sends 10, error in first location

@ Can we do even better?
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Nested Group Codes

Distributed source coding example contd.

00 01 10 11
@ What if Alice also does the same binning? 000 001 010 100
111 110 101 o011
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Nested Group Codes

Distributed source coding example contd.

00 01 10 11
@ What if Alice also does the same binning? 000 001 010 100

111 110 101 o011
@ Ex: Alice sends 10, Bob sends 01
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Nested Group Codes

Distributed source coding example contd.

00 01 10 11
@ What if Alice also does the same binning? 000 001 010 100

111 110 101 011
@ Ex: Alice sends 10, Bob sends 01

@ Possible pairs: (001,010),(001,101),(110,010),(110,101)
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Distributed source coding example contd.
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@ What if Alice also does the same binning? 000 001 010 100

111 110 101 011
@ Ex: Alice sends 10, Bob sends 01

@ Possible pairs: 10846107, (001,101), (110,010),1tH8;301)
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Nested Group Codes

Distributed source coding example contd.

00 01 10 11
@ What if Alice also does the same binning? 000 001 010 100

111 110 101 011
@ Ex: Alice sends 10, Bob sends 01

@ Possible pairs: 10846107, (001,101), (110,010),1tH8;301)

@ In both cases, error in first location

@ Charlie doesn't know the toss outcomes but he also doesn't care
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Nested Group Codes

The coding strategy explained

@ Two 3 bit sources X = X; X2 X3,Y = V1Y, Y3. Correlation wy(X,Y) <1
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Nested Group Codes

The coding strategy explained

@ Two 3 bit sources X = X; X2 X3,Y = V1Y, Y3. Correlation wy(X,Y) <1

@ Encoding using identical linear codes:

{XI@XQ}
X1X0X3 {1 1 0} X190 X3
V1YoV [1 1 0}
Lol YiaY,
YieYs
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Nested Group Codes

The coding strategy explained

@ Two 3 bit sources X = X; X2 X3,Y = V1Y, Y3. Correlation wy(X,Y) <1

@ Encoding using identical linear codes:

{XI@XQ}
X1X0X3 {1 1 0} X190 X3
I ® Zy
7y D Z3
Y1YaYs [1 1 0}
Lol VoY
YieYs

@ Significant feature: Identical linear binning
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Nested Group Codes

Korner-Marton Coding Scheme

@ Correlated binary random variables (X3, X3)
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Nested Group Codes

Korner-Marton Coding Scheme

@ Correlated binary random variables (X3, X3)

@ Decoder interested in lossless reconstruction of Z = Xj @, X,

n AXT
X A, LY
AZIL
X7 AXD
20 Apen S2

@ Matrix A: puts different typical z" in different bins. %z H(Z)

@ Associated code: Good channel code for additive noise Z
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Nested Group Codes

Korner-Marton Coding Scheme

@ Correlated binary random variables (X3, X3)

@ Decoder interested in lossless reconstruction of Z = Xj @, X,
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Korner-Marton Coding Scheme

@ Correlated binary random variables (X3, X3)

@ Decoder interested in lossless reconstruction of Z = Xj @, X,

n AXT
X A, LY
AZIL
X7 AXD
20 Apen S2

@ Centralized encoder:

o Compute Z =X; ® X,. Compress to f(z")
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Nested Group Codes

Korner-Marton Coding Scheme

@ Correlated binary random variables (X3, X3)

@ Decoder interested in lossless reconstruction of Z = Xj @, X,

n AXT
X A, LY
AZIL
X7 AXD
20 Apen S2

@ Centralized encoder:
o Compute Z =X; ® X,. Compress to f(z")

@ Transmit f(z") to decoder. Decoder recovers z"
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Nested Group Codes

Korner-Marton Coding Scheme

@ Correlated binary random variables (X3, X3)

@ Decoder interested in lossless reconstruction of Z = Xj @, X,
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Nested Group Codes

Korner-Marton Coding Scheme

@ Correlated binary random variables (X3, X3)

@ Decoder interested in lossless reconstruction of Z = Xj @, X,

n AXT
X A, LY

AZIL
X7 AXD
20 Apen S2

@ Decentralized encoders:

@ Compress x;' and xJ' and transmit
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Nested Group Codes

Korner-Marton Coding Scheme

@ Correlated binary random variables (X3, X3)

@ Decoder interested in lossless reconstruction of Z = Xj @, X,

n AXT
X A, LY

AZIL
X7 AXD
20 Apen S2

@ Decentralized encoders:

@ Compress x;' and xJ' and transmit

o Decoder estimates z” from fi(x]), f2(x})
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Nested Group Codes

Korner-Marton Coding Scheme

@ Correlated binary random variables (X3, X3)

@ Decoder interested in lossless reconstruction of Z = Xj @, X,

n AXT
X A, LY
AZIL
X7 AXD
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o Identical linear binning:
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Korner-Marton Coding Scheme

@ Correlated binary random variables (X3, X3)

@ Decoder interested in lossless reconstruction of Z = Xj @, X,

n AXT
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Nested Group Codes

Korner-Marton Coding Scheme

@ Correlated binary random variables (X3, X3)

@ Decoder interested in lossless reconstruction of Z = Xj @, X,

n AXT
X A, LY
AZIL
X7 AXD
20 Apen S2

o Identical linear binning:

@ Mimics centralized encoding
@ Correlated binning better than independent binning
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Nested Group Codes

Korner Marton coding scheme

@ Possible extensions:
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Nested Group Codes

Korner Marton coding scheme

@ Possible extensions:
s Lossy coding
@ Will involve nesting of a good channel code in a good source code
@ Nesting to be done while maintaining linearity of channel code
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@ What about reconstructing Z=X&,Y
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Nested Group Codes

Korner Marton coding scheme

@ Possible extensions:

s Lossy coding
@ Will involve nesting of a good channel code in a good source code
@ Nesting to be done while maintaining linearity of channel code
@ Good nested linear codes

@ What about reconstructing Z=X&,Y
o Example worked because @ is the group operation of the field F,
@ No field exists with group operation &4

@ Group codes

D. Krithivasan (U of M) Oral Defense January 12, 2010 27 / 58



Nested Group Codes

Linear codes: An Introduction

@ Linear code €: Sum of any two codewords is another codeword
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Linear codes: An Introduction

@ Linear code €: Sum of any two codewords is another codeword
@ Traditionally, linear codes built over Galois fields, ex. F, ={0,1}

@ More general: linear codes over Abelian groups Z,
@ Pros: Linear code ensembles have fewer bad codebooks

s Improvement in second order performance (error exponents)

o More dramatic gains in multi terminal settings
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@ More general: linear codes over Abelian groups Z,
@ Pros: Linear code ensembles have fewer bad codebooks

s Improvement in second order performance (error exponents)

o More dramatic gains in multi terminal settings
@ Cons: Even in single user setting, bad first order performance

@ do not achieve Shannon rate-distortion function

@ do not achieve Shannon capacity cost function
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Nested Group Codes

Linear codes: An Introduction

@ Linear code €: Sum of any two codewords is another codeword
@ Traditionally, linear codes built over Galois fields, ex. F, ={0,1}

@ More general: linear codes over Abelian groups Z,
@ Pros: Linear code ensembles have fewer bad codebooks

s Improvement in second order performance (error exponents)

o More dramatic gains in multi terminal settings
@ Cons: Even in single user setting, bad first order performance

@ do not achieve Shannon rate-distortion function

@ do not achieve Shannon capacity cost function

@ Injection of some non-linearity seems necessary for optimality
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Nested Group Codes

Group codes: Codes over primary cyclic groups

@ Primary cyclic group Z, - cyclic group of prime power cardinality
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@ Primary cyclic group Z, - cyclic group of prime power cardinality
@ Example: 7, =1{0,1,2,3} with addition modulo-4 group operation
@ Any abelian group G decomposable into primary cyclic groups

@ Suffices to prove coding theorems for Z,
@ Group code defined via parity check matrix

€ = {x” € Z;’r: Hx" = Ok} for some k x n matrix H
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Nested Group Codes

Group codes: Codes over primary cyclic groups

@ Primary cyclic group Z, - cyclic group of prime power cardinality
@ Example: 7, =1{0,1,2,3} with addition modulo-4 group operation
@ Any abelian group G decomposable into primary cyclic groups

@ Suffices to prove coding theorems for Z,

@ Group code defined via parity check matrix
€ = {x” €Zy,: Hx" = Ok} for some k x n matrix H

@ Group code € over Zpr: € = ker(¢p) for homomorphism ¢: ZZ,‘ — Z"jr
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Nested Group Codes

Good Group Source Codes

@ Good group source code €, for the triple (Z,%, Pxy)
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Nested Group Codes

Good Group Source Codes

@ Assume % = Zp, for some prime p and exponent r >0
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Nested Group Codes

Good Group Source Codes

@ Good: Can find u” € 6; jointly typical with x"
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Good Group Source Codes

@ Good: Can find u” € 6; jointly typical with x"

o We showed:

Good group source codes

Exist for large n if %logl‘gll >logp” - r|HWU|X)-logp ~!|*
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Good Group Source Codes

@ Good: Can find u” € 6; jointly typical with x"

@ No good source code in ensemble if H(U|X) <logpr_1

Good group source codes

Exist for large n if %logl‘gll >logp” - r|HWU|X)-logp ~!|*
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Good Group Source Codes

@ Good: Can find u” € 6; jointly typical with x"

@ Else: Bad performance

Good group source codes

Exist for large n if %logl‘gll >r(logp" — HU|X))
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Good Group Source Codes

@ Good: Can find u” € 6; jointly typical with x"

@ Linear code (r=1) : Still not very good

Good linear source codes

Exist for large n if %logl‘gll > (logp — H(U|X))

n
z,
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Good Group Source Codes

@ Good: Can find u” € 6; jointly typical with x"
o Larger than optimal code size: H(U) — H(U|X)

Good linear source codes

Exist for large n if %logl‘gll > (logp — H(U|X))
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Nested Group Codes

Good Group Source Codes contd.

@ Linear code not Shannon-good for source coding
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Nested Group Codes

Good Group Source Codes contd.

@ Linear code not Shannon-good for source coding

@ But contains a Shannon-good source code
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Nested Group Codes

Good Group Source Codes contd.

@ Linear code not Shannon-good for source coding
@ But contains a Shannon-good source code

o Larger codebook due to binning entire space
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Nested Group Codes

Good Group Source Codes contd.

@ Linear code not Shannon-good for source coding
@ But contains a Shannon-good source code

@ Penalty for imposing structure
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Nested Group Codes

Good Group Source Codes contd.

@ Linear code not Shannon-good for source coding
@ But contains a Shannon-good source code

@ Group codes (r > 1) : more penalties for subgroups
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Good Group Channel Codes

@ Good group channel code 6, for the triple (Z,%#,Pzs)
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Good Group Channel Codes

@ Assume Z = Zp, for some prime p and exponent r >0

° °

o .
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Good Group Channel Codes

@ Good: Can find z" given its coset(color) and s”"
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Good Group Channel Codes

@ Good: Can find z" given its coset(color) and s”"

@ We showed:

Good group channel codes

Exist for large n if 1 -log|6s| <logp” maxo<,<r( )(H(ZIS) H((Z1;19))
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Good Group Channel Codes

@ Good: Can find z" given its coset(color) and s”"

@ [Z]; - random variable taking values over distinct cosets of pin, in

z,
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Nested Group Codes

Good Group Channel Codes

@ Good: Can find z" given its coset(color) and s”"

@ Suppose Z =Zg. [Z]; - binary random variable
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Good Group Channel Codes

@ Good: Can find z" given its coset(color) and s”"
@ Suppose Z =Zg. [Z]; - binary random variable

@ Symbol probabilities: (pg + p2+ pa+ ps, p1+ Ps+ ps + p7)
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Nested Group Codes

Good Group Channel Codes contd.

@ Each subgroup of Z,, : one term in maximization

Good group channel codes

Exist for large n if 1log|%,| <logp” —maxo=i< (7) (H(Z|S) — H((Z];1S))
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Nested Group Codes

Good Group Channel Codes contd.

@ Each subgroup of Z,, : one term in maximization

@ 0Oth term corresponds to H(Z|S)

Good group channel codes

Exist for large n if %logl%”zl <logp” —maxo<i<r (;5) (H(ZIS) - H(1Z1;19))
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Nested Group Codes

Good Group Channel Codes contd.

@ Each subgroup of Z,, : one term in maximization
@ Oth term corresponds to H(Z|S)

@ Penalty for presence of subgroups

Good group channel codes

Exist for large n if %logl%”zl <logp” —maxo<i<r (;5) (H(ZIS) - H(1Z1;19))
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Nested Group Codes

Good Group Channel Codes contd.

@ Each subgroup of Z,, : one term in maximization
@ 0Oth term corresponds to H(Z|S)
@ Penalty for presence of subgroups

@ Linear code (r =1): Still not good

Good linear channel codes

Exist for large n if %logl%”zl <logp— H(Z|S)
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Nested Group Codes

Good Group Channel Codes contd.

(]

Each subgroup of Z,, : one term in maximization

Oth term corresponds to H(Z|S)

Penalty for presence of subgroups

@ Linear code (r =1): Still not good

(]

Larger than optimal code size: H(Z)— H(Z|S)

Good linear channel codes

Exist for large n if %loglcgzl <logp— H(Z|S)
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Nested Group Codes

Good Group Channel Codes contd.

@ Linear code not Shannon-good for channel coding
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Nested Group Codes

Good Group Channel Codes contd.

@ Linear code not Shannon-good for channel coding

@ But every coset (color) contains a Shannon-good channel code
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Good Group Channel Codes contd.
@ Linear code not Shannon-good for channel coding

@ But every coset (color) contains a Shannon-good channel code

@ Larger codebook for binning entire space
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Nested Group Codes

Why bother with group codes?

@ Nesting one code within another helps overall performance
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Nested Group Codes

Why bother with group codes?

@ Nesting one code within another helps overall performance
@ (€1,%6>) nested if €, <€

o Example: Wyner-Ziv problem using nested group codes
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Why bother with group codes?

@ Nesting one code within another helps overall performance
@ (€1,%6>) nested if €, <€
o Example: Wyner-Ziv problem using nested group codes

X7 R Y{
; fl() — 1 —v Bd(X,, Y1) < Dy~ !

— R ‘

R 2 I(Xy; U | Xo) = I(X1;U) — 1(Xz; U)
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Nested Group Codes

Wyner-Ziv via group codes: Quantization

@ Group code good for (X1,%, Px,u)

I z,

_ T
o —o5 )| o o o o o o P
77 ™~
° o o o ° o
— —
o o o o ° o~ N ° o
° ° ° ° o °
° ° ° ° ° ° ° °
o o o o L o o
o o o o o o\\ o o

D. Krithivasan (U of M) Oral Defense January 12, 2010 36 / 58



Nested Group Codes

Wyner-Ziv via group codes: Quantization

@ Group code good for (X1,%, Px,u)

@ Good: Can find u” € 6; jointly typical with source x”
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Wyner-Ziv via group codes: Quantization
@ Group code good for (X1,%, Px,u)

@ Good: Can find u” € 6; jointly typical with source x”

@ Rate of the code: R=logp” —r|H(U|X;)-logp"|*
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Nested Group Codes

Wyner-Ziv via group codes: Quantization

@ Group code good for (X1,%, Px,u)

@ Good: Can find u” € 6; jointly typical with source x”
@ Rate of the code: R=logp” —r|H(U|X;)-logp"|*
@ Code over Galois field: R=1logp - H(U|X))
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Nested Group Codes

Woyner-Ziv via group codes: Binning

@ Every coset (color) good channel code for (%, %>, Pyx,)
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Nested Group Codes

Woyner-Ziv via group codes: Binning

@ Every coset (color) good channel code for (%, %>, Pyx,)

@ Good: Can find unique typical u” given xJ' and coset (color)
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Woyner-Ziv via group codes: Binning
@ Every coset (color) good channel code for (%, %>, Pyx,)

@ Good: Can find unique typical u” given xJ' and coset (color)

@ Bin size: R=logp" —maxo<i<, (75) (HUIX2) -~ H({U]; | X2)
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Nested Group Codes

Woyner-Ziv via group codes: Binning

@ Every coset (color) good channel code for (%, %>, Pyx,)

@ Good: Can find unique typical u” given xJ' and coset (color)
@ Bin size: R=logp" —maxo<i<, (-5) (HU|X2) — H([U]; | X3))
@ Code over Galois field: R=logp— H(U|X>)
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Nested Group Codes

Wyner-Ziv via group codes: Rate Region

@ Only coset leaders (colors) get transmitted
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Nested Group Codes

Wyner-Ziv via group codes: Rate Region

@ Only coset leaders (colors) get transmitted

@ Number of colors : (logp— H(U|X1)) — (log p — H(U|X>))
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Nested Group Codes

Wyner-Ziv via group codes: Rate Region

@ Only coset leaders (colors) get transmitted

@ Number of colors : HU|X,) - HU|X;)
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Nested Group Codes

Wyner-Ziv via group codes: Rate Region

@ Only coset leaders (colors) get transmitted

@ Number of colors : I(X;;U) - I(U; X5)
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Distributed Source Coding : An Inner Bound

Outline

© Distributed Source Coding : An Inner Bound
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Distributed Source Coding : An Inner Bound

Overview of the coding scheme

@ Fix test channels Px, x,uv = Px, %, Puix,Pvix,
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Distributed Source Coding : An Inner Bound

Overview of the coding scheme

@ Fix test channels Px, x,uv = Px, %, Puix,Pvix,

@ Decoder interested in some reconstruction function g(U,V)
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Overview of the coding scheme
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e g(U,V) group operation in abelian group G: Nested group codes
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Distributed Source Coding : An Inner Bound

Overview of the coding scheme

@ Fix test channels Px, x,uv = Px, %, Puix,Pvix,
@ Decoder interested in some reconstruction function g(U,V)

e g(U,V) group operation in abelian group G: Nested group codes
o What if it isn't?
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Distributed Source Coding : An Inner Bound

Overview of the coding scheme

@ Fix test channels Px, x,uv = Px, %, Puix,Pvix,
@ Decoder interested in some reconstruction function g(U,V)

e g(U,V) group operation in abelian group G: Nested group codes
o What if it isn't?
o “Embed” g(U,V) in a suitable abelian group
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Distributed Source Coding : An Inner Bound

Overview of the coding scheme

@ Fix test channels Px, x,uv = Px, %, Puix,Pvix,
@ Decoder interested in some reconstruction function g(U,V)

e g(U,V) group operation in abelian group G: Nested group codes
o What if it isn't?
o “Embed” g(U,V) in a suitable abelian group

@ Decompose G into primary cyclic groups G = L, @7 e ---GBZpek
1 2 K
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Distributed Source Coding : An Inner Bound

Overview of the coding scheme

@ Fix test channels Px, x,uv = Px, %, Puix,Pvix,
@ Decoder interested in some reconstruction function g(U,V)

e g(U,V) group operation in abelian group G: Nested group codes
o What if it isn't?
o “Embed” g(U,V) in a suitable abelian group

@ Decompose G into primary cyclic groups G = L, @7 e ---GBZpek
1 2 K

@ Encode sequentially using codes over 7, 1<i<k
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Distributed Source Coding : An Inner Bound

Coding Strategy

o Nested group codes 6, < 611,612
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Distributed Source Coding : An Inner Bound

Coding Strategy

o Nested group codes 6, < 611,612
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Distributed Source Coding : An Inner Bound

Coding Strategy

o Nested group codes 6, < 611,612

Cu o llog|€nl=
_
— 1+
. H logp” —r|HU|X;) ~logp"'|
Zh ; T
_ T
C]f) N HQZ”
_
Tg . HQ’L"
_— T
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Coding Strategy

o Nested group codes 6, < 611,612

e— Cn o llog|€nl=
AT e logp” - r|H(WU| X)) —log p"~!|*
“ ° %logl‘élzl =

_

logp” —r|H(V|X,) —logp" !+
C]f) N HQZ”

o : LA

_
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Coding Strategy

o Nested group codes 6, < 611,612

e Cn o llog|€nl=
'/\uﬁ o logp” - rlH(U|X;) —logp" 1"
ki . - ] ) %logl‘glzlz

R logp” —r|H(V|X,) —logp" !+

—— €12 T m g 110g|%,| <logp” -
e maxosi<r (727) (H(Z) ~ H(Z11)
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Distributed Source Coding : An Inner Bound

Achievable Rates

Achievable rates

The set of tuples (Ry, Ry, D) that satisfy

R1>5’2{<“Xr(r— ) (H(2) - H(1Z1) - I HWIX) ~log p™'|*

R, > max( )(H(Z) H((Z1;)) - rlH(V|Y) —-logp"~'|*
0<i<r\r—1

D=Ed(X,Y,g(U,V))

are achievable.
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Distributed Source Coding : An Inner Bound

Achievable Rates

Achievable rates

The set of tuples (Ry, Ry, D) that satisfy

R1>5’2{<“Xr(r— ) (H(2) - H(1Z1) - I HWIX) ~log p™'|*

R, > max( )(H(Z) H((Z1;)) - rlH(V|Y) —-logp"~'|*
0<i<r\r—1

D=Ed(X,Y,g(U,V))
are achievable.

@ More general rate region possible by
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Distributed Source Coding : An Inner Bound

Achievable Rates

Achievable rates

The set of tuples (Ry, Ry, D) that satisfy

Rlz(glgg(r_ | (H@) - H(219) - I HWIX) - 10g p"I*
R, > max( )(H(Z) H((Z1;)) - rlH(V|Y) —-logp"~'|*
O<i<r\r—1
DZ[Ed(X,Y,g(U,V))
are achievable.

@ More general rate region possible by
o Embedding in general groups and using digit decomposition
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Distributed Source Coding : An Inner Bound

Achievable Rates

Achievable rates

The set of tuples (Ry, Ry, D) that satisfy

Rlz(glgg(r_ | (H@) - H(219) - I HWIX) - 10g p"I*

R, > max( )(H(Z) H((Z1;)) - rlH(V|Y) —-logp"~'|*
0<i<r\r—1

D=Ed(X,Y,g(U,V))
are achievable.

@ More general rate region possible by

o Embedding in general groups and using digit decomposition

o Alternative coding strategy - Encode (U, V) instead of Z
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Distributed Source Coding : An Inner Bound

Special cases

@ Lossless compression using group codes - achievable rates

@ Lossy compression for arbitrary sources and distortion measures using

group codes
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Distributed Source Coding : An Inner Bound

Special cases

@ Lossless compression using group codes - achievable rates

@ Lossy compression for arbitrary sources and distortion measures using
group codes

@ Nested linear codes - Shannon rate-distortion bound for arbitrary

sources and additive distortion measures
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Distributed Source Coding : An Inner Bound

Special cases

@ Lossless compression using group codes - achievable rates

@ Lossy compression for arbitrary sources and distortion measures using
group codes

@ Nested linear codes - Shannon rate-distortion bound for arbitrary
sources and additive distortion measures

@ Recovers known rate regions (using nested linear codes) of
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Distributed Source Coding : An Inner Bound

Special cases

@ Lossless compression using group codes - achievable rates

@ Lossy compression for arbitrary sources and distortion measures using
group codes

@ Nested linear codes - Shannon rate-distortion bound for arbitrary
sources and additive distortion measures

@ Recovers known rate regions (using nested linear codes) of

o Berger-Tung problem
o Wyner-Ziv problem, Wyner-Ahlswede-Korner problem
Yeung-Berger problem

©

@ Slepian-Wolf problem, Korner-Marton problem
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Distributed Source Coding : An Inner Bound

A Lossless Reconstruction Example

@ X,Y,Z - Quaternary random variables
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Distributed Source Coding : An Inner Bound

A Lossless Reconstruction Example

@ X,Y,Z - Quaternary random variables
@ Quaternary rvs: X,Y. Correlation: Y=Xe&,4Z

@ Decoder: lossless reconstruction of Z=(X-Y) mod4
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A Lossless Reconstruction Example
@ X,Y,Z - Quaternary random variables

@ Quaternary rvs: X,Y. Correlation: Y=Xe&,4Z

@ Decoder: lossless reconstruction of Z=(X-Y) mod4

@ No linear code over Z4 - KM not possible
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Distributed Source Coding : An Inner Bound

A Lossless Reconstruction Example

@ X,Y,Z - Quaternary random variables
@ Quaternary rvs: X,Y. Correlation: Y=Xe&,4Z

@ Decoder: lossless reconstruction of Z=(X-Y) mod4

@ Group based scheme in Z4 achieves

Rsum =2max{H(Z),2(H(Z) - H(IZ]))}
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Distributed Source Coding : An Inner Bound

A Lossless Reconstruction Example

@ X,Y,Z - Quaternary random variables
@ Quaternary rvs: X,Y. Correlation: Y=Xe&,4Z

@ Decoder: lossless reconstruction of Z=(X-Y) mod4

@ Group based scheme in Z4 achieves
Rsum =2max{H(Z),2(H(Z) — H([Z]1))}

@ Can be lower than H(X,Y)
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Distributed Source Coding : An Inner Bound

A Lossless Reconstruction Example

@ X,Y,Z - Quaternary random variables
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@ Decoder: lossless reconstruction of Z=(X-Y) mod4

@ Group based scheme in Z4 achieves
Rsum =2max{H(Z),2(H(Z) — H([Z]1))}

@ Can be lower than H(X,Y)
@ Function can also be “embedded” in Z4,77,73,72

@ For every group : Py, Pz such that that group gives best embedding
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Distributed Source Coding : An Inner Bound

Py Pz Rz, Rz, | Rz,62,02, | Rz,02,
(5311 (1011 3 | 39056 | 3.1887 35
[ 3500 | (025551 | 23911 | 2.0797 | 24529 | 2.1796
B3] | [(B112] | 36847 | 45925 | 3.3495 | 3.4633
[535353) | [355252) | 2-308 | 27065 | 1.9395 | 1.7815

Table: Example distributions for which embedding in a given group gives the

lowest sum rate.
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Distributed Source Coding : An Inner Bound

Lossy Reconstruction of binary XOR

@ Correlated binary sources (X,Y)
@ Reconstruct Z =X @, Y within Hamming distortion D
@ U,V - binary auxiliary random variables

@ G(U,V) - one of 16 possibilities depending on (Pyx, Py|y)
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Distributed Source Coding : An Inner Bound

Lossy Example contd.

Comparison of the two lower convex envelopes

« —Berger-Tung based coding schem
e 18r Group code based coding scheme
+
o 16
]
=
[
¥ 141
1S
>
) 12r

0.62 0.64 O.b@ 0._‘08 0.1 0.12 0.‘14
Distortion D

@ Rate gains over the Berger-Tung based scheme
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Distributed Source Coding : An Inner Bound

Lossy Example contd.

Comparison of the two lower convex envelopes

« —Berger-Tung based coding schem
e 18r Group code based coding scheme
+
o 16
]
=
[
¥ 141
1S
>
) 12r

0.62 0.64 O.b@ 0._‘08 0.1 0.‘12 0.‘14
Distortion D

@ Rate gains over the Berger-Tung based scheme
@ Implies Berger-Tung inner bound not tight for three-user case
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Conclusions

Summary

@ Unified framework using structured codes

o Nesting makes them atleast as good as unstructured codes

s Can be plugged into many multi-terminal problems

s Existence results for appropriate notions of “goodness”
@ Distributed coding of discrete sources

s Existence of “good” group codes

@ Recovers rate regions for many problems

o Improves rate regions for certain distortion functions
@ Jointly Gaussian sources

@ Lattice codes analogous to group codes

@ Within 1 bit of optimal rate-distortion region

o Arbitrarily large gains over unstructured codes
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Conclusions

Codes over Non-Abelian Groups

@ Group codes built over abelian groups
@ Proofs used underlying ring structure

@ Codes over a non-abelian group G
o Codebook : Kernel of homomorphism from G" to G*?

@ Normal subgroup of G"

o Too stringent. No good codes exist.
@ Ensemble of subgroups of G"

o Trellis based characterization (from control theory literature)

@ More sophisticated tools from group theory
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Conclusions

Other Extensions

@ Distributed source coding - only one example
@ Multi-terminal channel coding

o Broadcast channels, interference channels
@ Might want to decode a function of interfering users’ messages

@ Structured codes will lead to better rate regions
@ Practical nested linear code constructions

@ Rich theory of LDPC, LDGM codes
@ Sub-optimal but fast decoding
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Conclusions

Thank You

Questions?
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Slepian-Wolf Coding

@ Function to be reconstructed F(X,Y) =(X,Y).

@ Reconstruction of binary sources equivalent to addition in F,.

Table: Mapping for SW-coding

@ Treat binary sources as [F, sources.

®4
00
01
10
11

00
00
01
10
11

01
01
00
11
10

10
10
11
00
01

11
11
10
01
00

@ Function to be reconstructed is Z=X@&, Y.
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Digit Decomposition Approach

@ We encode the vector function one component at a time.

@& 0 0 @& 0 1
0 0 O 0 0 1
1 1 1 0 0 1
Table: First Digit of Z Table: Second Digit of Z

@ Use KM encoding for each “digit”
o First digit can be encoded at rate H(X;) = H(X)
@ Second digit can be encoded at rate H(Y»|X;) = H(Y|X)
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P, Y P (<p(2" _ "= 0")
zneAl(2)

Zn#z"

o Depends on which subgroup piZ”;, the term (Z" — z") belongs to

@ Suppose Z =Zg

o Z"-z" €47} = P(z"-z") €4Zk = probability = (1)
0 Z"-z"€27} = (2" -2z") €2Zf = probability = (i)k
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Proof Techniques - Group Channel Codes

o Existence proofs by ensemble averaging P, over all ¢: Zy — Z”;,

@ Good group channel codes: Recover z" from ¢(z")

P, Y P (<p(2" _ "= 0")
zneAl(2)

Zn#z"

o Depends on which subgroup piZZ, the term (Z" — z") belongs to

o Estimate cardinality of (z" + piZZr) nAMZ)

@ Equivalent to entropy maximization under affine constraints
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Additional Slides

Proof Techniques - Group Source Codes

@ Good group source code:

|

@ Group structure introduces dependencies

Y. lureq

ue A (x")

:

@ Suen’s inequality from random graph literature
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Suen's Inequality
@ Bounds on sum of “sparsely’” dependent indicator random variables
I3 @ Edges between dependent

I

indicators

1y
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Suen's Inequality

@ Bounds on sum of “sparsely’” dependent indicator random variables
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I |
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@ Bounds on sum of “sparsely’” dependent indicator random variables
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I |
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Proof Techniques - Group Source Codes contd.

@ Need to evaluate P(u" € ¢) and P(uj,u} € 6)

@ P(u" € €) easy to evaluate
® P(uj,uy €%6)
@ Depends on number of solutions in (a, f) to auj +pfuy =0

Number of solution pairs(a,g)
P2
@ Have to estimate the degree of each vertex in the dependency graph

o P(ul,u} €€)=
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D. Krithivasan (U of M)

Oral Defense

Decoder Z
9() >

January 12, 2010

59 / 58



Additional Slides

Highlights of the work

Xt Encoder 1 Ry
E— () L —
Encoder 2 Ry
— L —
Xév, f2 ( )

Decoder Z
9() >

@ Showed achievability of (Ry, Ry, D) when

o2\
272k 4 =2 < (—Z)
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