Algebraic Structures for Multi-Terminal Communications

Dinesh Krithivasan

University of Michigan

Oral Defense

D. Krithivasan (U of M)

3

Lattice codes and Gaussian sources (Chap. 2)

2 Group codes and discrete sources (Chap. 3)

Lattice codes and Gaussian sources (Chap. 2)

- Reconstructing linear function of the sources
- Existence of "good" nested lattice codes
- New rate region better for certain parameters
- Group codes and discrete sources (Chap. 3)

- 3

Lattice codes and Gaussian sources (Chap. 2)

- Reconstructing linear function of the sources
- Existence of "good" nested lattice codes
- New rate region better for certain parameters
- Group codes and discrete sources (Chap. 3)
 - Reconstructing arbitrary function of the sources
 - Existence of "good" group codes
 - Unified rate region for many problems

・ロト ・ 一下 ・ ・ ヨト ・ ヨト

Lattice codes and Gaussian sources (Chap. 2)

- Reconstructing linear function of the sources
- Existence of "good" nested lattice codes
- New rate region better for certain parameters
- Group codes and discrete sources (Chap. 3)
 - Reconstructing arbitrary function of the sources
 - Existence of "good" group codes
 - Unified rate region for many problems

・ロト ・ 一下 ・ ・ 三 ト ・ 三 ト

Presentation Outline

Thesis Overview

- Information Theory: An Introduction
- 3 Random Codes for Distributed Source Coding
- 4 Nested Group Codes
- Distributed Source Coding : An Inner Bound

6 Conclusions

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Outline

Thesis Overview

- 2 Information Theory: An Introduction
- 3 Random Codes for Distributed Source Coding
- 4 Nested Group Codes
- Distributed Source Coding : An Inner Bound
- 6 Conclusions

э

イロト イヨト イヨト イヨト

• Information theory - random unstructured codes ubiquitous

- Shannon's original proofs based on random codes
- Good performance. Exponential complexity
- Structured codes usually an afterthought

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

- Information theory random unstructured codes ubiquitous
 - Shannon's original proofs based on random codes
 - Good performance. Exponential complexity
- Structured codes usually an afterthought
 - Try to attain random code performance using them
 - Usually poorer performance. Low complexity

- Information theory random unstructured codes ubiquitous
 - Shannon's original proofs based on random codes
 - Good performance. Exponential complexity
- Structured codes usually an afterthought
 - Try to attain random code performance using them
 - Usually poorer performance. Low complexity

- Information theory random unstructured codes ubiquitous
 - Shannon's original proofs based on random codes
 - Good performance. Exponential complexity
- Structured codes usually an afterthought
 - Try to attain random code performance using them
 - Usually poorer performance. Low complexity

- Information theory random unstructured codes ubiquitous
 - Shannon's original proofs based on random codes
 - Good performance. Exponential complexity
- Structured codes usually an afterthought
 - Try to attain random code performance using them
 Usually poorer performance. Low complexity

- Information theory random unstructured codes ubiquitous
 - Shannon's original proofs based on random codes
 - Good performance. Exponential complexity
- Structured codes usually an afterthought
 - Try to attain random code performance using them
 - Usually poorer performance. Low complexity

• Unified way to use structured codes in many problems

Nesting of one linear code inside another

- No loss in performance vs unstructured codes in point-to-point setting
 Performance gains in multi-terminal settings
- Existence proofs for "good" nested structured codes
- One application of this framework

- Unified way to use structured codes in many problems
- Nesting of one linear code inside another
 - No loss in performance vs unstructured codes in point-to-point setting
 - Performance gains in multi-terminal settings
- Existence proofs for "good" nested structured codes
- One application of this framework

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

- Unified way to use structured codes in many problems
- Nesting of one linear code inside another
 - No loss in performance vs unstructured codes in point-to-point setting
 - Performance gains in multi-terminal settings
- Existence proofs for "good" nested structured codes
- One application of this framework

- Unified way to use structured codes in many problems
- Nesting of one linear code inside another
 - No loss in performance vs unstructured codes in point-to-point setting
 - Performance gains in multi-terminal settings
- Existence proofs for "good" nested structured codes
- One application of this framework
 - Distributed source coding

イロト イポト イヨト イヨト 二日

- Unified way to use structured codes in many problems
- Nesting of one linear code inside another
 - No loss in performance vs unstructured codes in point-to-point setting
 - Performance gains in multi-terminal settings
- Existence proofs for "good" nested structured codes
- One application of this framework
 - Distributed source coding

イロト イポト イヨト イヨト 二日

- Unified way to use structured codes in many problems
- Nesting of one linear code inside another
 - No loss in performance vs unstructured codes in point-to-point setting
 - Performance gains in multi-terminal settings
- Existence proofs for "good" nested structured codes
- One application of this framework
 - Distributed source coding

- Unified way to use structured codes in many problems
- Nesting of one linear code inside another
 - No loss in performance vs unstructured codes in point-to-point setting
 - Performance gains in multi-terminal settings
- Existence proofs for "good" nested structured codes
- One application of this framework
 - Distributed source coding

Image: A matrix and a matrix

Outline

Thesis Overview

Information Theory: An Introduction

3 Random Codes for Distributed Source Coding

4 Nested Group Codes

5 Distributed Source Coding : An Inner Bound

6 Conclusions

э

イロト イヨト イヨト イヨト

• Mathematical theory of information transmission

э

・ロン ・四と ・ヨン ・ヨン

- Mathematical theory of information transmission
- Quantitative measure of information entropy, mutual information etc.

- Mathematical theory of information transmission
- Quantitative measure of information entropy, mutual information etc.
- Big picture: Transmit stochastic sources over noisy channels

D. Krithivasan (U of M)

- Mathematical theory of information transmission
- Quantitative measure of information entropy, mutual information etc.
- Split into modules. Shannon's source channel separation

- Mathematical theory of information transmission
- Quantitative measure of information entropy, mutual information etc.
- Channel coding. Stochastic channels

- Mathematical theory of information transmission
- Quantitative measure of information entropy, mutual information etc.
- Source coding. Stochastic sources.

9 / 58

- Mathematical theory of information transmission
- Quantitative measure of information entropy, mutual information etc.
- Distributed source coding. Sensor networks

• X_1, X_2, \ldots, X_K - Correlated across space, independent across time

Image: A matrix

• Encoders $f_i: \mathscr{X}_i^n \to \{1, 2, \dots, 2^{nR_i}\}, i = 1, \dots, K$

January 12, 2010 10

10 / 58

3

• Rate distortion region \mathscr{RD} : set of achievable $(R_1, \ldots, R_K, D_1, \ldots, D_L)$

Image: A matrix

• Goal: Characterize \mathscr{RD} using single-letter information quantities

Image: Image:

• Goal: Characterize \mathscr{RD} using single-letter information quantities

• Very hard to solve completely

Image: Image:

• Goal: Characterize \mathscr{RD} using single-letter information quantities

- Very hard to solve completely
- Provide computable inner bounds

Image: Image:

Single user source coding

2

・ロン ・四と ・ヨン ・ヨン

Single user source coding

Solved completely by Shannon

$$R_1 \ge \min_{p_{\hat{Y}_1|X_1}: \mathbb{E}d(X_1, \hat{Y}_1) \le D_1} I(X_1; \hat{Y}_1)$$

D. Krithivasan (U of M)

∃ → January 12, 2010 11 / 58

э

Image: A matrix
Slepian-Wolf problem

• Lossless reconstruction of both sources

D. Krithivasan (U of M)

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Slepian-Wolf problem

• Lossless reconstruction of both sources

 $R_1 \geq H(X|Y), \; R_2 \geq H(Y|X)$

$$R_1 + R_2 \ge H(X, Y)$$

イロト イポト イヨト イヨト

Wyner-Ziv problem

• Lossy reconstruction with decoder side information

Image: A matrix

- Lossy reconstruction with decoder side information
- Auxiliary random variable U with Markov chain $U X_1 X_2$

イロト イポト イヨト イヨト

- Lossy reconstruction with decoder side information
- Auxiliary random variable U with Markov chain $U X_1 X_2$

$$R_1 \ge I(X_1; U \mid X_2) = I(X_1; U) - I(X_2; U)$$

イロト イポト イヨト イヨト

Berger-Tung problem

• Independent distortion criteria

Image: A matrix

Berger-Tung problem

• Auxiliary random variables U, V with $U - X_1 - X_2 - V$

Berger-Tung problem

• Inner bound (tightness not known in general):

$$\begin{aligned} R_1 &\geq I(X_1; U \mid X_2), \ R_2 &\geq I(X_2; V \mid X_1) \\ R_1 + R_2 &\geq I(X_1X_2; UV) \end{aligned}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Outline

- Thesis Overview
- 2 Information Theory: An Introduction
- 3 Random Codes for Distributed Source Coding
 - Nested Group Codes
 - 5 Distributed Source Coding : An Inner Bound
 - 6 Conclusions

3

• Two parts to all problems - achievability and converse

3

- Two parts to all problems achievability and converse
- Achievability proofs: Operations on the typical set

3

A B A A B A

- Two parts to all problems achievability and converse
- Achievability proofs: Operations on the typical set
- Typical set: Set of probabilistically significant sequences

D. Krithivasan (U of M)

- Two parts to all problems achievability and converse
- Achievability proofs: Operations on the typical set
- Very complex. No low-dimensional characterization

- Two parts to all problems achievability and converse
- Achievability proofs: Operations on the typical set
- Quantization (source coding) and binning (channel coding)

D. Krithivasan (U of M)

• First to use auxiliary random variable

Image: A matrix

• Encoder does not know X_2 : Markov chain $U - X_1 - X_2$

イロト イポト イヨト イヨト

- Encoder does not know X_2 : Markov chain $U X_1 X_2$
- Combines aspects of both source and channel coding

A B A A B A

- Encoder does not know X_2 : Markov chain $U X_1 X_2$
- Combines aspects of both source and channel coding
 - Source coding: Quantize X_1 to U

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Encoder does not know X_2 : Markov chain $U X_1 X_2$
- Combines aspects of both source and channel coding
 - Source coding: Quantize X_1 to U
 - Channel coding: Decode U at decoder using X_2

Image: A math a math

• Quantize X_1 to U for a fixed $P_{U|X_1}$

イロト 不得下 イヨト イヨト 二日

- Quantize X_1 to U for a fixed $P_{U|X_1}$
- \bullet Codebook ${\mathscr C}$ built from typical set of U

- Quantize X_1 to U for a fixed $P_{U|X_1}$
- Code must "cover" typical set of X_1 well

- Quantize X_1 to U for a fixed $P_{U|X_1}$
- Size of good code book: $I(X_1; U)$

- Quantize X_1 to U for a fixed $P_{U|X_1}$
- Codewords chosen at random. No structure.

• Suppose X_1 already quantized to U

• Decoder knows X_2 correlated to U

• Can this side information be exploited?

• Bin the codewords - Transmit only bin index

- Bin the codewords Transmit only bin index
- Each bin:

- Bin the codewords Transmit only bin index
- Each bin: Channel code for channel $P_{X_2|U}$ with input U, output X_2

- Bin the codewords Transmit only bin index
- Code must "pack" the typical set of X_2 well

- Bin the codewords Transmit only bin index
- Size of each bin $I(U; X_2)$. Binning done randomly

- Bin the codewords Transmit only bin index
- Overall transmission rate $R = I(X_1; U) I(U; X_2)$

- Bin the codewords Transmit only bin index
- Nesting of a "good" channel code in a "good" source code

Random coding: Some observations

• Random coding for distributed source coding

3

Random coding: Some observations

- Random coding for distributed source coding
 - Unstructured ensembles drawn from typical sets

э
- Random coding for distributed source coding
 - Unstructured ensembles drawn from typical sets
 - Independent quantization followed by independent binning

イロト イポト イヨト イヨト

- Random coding for distributed source coding
 - Unstructured ensembles drawn from typical sets
 - Independent quantization followed by independent binning
- Decoder given excess information

- Random coding for distributed source coding
 - Unstructured ensembles drawn from typical sets
 - Independent quantization followed by independent binning
- Decoder given excess information
 - First reconstructs auxiliary random variables U, V

- Random coding for distributed source coding
 - Unstructured ensembles drawn from typical sets
 - Independent quantization followed by independent binning
- Decoder given excess information
 - First reconstructs auxiliary random variables *U*, *V*
 - Then computes $\hat{Y}_1 = g_1(U, V)$, $\hat{Y}_2 = g_2(U, V)$

イロト イポト イヨト イヨト 二日

- Random coding for distributed source coding
 - Unstructured ensembles drawn from typical sets
 - Independent quantization followed by independent binning
- Decoder given excess information
 - First reconstructs auxiliary random variables U, V
 - Then computes $\hat{Y}_1 = g_1(U, V)$, $\hat{Y}_2 = g_2(U, V)$
- Rate gains possible?

イロト イポト イヨト イヨト 二日

Outline

Thesis Overview

- 2 Information Theory: An Introduction
- 3 Random Codes for Distributed Source Coding
- 4 Nested Group Codes
- 5 Distributed Source Coding : An Inner Bound

6 Conclusions

3

《曰》 《圖》 《臣》 《臣》

• Alice has the outcome of three fair coin tosses. She copies them and sends the copy to Bob

э

イロト イポト イヨト イヨト

- Alice has the outcome of three fair coin tosses. She copies them and sends the copy to Bob
- She makes at most one error while copying

Image: Image:

- Alice has the outcome of three fair coin tosses. She copies them and sends the copy to Bob
- She makes at most one error while copying
- Charlie wants to know only the location of the error (if any)

- Alice has the outcome of three fair coin tosses. She copies them and sends the copy to Bob
- She makes at most one error while copying
- Charlie wants to know only the location of the error (if any)
- Alice and Bob talk to Charlie but not to each other

- Alice has the outcome of three fair coin tosses. She copies them and sends the copy to Bob
- She makes at most one error while copying
- Charlie wants to know only the location of the error (if any)
- Alice and Bob talk to Charlie but not to each other
- What is the minimum amount of information (bits) Charlie needs from them?

• Straightforward scheme - 3 bits each from Alice and Bob

э

イロト イポト イヨト イヨト

- Straightforward scheme 3 bits each from Alice and Bob
- A better scheme: Alice sends her 3 bits with no compression

Image: A matrix

- Straightforward scheme 3 bits each from Alice and Bob
- A better scheme: Alice sends her 3 bits with no compression
- Bob bins his sequence as

- Straightforward scheme 3 bits each from Alice and Bob
- A better scheme: Alice sends her 3 bits with no compression

	00	01	10	11
• Bob bins his sequence as	000	001	010	100
	111	110	101	011

イロト イポト イヨト イヨト

- Straightforward scheme 3 bits each from Alice and Bob
- A better scheme: Alice sends her 3 bits with no compression

	00	01	10	11
• Bob bins his sequence as	000	001	010	100
	111	110	101	011

• Suppose Alice sends 001 and Bob sends 10, error in first location

- Straightforward scheme 3 bits each from Alice and Bob
- A better scheme: Alice sends her 3 bits with no compression

	00	01	10	11
• Bob bins his sequence as	000	001	010	100
	111	110	101	011

- Suppose Alice sends 001 and Bob sends 10, error in first location
- Can we do even better?

		00	01	10	11
٩	What if Alice also does the same binning?	000	001	010	100
		111	110	101	011

In both cases, error in first location

Charlie doesn't know the toss outcomes but he also doesn't care

A D > <
 A P >
 A

• What if Alice also does the same binning? 000 001 010 100 111 110 101 011

00

Image: Image:

01

10

11

- Ex: Alice sends 10, Bob sends 01
- In both cases, error in first location
- Charlie doesn't know the toss outcomes but he also doesn't care

• What if Alice also does the same binning?

	00	01	10	11
1	000	001	010	100
	111	110	101	011

- Ex: Alice sends 10, Bob sends 01
- Possible pairs: (001,010), (001,101), (110,010), (110,101)
- In both cases, error in first location
- Charlie doesn't know the toss outcomes but he also doesn't care

• What if Alice also does the same binning?

	00	01	10	11
,	000	001	010	100
	111	110	101	011

- Ex: Alice sends 10, Bob sends 01
- Possible pairs: (001,010), (110,010), (110,101), (110,010), (110,101)
- In both cases, error in first location
- Charlie doesn't know the toss outcomes but he also doesn't care

- What if Alice also does the same binning?
- 00
 01
 10
 11

 000
 001
 010
 100

 111
 110
 101
 011

- Ex: Alice sends 10, Bob sends 01
- Possible pairs: (001,010), (110,010), (110,101)
- In both cases, error in first location
- Charlie doesn't know the toss outcomes but he also doesn't care

- What if Alice also does the same binning?
- 00
 01
 10
 11

 ?
 000
 001
 010
 100

 111
 110
 101
 011

- Ex: Alice sends 10, Bob sends 01
- Possible pairs: (001,010), (001,101), (110,010), (110,101)
- In both cases, error in first location
- Charlie doesn't know the toss outcomes but he also doesn't care

• Two 3 bit sources $X = X_1 X_2 X_3$, $Y = Y_1 Y_2 Y_3$. Correlation $w_H(X, Y) \le 1$

イロト 不得下 イヨト イヨト 二日

- Two 3 bit sources $X = X_1 X_2 X_3$, $Y = Y_1 Y_2 Y_3$. Correlation $w_H(X, Y) \le 1$
- Encoding using identical linear codes:

3

イロト イポト イヨト イヨト

- Two 3 bit sources $X = X_1 X_2 X_3$, $Y = Y_1 Y_2 Y_3$. Correlation $w_H(X, Y) \le 1$
- Encoding using identical linear codes:

- Two 3 bit sources $X = X_1 X_2 X_3$, $Y = Y_1 Y_2 Y_3$. Correlation $w_H(X, Y) \le 1$
- Encoding using identical linear codes:

• Significant feature: Identical linear binning

• Correlated binary random variables (X_1, X_2)

3

< ロ > < 同 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Correlated binary random variables (X_1, X_2)
- Decoder interested in lossless reconstruction of $Z = X_1 \oplus_2 X_2$

イロト 不得下 イヨト イヨト 二日

- Correlated binary random variables (X_1, X_2)
- Decoder interested in lossless reconstruction of $Z = X_1 \oplus_2 X_2$

Image: A matrix

- Correlated binary random variables (X_1, X_2)
- Decoder interested in lossless reconstruction of $Z = X_1 \oplus_2 X_2$

• Matrix A: puts different typical z^n in different bins. $\frac{k}{n} \approx H(Z)$

- Correlated binary random variables (X_1, X_2)
- Decoder interested in lossless reconstruction of $Z = X_1 \oplus_2 X_2$

• Matrix A: puts different typical z^n in different bins. $\frac{k}{n} \approx H(Z)$

Associated code: Good channel code for additive noise Z

- Correlated binary random variables (X_1, X_2)
- Decoder interested in lossless reconstruction of $Z = X_1 \oplus_2 X_2$

• Centralized encoder:

A D > <
 A P >
 A

- Correlated binary random variables (X_1, X_2)
- Decoder interested in lossless reconstruction of $Z = X_1 \oplus_2 X_2$

- Centralized encoder:
 - Compute $Z = X_1 \oplus X_2$. Compress to $f(z^n)$

Image: A matrix

- Correlated binary random variables (X_1, X_2)
- Decoder interested in lossless reconstruction of $Z = X_1 \oplus_2 X_2$

- Centralized encoder:
 - Compute $Z = X_1 \oplus X_2$. Compress to $f(z^n)$
 - Transmit $f(z^n)$ to decoder. Decoder recovers z^n

- Correlated binary random variables (X_1, X_2)
- Decoder interested in lossless reconstruction of $Z = X_1 \oplus_2 X_2$

• Decentralized encoders:

A D > <
 A P >
 A
- Correlated binary random variables (X_1, X_2)
- Decoder interested in lossless reconstruction of $Z = X_1 \oplus_2 X_2$

- Decentralized encoders:
 - Compress x_1^n and x_2^n and transmit

A B A A B A

- Correlated binary random variables (X_1, X_2)
- Decoder interested in lossless reconstruction of $Z = X_1 \oplus_2 X_2$

- Decentralized encoders:
 - Compress x_1^n and x_2^n and transmit
 - Decoder estimates z^n from $f_1(x_1^n)$, $f_2(x_2^n)$

- Correlated binary random variables (X_1, X_2)
- Decoder interested in lossless reconstruction of $Z = X_1 \oplus_2 X_2$

• Identical linear binning:

Image: A matrix

- Correlated binary random variables (X_1, X_2)
- Decoder interested in lossless reconstruction of $Z = X_1 \oplus_2 X_2$

- Identical linear binning:
 - Mimics centralized encoding

Image: A matrix

- Correlated binary random variables (X_1, X_2)
- Decoder interested in lossless reconstruction of $Z = X_1 \oplus_2 X_2$

- Identical linear binning:
 - Mimics centralized encoding
 - Correlated binning better than independent binning

Possible extensions:

- Lossy coding
 - Will involve nesting of a good channel code in a good source code
 - Nesting to be done while maintaining linearity of channel code
 - Good nested linear codes
- What about reconstructing $Z = X \oplus_4 Y$
 - Example worked because \oplus_2 is the group operation of the field \mathbb{F}_2
 - No field exists with group operation \oplus_4
 - Group codes

イロト イロト イヨト イヨト

Possible extensions:

- Lossy coding
 - Will involve nesting of a good channel code in a good source code
 - Nesting to be done while maintaining linearity of channel code
 - Good nested linear codes
- What about reconstructing $Z = X \oplus_4 Y$
 - Example worked because ⊕₂ is the group operation of the field F₂
 - No field exists with group operation \oplus_4
 - Group codes

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

- Possible extensions:
 - Lossy coding
 - Will involve nesting of a good channel code in a good source code
 - Nesting to be done while maintaining linearity of channel code
 - Good nested linear codes
 - What about reconstructing $Z = X \oplus_4 Y$
 - Example worked because ⊕₂ is the group operation of the field F₂
 - No field exists with group operation \oplus_4
 - Group codes

(日) (四) (日) (日) (日)

- Possible extensions:
 - Lossy coding
 - Will involve nesting of a good channel code in a good source code
 - Nesting to be done while maintaining linearity of channel code
 - Good nested linear codes
 - What about reconstructing $Z = X \oplus_4 Y$
 - Example worked because \oplus_2 is the group operation of the field \mathbb{F}_2
 - No field exists with group operation \oplus_4
 - Group codes

(日) (四) (日) (日) (日)

- Possible extensions:
 - Lossy coding
 - Will involve nesting of a good channel code in a good source code
 - Nesting to be done while maintaining linearity of channel code
 - Good nested linear codes
 - What about reconstructing $Z = X \oplus_4 Y$
 - Example worked because \oplus_2 is the group operation of the field \mathbb{F}_2
 - No field exists with group operation \oplus_4
 - Group codes

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Possible extensions:
 - Lossy coding
 - Will involve nesting of a good channel code in a good source code
 - Nesting to be done while maintaining linearity of channel code
 - Good nested linear codes
 - What about reconstructing $Z = X \oplus_4 Y$
 - Example worked because \oplus_2 is the group operation of the field \mathbb{F}_2
 - No field exists with group operation \oplus_4
 - Group codes

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Possible extensions:
 - Lossy coding
 - Will involve nesting of a good channel code in a good source code
 - Nesting to be done while maintaining linearity of channel code
 - Good nested linear codes
 - What about reconstructing $Z = X \oplus_4 Y$
 - Example worked because \oplus_2 is the group operation of the field \mathbb{F}_2
 - No field exists with group operation \oplus_4
 - Group codes

- Possible extensions:
 - Lossy coding
 - Will involve nesting of a good channel code in a good source code
 - Nesting to be done while maintaining linearity of channel code
 - Good nested linear codes
 - What about reconstructing $Z = X \oplus_4 Y$
 - Example worked because \oplus_2 is the group operation of the field \mathbb{F}_2
 - No field exists with group operation \oplus_4
 - Group codes

- Possible extensions:
 - Lossy coding
 - Will involve nesting of a good channel code in a good source code
 - Nesting to be done while maintaining linearity of channel code
 - Good nested linear codes
 - What about reconstructing $Z = X \oplus_4 Y$
 - Example worked because \oplus_2 is the group operation of the field \mathbb{F}_2
 - No field exists with group operation \oplus_4
 - Group codes

 \bullet Linear code $\mathscr{C}\colon$ Sum of any two codewords is another codeword

3

< ロ > < 同 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- \bullet Linear code $\mathscr{C}\colon$ Sum of any two codewords is another codeword
- Traditionally, linear codes built over Galois fields, ex. $\mathbb{F}_2 = \{0, 1\}$

э

- \bullet Linear code $\mathscr{C}\colon$ Sum of any two codewords is another codeword
- Traditionally, linear codes built over Galois fields, ex. $\mathbb{F}_2 = \{0, 1\}$
- More general: linear codes over Abelian groups \mathbb{Z}_{p^r}

- \bullet Linear code $\mathscr{C}\colon$ Sum of any two codewords is another codeword
- Traditionally, linear codes built over Galois fields, ex. $\mathbb{F}_2 = \{0, 1\}$
- More general: linear codes over Abelian groups \mathbb{Z}_{p^r}
- Pros: Linear code ensembles have fewer bad codebooks
 - Improvement in second order performance (error exponents)
 - More dramatic gains in multi terminal settings

- \bullet Linear code $\mathscr{C}\colon$ Sum of any two codewords is another codeword
- Traditionally, linear codes built over Galois fields, ex. $\mathbb{F}_2 = \{0, 1\}$
- More general: linear codes over Abelian groups \mathbb{Z}_{p^r}
- Pros: Linear code ensembles have fewer bad codebooks
 - Improvement in second order performance (error exponents)
 - More dramatic gains in multi terminal settings
- Cons: Even in single user setting, bad first order performance
 - do not achieve Shannon rate-distortion function
 - do not achieve Shannon capacity cost function

- $\bullet\,$ Linear code $\mathscr{C}\colon$ Sum of any two codewords is another codeword
- Traditionally, linear codes built over Galois fields, ex. $\mathbb{F}_2 = \{0, 1\}$
- More general: linear codes over Abelian groups \mathbb{Z}_{p^r}
- Pros: Linear code ensembles have fewer bad codebooks
 - Improvement in second order performance (error exponents)
 - More dramatic gains in multi terminal settings
- Cons: Even in single user setting, bad first order performance
 - do not achieve Shannon rate-distortion function
 - do not achieve Shannon capacity cost function
- Injection of some non-linearity seems necessary for optimality

• Primary cyclic group \mathbb{Z}_{p^r} - cyclic group of prime power cardinality

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆 ・ のへで

- Primary cyclic group \mathbb{Z}_{p^r} cyclic group of prime power cardinality
- Example: $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ with addition modulo-4 group operation

- Primary cyclic group \mathbb{Z}_{p^r} cyclic group of prime power cardinality
- Example: $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ with addition modulo-4 group operation
- Any abelian group G decomposable into primary cyclic groups

- Primary cyclic group \mathbb{Z}_{p^r} cyclic group of prime power cardinality
- Example: $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ with addition modulo-4 group operation
- Any abelian group G decomposable into primary cyclic groups
- $\bullet\,$ Suffices to prove coding theorems for \mathbb{Z}_{p^r}

- Primary cyclic group \mathbb{Z}_{p^r} cyclic group of prime power cardinality
- Example: $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ with addition modulo-4 group operation
- Any abelian group G decomposable into primary cyclic groups
- $\bullet\,$ Suffices to prove coding theorems for \mathbb{Z}_{p^r}
- Group code defined via parity check matrix

$$\mathscr{C} = \left\{ x^n \in \mathbb{Z}_{p^r}^n \colon Hx^n = \mathbf{0}^k \right\}$$
 for some $k \times n$ matrix H

- Primary cyclic group \mathbb{Z}_{p^r} cyclic group of prime power cardinality
- Example: $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ with addition modulo-4 group operation
- Any abelian group G decomposable into primary cyclic groups
- Suffices to prove coding theorems for \mathbb{Z}_{p^r}
- Group code defined via parity check matrix

$$\mathscr{C} = \left\{ x^n \in \mathbb{Z}_{p^r}^n \colon Hx^n = 0^k \right\}$$
 for some $k \times n$ matrix H

• Group code \mathscr{C} over \mathbb{Z}_{p^r} : $\mathscr{C} = \ker(\phi)$ for homomorphism $\phi : \mathbb{Z}_{p^r}^n \to \mathbb{Z}_{p^r}^k$

<□> <同> <同> <同> <同> <同> <同> <同> <同> <同> <

• Good group source code \mathscr{C}_1 for the triple $(\mathscr{X}, \mathscr{U}, P_{XU})$

D. Krithivasan (U of M)

Oral Defense

January 12, 2010 30 / 58

• Assume $\mathscr{U} = \mathbb{Z}_{p^r}$ for some prime p and exponent r > 0

D. Krithivasan (U of M)

Oral Defense

January 12, 2010 30 / 58

• Good: Can find $u^n \in \mathscr{C}_1$ jointly typical with x^n

Oral Defense

- Good: Can find $u^n \in \mathscr{C}_1$ jointly typical with x^n
- We showed:

Good group source codes

Exist for large *n* if $\frac{1}{n}\log|\mathscr{C}_1| \ge \log p^r - r|H(U|X) - \log p^{r-1}|^+$

- Good: Can find $u^n \in \mathscr{C}_1$ jointly typical with x^n
- No good source code in ensemble if $H(U|X) < \log p^{r-1}$

Good group source codes

Exist for large *n* if $\frac{1}{n}\log|\mathscr{C}_1| \ge \log p^r - r|H(U|X) - \log p^{r-1}|^+$

- Good: Can find $u^n \in \mathscr{C}_1$ jointly typical with x^n
- Else: Bad performance

Good group source codes

Exist for large *n* if $\frac{1}{n}\log|\mathscr{C}_1| \ge r(\log p^r - H(U|X))$

- Good: Can find $u^n \in \mathscr{C}_1$ jointly typical with x^n
- Linear code (r = 1) : Still not very good

Good linear source codes

Exist for large *n* if $\frac{1}{n}\log|\mathscr{C}_1| \ge (\log p - H(U|X))$

- Good: Can find $u^n \in \mathscr{C}_1$ jointly typical with x^n
- Larger than optimal code size: H(U) H(U|X)

Good linear source codes

Exist for large *n* if $\frac{1}{n}\log|\mathscr{C}_1| \ge (\log p - H(U|X))$

Good Group Source Codes contd.

• Linear code not Shannon-good for source coding

D. Krithivasan (U of M)

Oral Defense

January 12, 2010 31 / 58

Good Group Source Codes contd.

- Linear code not Shannon-good for source coding
- But contains a Shannon-good source code

D. Krithivasan (U of M)

Oral Defense

January 12, 2010 31 / 58
Good Group Source Codes contd.

- Linear code not Shannon-good for source coding
- But contains a Shannon-good source code
- Larger codebook due to binning entire space

D. Krithivasan (U of M)

January 12, 2010 31 / 58

Good Group Source Codes contd.

- Linear code not Shannon-good for source coding
- But contains a Shannon-good source code
- Penalty for imposing structure

Good Group Source Codes contd.

- Linear code not Shannon-good for source coding
- But contains a Shannon-good source code
- Group codes (r > 1) : more penalties for subgroups

• Good group channel code \mathscr{C}_2 for the triple $(\mathcal{Z}, \mathscr{S}, P_{ZS})$

• Assume $\mathcal{Z} = \mathbb{Z}_{p^r}$ for some prime p and exponent r > 0

• Good: Can find z^n given its coset(color) and s^n

D. Krithivasan (U of M)

Oral Defense

January 12, 2010 32 / 58

- Good: Can find z^n given its coset(color) and s^n
- We showed:

Good group channel codes

Exist for large *n* if $\frac{1}{n}\log|\mathscr{C}_2| \le \log p^r - \max_{0 \le i < r}\left(\frac{r}{r-i}\right)(H(Z|S) - H([Z]_i|S))$

- Good: Can find z^n given its coset(color) and s^n
- $[Z]_i$ random variable taking values over distinct cosets of $p^i\mathbb{Z}_{p^r}$ in \mathbb{Z}_{p^r}

- Good: Can find z^n given its coset(color) and s^n
- Suppose $\mathcal{Z} = \mathbb{Z}_8$. $[Z]_1$ binary random variable

- Good: Can find z^n given its coset(color) and s^n
- Suppose $\mathcal{Z} = \mathbb{Z}_8$. $[Z]_1$ binary random variable
- Symbol probabilities: $(p_0 + p_2 + p_4 + p_6, p_1 + p_3 + p_5 + p_7)$

• Each subgroup of \mathbb{Z}_{p^r} : one term in maximization

Good group channel codes

Exist for large *n* if $\frac{1}{n}\log|\mathscr{C}_2| \le \log p^r - \max_{0 \le i < r} \left(\frac{r}{r-i}\right) (H(Z|S) - H([Z]_i|S))$

D. Krithivasan (U of M)

Oral Defense

January 12, 2010 33 / 58

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三豆 - のへで

- Each subgroup of \mathbb{Z}_{p^r} : one term in maximization
- Oth term corresponds to H(Z|S)

Good group channel codes

Exist for large *n* if $\frac{1}{n}\log|\mathscr{C}_2| \le \log p^r - \max_{0 \le i < r} \left(\frac{r}{r-i}\right) (H(Z|S) - H([Z]_i|S))$

<□> <同> <同> <同> <同> <同> <同> <同> <同> <

- Each subgroup of \mathbb{Z}_{p^r} : one term in maximization
- 0th term corresponds to H(Z|S)
- Penalty for presence of subgroups

Good group channel codes

Exist for large *n* if $\frac{1}{n}\log|\mathscr{C}_2| \le \log p^r - \max_{0 \le i < r}\left(\frac{r}{r-i}\right)(H(Z|S) - H([Z]_i|S))$

<□> <同> <同> <同> <同> <同> <同> <同> <同> <

- Each subgroup of \mathbb{Z}_{p^r} : one term in maximization
- Oth term corresponds to H(Z|S)
- Penalty for presence of subgroups
- Linear code (r = 1): Still not good

Good linear channel codes

Exist for large *n* if $\frac{1}{n}\log|\mathscr{C}_2| \le \log p - H(Z|S)$

D. Krithivasan (U of M)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへの

- Each subgroup of \mathbb{Z}_{p^r} : one term in maximization
- Oth term corresponds to H(Z|S)
- Penalty for presence of subgroups
- Linear code (r = 1): Still not good
- Larger than optimal code size: H(Z) H(Z|S)

Good linear channel codes

Exist for large *n* if $\frac{1}{n}\log|\mathscr{C}_2| \le \log p - H(Z|S)$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三豆 - のへで

• Linear code not Shannon-good for channel coding

- Linear code not Shannon-good for channel coding
- But every coset (color) contains a Shannon-good channel code

- Linear code not Shannon-good for channel coding
- But every coset (color) contains a Shannon-good channel code
- Larger codebook for binning entire space

• Nesting one code within another helps overall performance

イロト 不得 トイヨト イヨト 二日

- Nesting one code within another helps overall performance
- $(\mathscr{C}_1, \mathscr{C}_2)$ nested if $\mathscr{C}_2 \subset \mathscr{C}_1$

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 二直 - のへで

- Nesting one code within another helps overall performance
- $(\mathscr{C}_1, \mathscr{C}_2)$ nested if $\mathscr{C}_2 \subset \mathscr{C}_1$
- Example: Wyner-Ziv problem using nested group codes

(日) (周) (三) (三) (三) (○) (○)

- Nesting one code within another helps overall performance
- $(\mathscr{C}_1, \mathscr{C}_2)$ nested if $\mathscr{C}_2 \subset \mathscr{C}_1$
- Example: Wyner-Ziv problem using nested group codes

 $R_1 \ge I(X_1; U \mid X_2) = I(X_1; U) - I(X_2; U)$

Image: A matrix

• Group code good for $(\mathscr{X}_1, \mathscr{U}, P_{X_1U})$

(ロト (聞) (ヨト (ヨ) 三 三 つくぐ

- Group code good for $(\mathscr{X}_1, \mathscr{U}, P_{X_1U})$
- Good: Can find $u^n \in \mathscr{C}_1$ jointly typical with source x^n

(ロ > 4個 > 4回 > 4回 > 二回 三 のへで

- Group code good for $(\mathscr{X}_1, \mathscr{U}, P_{X_1U})$
- Good: Can find $u^n \in \mathscr{C}_1$ jointly typical with source x^n
- Rate of the code: $R = \log p^r r |H(U|X_1) \log p^{r-1}|^+$

- Group code good for $(\mathscr{X}_1, \mathscr{U}, P_{X_1U})$
- Good: Can find $u^n \in \mathscr{C}_1$ jointly typical with source x^n
- Rate of the code: $R = \log p^r r |H(U|X_1) \log p^{r-1}|^+$
- Code over Galois field: $R = \log p H(U|X_1)$

• Every coset (color) good channel code for $(\mathcal{U}, \mathscr{X}_2, P_{UX_2})$

- Every coset (color) good channel code for $(\mathcal{U}, \mathscr{X}_2, P_{UX_2})$
- Good: Can find unique typical u^n given x_2^n and coset (color)

- Every coset (color) good channel code for $(\mathcal{U}, \mathscr{X}_2, P_{UX_2})$
- Good: Can find unique typical u^n given x_2^n and coset (color)
- Bin size: $R = \log p^r \max_{0 \le i < r} \left(\frac{r}{r-i} \right) (H(U|X_2) H([U]_i | X_2))$

- Every coset (color) good channel code for $(\mathcal{U}, \mathscr{X}_2, P_{UX_2})$
- Good: Can find unique typical u^n given x_2^n and coset (color)
- Bin size: $R = \log p^r \max_{0 \le i < r} \left(\frac{r}{r-i} \right) (H(U|X_2) H([U]_i | X_2))$
- Code over Galois field: $R = \log p H(U|X_2)$

• Only coset leaders (colors) get transmitted

January 12, 2010

38 / 58

- Only coset leaders (colors) get transmitted
- Number of colors : $(\log p H(U|X_1)) (\log p H(U|X_2))$

- Only coset leaders (colors) get transmitted
- Number of colors : $H(U|X_2) H(U|X_1)$

38 / 58

- Only coset leaders (colors) get transmitted
- Number of colors : $I(X_1; U) I(U; X_2)$

38 / 58

Outline

- Thesis Overview
- 2 Information Theory: An Introduction
- 3 Random Codes for Distributed Source Coding
- 4 Nested Group Codes
- 5 Distributed Source Coding : An Inner Bound
 - 6 Conclusions

(日) (四) (日) (日) (日)

Overview of the coding scheme

• Fix test channels $P_{X_1X_2UV} = P_{X_1X_2}P_{U|X_1}P_{V|X_2}$

• Decoder interested in some reconstruction function g(U, V)

- g(U,V) group operation in abelian group G: Nested group codes
 What if it isn'f?
- \circ "Embed" g(U, V) in a suitable abelian group
- Decompose G into primary cyclic groups $G \cong \mathbb{Z}_{p^{e_1}} \oplus \mathbb{Z}_{p^{e_2}} \cdots \oplus \mathbb{Z}_{p^{e_k}}$
- Encode sequentially using codes over $\mathbb{Z}_{p_i}^{e_i}$, $1 \le i \le k$
- Fix test channels $P_{X_1X_2UV} = P_{X_1X_2}P_{U|X_1}P_{V|X_2}$
- Decoder interested in some reconstruction function g(U, V)
 - g(U,V) group operation in abelian group G: Nested group codes
 What if it isn't?
 - "Embed" g(U, V) in a suitable abelian group
- Decompose G into primary cyclic groups $G \cong \mathbb{Z}_{p_{1}^{e_{1}}} \oplus \mathbb{Z}_{p_{2}^{e_{2}}} \cdots \oplus \mathbb{Z}_{p_{k}^{e_{k}}}$
- Encode sequentially using codes over $\mathbb{Z}_{p_i}^{e_i}$, $1 \le i \le k$

- Fix test channels $P_{X_1X_2UV} = P_{X_1X_2}P_{U|X_1}P_{V|X_2}$
- Decoder interested in some reconstruction function g(U, V)
 - g(U, V) group operation in abelian group G: Nested group codes
 What if it isn't?
 - "Embed" g(U, V) in a suitable abelian group
- Decompose G into primary cyclic groups $G \cong \mathbb{Z}_{p^{e_1}} \oplus \mathbb{Z}_{p^{e_2}} \cdots \oplus \mathbb{Z}_{p^{e_k}}$
- Encode sequentially using codes over $\mathbb{Z}_{p_i}^{e_i}$, $1 \le i \le k$

- Fix test channels $P_{X_1X_2UV} = P_{X_1X_2}P_{U|X_1}P_{V|X_2}$
- Decoder interested in some reconstruction function g(U, V)
 - g(U, V) group operation in abelian group G: Nested group codes
 What if it isn't?
 - "Embed" g(U, V) in a suitable abelian group
- Decompose G into primary cyclic groups $G \cong \mathbb{Z}_{p_1^{e_1}} \oplus \mathbb{Z}_{p_2^{e_2}} \cdots \oplus \mathbb{Z}_{p_r^{e_r}}$
- Encode sequentially using codes over $\mathbb{Z}_{p_i}^{e_i}$, $1 \le i \le k$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Fix test channels $P_{X_1X_2UV} = P_{X_1X_2}P_{U|X_1}P_{V|X_2}$
- Decoder interested in some reconstruction function g(U, V)
 - g(U, V) group operation in abelian group G: Nested group codes
 - What if it isn't?
 - "Embed" g(U, V) in a suitable abelian group
- Decompose G into primary cyclic groups $G \cong \mathbb{Z}_{p_1^{e_1}} \oplus \mathbb{Z}_{p_2^{e_2}} \cdots \oplus \mathbb{Z}_{p_k^{e_k}}$
- Encode sequentially using codes over $\mathbb{Z}_{p_i}^{e_i}$, $1 \le i \le k$

<□> <同> <同> <同> <同> <同> <同> <同> <同> <

- Fix test channels $P_{X_1X_2UV} = P_{X_1X_2}P_{U|X_1}P_{V|X_2}$
- Decoder interested in some reconstruction function g(U, V)
 - g(U, V) group operation in abelian group G: Nested group codes
 - What if it isn't?
 - "Embed" g(U, V) in a suitable abelian group
- Decompose G into primary cyclic groups $G \cong \mathbb{Z}_{p^{e_1}} \oplus \mathbb{Z}_{p^{e_2}} \cdots \oplus \mathbb{Z}_{p^{e_k}}$
- Encode sequentially using codes over $\mathbb{Z}_{p_i}^{e_i}$, $1 \le i \le k$

<□> <同> <同> <同> <同> <同> <同> <同> <同> <

- Fix test channels $P_{X_1X_2UV} = P_{X_1X_2}P_{U|X_1}P_{V|X_2}$
- Decoder interested in some reconstruction function g(U, V)
 - g(U, V) group operation in abelian group G: Nested group codes
 - What if it isn't?
 - "Embed" g(U, V) in a suitable abelian group
- Decompose G into primary cyclic groups $G \cong \mathbb{Z}_{p_1^{e_1}} \oplus \mathbb{Z}_{p_2^{e_2}} \cdots \oplus \mathbb{Z}_{p_k^{e_k}}$
- Encode sequentially using codes over $\mathbb{Z}_{p_i}^{e_i}$, $1 \le i \le k$

<□> <同> <同> <同> <同> <同> <同> <同> <同> <

• Nested group codes $\mathscr{C}_2 < \mathscr{C}_{11}, \mathscr{C}_{12}$

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 二直 - のへで

• Nested group codes $\mathscr{C}_2 < \mathscr{C}_{11}, \mathscr{C}_{12}$

Ξ.

• Nested group codes $\mathscr{C}_2 < \mathscr{C}_{11}, \mathscr{C}_{12}$

•
$$\frac{1}{n}\log|\mathscr{C}_{11}| \ge$$

 $\log p^r - r|H(U|X_1) - \log p^{r-1}|^+$

3

• Nested group codes $\mathscr{C}_2 < \mathscr{C}_{11}, \mathscr{C}_{12}$

• $\frac{1}{n}\log|\mathscr{C}_{11}| \ge$ $\log p^{r} - r |H(U|X_{1}) - \log p^{r-1}|^{+}$

•
$$\frac{1}{n}\log|\mathscr{C}_{12}| \ge$$

 $\log p^r - r|H(V|X_2) - \log p^{r-1}|^+$

Image: Image:

э

• Nested group codes $\mathscr{C}_2 < \mathscr{C}_{11}, \mathscr{C}_{12}$

- $\frac{1}{n}\log|\mathscr{C}_{11}| \ge$ $\log p^{r} - r |H(U|X_{1}) - \log p^{r-1}|^{+}$
- $\frac{1}{n}\log|\mathscr{C}_{12}| \ge$ $\log p^{r} - r |H(V|X_{2}) - \log p^{r-1}|^{+}$

•
$$\frac{1}{n}\log|\mathscr{C}_2| \le \log p^r - \max_{0 \le i < r} \left(\frac{r}{r-i}\right) (H(Z) - H([Z]_i))$$

Image: Image:

э

Achievable rates

The set of tuples (R_1, R_2, D) that satisfy

$$\begin{aligned} R_1 &\geq \max_{0 \leq i < r} \left(\frac{r}{r-i} \right) (H(Z) - H([Z]_i)) - r |H(U|X) - \log p^{r-1}|^+ \\ R_2 &\geq \max_{0 \leq i < r} \left(\frac{r}{r-i} \right) (H(Z) - H([Z]_i)) - r |H(V|Y) - \log p^{r-1}|^+ \\ D &\geq \mathbb{E}d(X, Y, g(U, V)) \end{aligned}$$

are achievable.

- More general rate region possible by
 - Embedding in general groups and using digit decomposition
 - Alternative coding strategy Encode (U, V) instead of Z

Achievable rates

The set of tuples (R_1, R_2, D) that satisfy

$$\begin{aligned} R_1 &\geq \max_{0 \leq i < r} \left(\frac{r}{r-i} \right) (H(Z) - H([Z]_i)) - r |H(U|X) - \log p^{r-1}|^+ \\ R_2 &\geq \max_{0 \leq i < r} \left(\frac{r}{r-i} \right) (H(Z) - H([Z]_i)) - r |H(V|Y) - \log p^{r-1}|^+ \\ D &\geq \mathbb{E}d(X, Y, g(U, V)) \end{aligned}$$

are achievable.

More general rate region possible by

- Embedding in general groups and using digit decomposition
- Alternative coding strategy Encode (U, V) instead of Z

Achievable rates

The set of tuples (R_1, R_2, D) that satisfy

$$\begin{aligned} R_1 &\geq \max_{0 \leq i < r} \left(\frac{r}{r-i} \right) (H(Z) - H([Z]_i)) - r |H(U|X) - \log p^{r-1}|^+ \\ R_2 &\geq \max_{0 \leq i < r} \left(\frac{r}{r-i} \right) (H(Z) - H([Z]_i)) - r |H(V|Y) - \log p^{r-1}|^+ \\ D &\geq \mathbb{E}d(X, Y, g(U, V)) \end{aligned}$$

are achievable.

- More general rate region possible by
 - Embedding in general groups and using digit decomposition
 - Alternative coding strategy Encode (U, V) instead of Z

Achievable rates

The set of tuples (R_1, R_2, D) that satisfy

$$R_{1} \geq \max_{0 \leq i < r} \left(\frac{r}{r-i} \right) (H(Z) - H([Z]_{i})) - r|H(U|X) - \log p^{r-1}|^{+}$$

$$R_{2} \geq \max_{0 \leq i < r} \left(\frac{r}{r-i} \right) (H(Z) - H([Z]_{i})) - r|H(V|Y) - \log p^{r-1}|^{+}$$

$$D \geq \mathbb{E}d(X, Y, g(U, V))$$

are achievable.

- More general rate region possible by
 - Embedding in general groups and using digit decomposition
 - Alternative coding strategy Encode (U, V) instead of Z

- Lossless compression using group codes achievable rates
- Lossy compression for arbitrary sources and distortion measures using group codes
- Nested linear codes Shannon rate-distortion bound for arbitrary sources and additive distortion measures
- Recovers known rate regions (using nested linear codes) of
 - Berger-Tung problem
 - Wyner-Ziv problem, Wyner-Ahlswede-Korner problem
 - Yeung-Berger problem
 - Slepian-Wolf problem, Korner-Marton problem

- Lossless compression using group codes achievable rates
- Lossy compression for arbitrary sources and distortion measures using group codes
- Nested linear codes Shannon rate-distortion bound for arbitrary sources and additive distortion measures
- Recovers known rate regions (using nested linear codes) of
 - Berger-Tung problem
 - Wyner-Ziv problem, Wyner-Ahlswede-Korner problem
 - Yeung-Berger problem
 - Slepian-Wolf problem, Korner-Marton problem

- Lossless compression using group codes achievable rates
- Lossy compression for arbitrary sources and distortion measures using group codes
- Nested linear codes Shannon rate-distortion bound for arbitrary sources and additive distortion measures
- Recovers known rate regions (using nested linear codes) of
 - Berger-Tung problem
 - Wyner-Ziv problem, Wyner-Ahlswede-Korner problem
 - Yeung-Berger problem
 - Slepian-Wolf problem, Korner-Marton problem

- Lossless compression using group codes achievable rates
- Lossy compression for arbitrary sources and distortion measures using group codes
- Nested linear codes Shannon rate-distortion bound for arbitrary sources and additive distortion measures
- Recovers known rate regions (using nested linear codes) of
 - Berger-Tung problem
 - Wyner-Ziv problem, Wyner-Ahlswede-Korner problem
 - Yeung-Berger problem
 - Slepian-Wolf problem, Korner-Marton problem

• X, Y, Z - Quaternary random variables

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 二直 - のへで

- X, Y, Z Quaternary random variables
- Quaternary rvs: X, Y. Correlation: $Y = X \oplus_4 Z$

(日) (周) (三) (三) (三) (○) (○)

- X, Y, Z Quaternary random variables
- Quaternary rvs: X, Y. Correlation: $Y = X \oplus_4 Z$
- Decoder: lossless reconstruction of $Z = (X Y) \mod 4$

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 二直 - のへで

- X, Y, Z Quaternary random variables
- Quaternary rvs: X, Y. Correlation: $Y = X \oplus_4 Z$
- Decoder: lossless reconstruction of $Z = (X Y) \mod 4$
- No linear code over \mathbb{Z}_4 KM not possible

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 二直 - のへで

- X, Y, Z Quaternary random variables
- Quaternary rvs: X, Y. Correlation: $Y = X \oplus_4 Z$
- Decoder: lossless reconstruction of $Z = (X Y) \mod 4$
- Group based scheme in \mathbb{Z}_4 achieves

$$R_{sum} = 2 \max\{H(Z), 2(H(Z) - H([Z]_1))\}$$

- X, Y, Z Quaternary random variables
- Quaternary rvs: X, Y. Correlation: $Y = X \oplus_4 Z$
- Decoder: lossless reconstruction of $Z = (X Y) \mod 4$
- Group based scheme in \mathbb{Z}_4 achieves

$$R_{sum} = 2 \max\{H(Z), 2(H(Z) - H([Z]_1))\}$$

• Can be lower than H(X, Y)

(日) (周) (日) (日) (日) (0)

- X, Y, Z Quaternary random variables
- Quaternary rvs: X, Y. Correlation: $Y = X \oplus_4 Z$
- Decoder: lossless reconstruction of $Z = (X Y) \mod 4$
- Group based scheme in \mathbb{Z}_4 achieves

$$R_{sum} = 2 \max\{H(Z), 2(H(Z) - H([Z]_1))\}$$

- Can be lower than H(X, Y)
- Function can also be "embedded" in $\mathbb{Z}_4, \mathbb{Z}_7, \mathbb{Z}_2^3, \mathbb{Z}_4^2$

▲ロト ▲掃ト ▲臣ト ▲臣ト ―臣 ― 釣A@

- X, Y, Z Quaternary random variables
- Quaternary rvs: X, Y. Correlation: $Y = X \oplus_4 Z$
- Decoder: lossless reconstruction of $Z = (X Y) \mod 4$
- Group based scheme in \mathbb{Z}_4 achieves

$$R_{sum} = 2 \max\{H(Z), 2(H(Z) - H([Z]_1))\}$$

- Can be lower than H(X, Y)
- Function can also be "embedded" in $\mathbb{Z}_4, \mathbb{Z}_7, \mathbb{Z}_2^3, \mathbb{Z}_4^2$
 - For every group : P_X , P_Z such that that group gives best embedding

P_X	P_Z	$R_{\mathbb{Z}_4}$	$R_{\mathbb{Z}_7}$	$R_{\mathbb{Z}_2\oplus\mathbb{Z}_2\oplus\mathbb{Z}_2}$	$R_{\mathbb{Z}_4\oplus\mathbb{Z}_4}$
$[\frac{1}{4}\frac{1}{4}\frac{1}{4}\frac{1}{4}]$	$[\frac{1}{2}0\frac{1}{4}\frac{1}{4}]$	3	3.9056	3.1887	3.5
$[\frac{3}{10}\frac{6}{10}\frac{1}{10}0]$	$[0\frac{4}{5}\frac{1}{20}\frac{3}{20}]$	2.3911	2.0797	2.4529	2.1796
$[\frac{1}{3}\frac{1}{10}\frac{1}{2}\frac{1}{15}]$	$\left[\frac{3}{7}\frac{1}{7}\frac{1}{7}\frac{1}{7}\frac{2}{7}\right]$	3.6847	4.5925	3.3495	3.4633
$\left[\frac{9}{10}\frac{1}{30}\frac{1}{30}\frac{1}{30}\frac{1}{30}\right]$	$[\frac{3}{20}\frac{3}{4}\frac{1}{20}\frac{1}{20}]$	2.308	2.7065	1.9395	1.7815

Table: Example distributions for which embedding in a given group gives the lowest sum rate.

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 二直 - のへで

• Correlated binary sources (X, Y)

3

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Correlated binary sources (X, Y)
- Reconstruct $Z = X \oplus_2 Y$ within Hamming distortion D

イロト 不得下 イヨト イヨト 二日

- Correlated binary sources (X, Y)
- Reconstruct $Z = X \oplus_2 Y$ within Hamming distortion D
- U, V binary auxiliary random variables

イロト 不得 トイヨト イヨト 二日

- Correlated binary sources (X, Y)
- Reconstruct $Z = X \oplus_2 Y$ within Hamming distortion D
- *U*, *V* binary auxiliary random variables
- G(U, V) one of 16 possibilities depending on $(P_{U|X}, P_{V|Y})$

Lossy Example contd.

• Rate gains over the Berger-Tung based scheme

Lossy Example contd.

- Rate gains over the Berger-Tung based scheme
- Implies Berger-Tung inner bound not tight for three-user case

Outline

Thesis Overview

- 2 Information Theory: An Introduction
- 3 Random Codes for Distributed Source Coding
- 4 Nested Group Codes
- 5 Distributed Source Coding : An Inner Bound

6 Conclusions

э

《曰》 《圖》 《臣》 《臣》

• Unified framework using structured codes

э.

イロト イロト イヨト イヨト
- Unified framework using structured codes
 - Nesting makes them atleast as good as unstructured codes

3

- Unified framework using structured codes
 - Nesting makes them atleast as good as unstructured codes
 - Can be plugged into many multi-terminal problems

3

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Unified framework using structured codes
 - Nesting makes them atleast as good as unstructured codes
 - Can be plugged into many multi-terminal problems
 - Existence results for appropriate notions of "goodness"

A B A A B A

- Unified framework using structured codes
 - Nesting makes them atleast as good as unstructured codes
 - Can be plugged into many multi-terminal problems
 - Existence results for appropriate notions of "goodness"
- Distributed coding of discrete sources

- Unified framework using structured codes
 - Nesting makes them atleast as good as unstructured codes
 - Can be plugged into many multi-terminal problems
 - Existence results for appropriate notions of "goodness"
- Distributed coding of discrete sources
 - Existence of "good" group codes

- Unified framework using structured codes
 - Nesting makes them atleast as good as unstructured codes
 - Can be plugged into many multi-terminal problems
 - Existence results for appropriate notions of "goodness"
- Distributed coding of discrete sources
 - Existence of "good" group codes
 - Recovers rate regions for many problems

- Unified framework using structured codes
 - Nesting makes them atleast as good as unstructured codes
 - Can be plugged into many multi-terminal problems
 - Existence results for appropriate notions of "goodness"
- Distributed coding of discrete sources
 - Existence of "good" group codes
 - Recovers rate regions for many problems
 - Improves rate regions for certain distortion functions

- Unified framework using structured codes
 - Nesting makes them atleast as good as unstructured codes
 - Can be plugged into many multi-terminal problems
 - Existence results for appropriate notions of "goodness"
- Distributed coding of discrete sources
 - Existence of "good" group codes
 - Recovers rate regions for many problems
 - Improves rate regions for certain distortion functions
- Jointly Gaussian sources

- Unified framework using structured codes
 - Nesting makes them atleast as good as unstructured codes
 - Can be plugged into many multi-terminal problems
 - Existence results for appropriate notions of "goodness"
- Distributed coding of discrete sources
 - Existence of "good" group codes
 - Recovers rate regions for many problems
 - Improves rate regions for certain distortion functions
- Jointly Gaussian sources
 - Lattice codes analogous to group codes

- Unified framework using structured codes
 - Nesting makes them atleast as good as unstructured codes
 - Can be plugged into many multi-terminal problems
 - Existence results for appropriate notions of "goodness"
- Distributed coding of discrete sources
 - Existence of "good" group codes
 - Recovers rate regions for many problems
 - Improves rate regions for certain distortion functions
- Jointly Gaussian sources
 - Lattice codes analogous to group codes
 - Within 1 bit of optimal rate-distortion region

- Unified framework using structured codes
 - Nesting makes them atleast as good as unstructured codes
 - Can be plugged into many multi-terminal problems
 - Existence results for appropriate notions of "goodness"
- Distributed coding of discrete sources
 - Existence of "good" group codes
 - Recovers rate regions for many problems
 - Improves rate regions for certain distortion functions
- Jointly Gaussian sources
 - Lattice codes analogous to group codes
 - Within 1 bit of optimal rate-distortion region
 - Arbitrarily large gains over unstructured codes

• Group codes built over abelian groups

э

- Group codes built over abelian groups
- Proofs used underlying ring structure

- Group codes built over abelian groups
- Proofs used underlying ring structure
- Codes over a non-abelian group G

- Group codes built over abelian groups
- Proofs used underlying ring structure
- Codes over a non-abelian group G
- Codebook : Kernel of homomorphism from G^n to G^k ?

- Group codes built over abelian groups
- Proofs used underlying ring structure
- Codes over a non-abelian group G
- Codebook : Kernel of homomorphism from G^n to G^k ?
 - Normal subgroup of Gⁿ

- Group codes built over abelian groups
- Proofs used underlying ring structure
- Codes over a non-abelian group G
- Codebook : Kernel of homomorphism from G^n to G^k ?
 - Normal subgroup of Gⁿ
 - Too stringent. No good codes exist.

- Group codes built over abelian groups
- Proofs used underlying ring structure
- Codes over a non-abelian group G
- Codebook : Kernel of homomorphism from G^n to G^k ?
 - Normal subgroup of Gⁿ
 - Too stringent. No good codes exist.
- Ensemble of subgroups of G^n

- Group codes built over abelian groups
- Proofs used underlying ring structure
- Codes over a non-abelian group G
- Codebook : Kernel of homomorphism from G^n to G^k ?
 - Normal subgroup of Gⁿ
 - Too stringent. No good codes exist.
- Ensemble of subgroups of G^n
 - Trellis based characterization (from control theory literature)

- Group codes built over abelian groups
- Proofs used underlying ring structure
- Codes over a non-abelian group G
- Codebook : Kernel of homomorphism from G^n to G^k ?
 - Normal subgroup of Gⁿ
 - Too stringent. No good codes exist.
- Ensemble of subgroups of G^n
 - Trellis based characterization (from control theory literature)
 - More sophisticated tools from group theory

• Distributed source coding - only one example

<ロト < 回 > < 回 > < 回 > < 三 > - 三

- Distributed source coding only one example
- Multi-terminal channel coding

3

イロト イポト イヨト イヨト

- Distributed source coding only one example
- Multi-terminal channel coding
 - Broadcast channels, interference channels

3

- Distributed source coding only one example
- Multi-terminal channel coding
 - Broadcast channels, interference channels
 - Might want to decode a function of interfering users' messages

3

A B A A B A

- Distributed source coding only one example
- Multi-terminal channel coding
 - Broadcast channels, interference channels
 - Might want to decode a function of interfering users' messages
 - Structured codes will lead to better rate regions

3

A B A A B A

- Distributed source coding only one example
- Multi-terminal channel coding
 - Broadcast channels, interference channels
 - Might want to decode a function of interfering users' messages
 - Structured codes will lead to better rate regions
- Practical nested linear code constructions

- Distributed source coding only one example
- Multi-terminal channel coding
 - Broadcast channels, interference channels
 - Might want to decode a function of interfering users' messages
 - Structured codes will lead to better rate regions
- Practical nested linear code constructions
 - Rich theory of LDPC, LDGM codes

- Distributed source coding only one example
- Multi-terminal channel coding
 - Broadcast channels, interference channels
 - Might want to decode a function of interfering users' messages
 - Structured codes will lead to better rate regions
- Practical nested linear code constructions
 - Rich theory of LDPC, LDGM codes
 - Sub-optimal but fast decoding

Thank You

Questions?

D. Krithivasan (U of M)

Oral Defense

January 12, 2010 52 / 58

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 二直 - のへで

• Function to be reconstructed F(X, Y) = (X, Y).

<ロト </2> </2> </2> </2>

- Function to be reconstructed F(X, Y) = (X, Y).
- Reconstruction of binary sources equivalent to addition in \mathbb{F}_4 .

3

- Function to be reconstructed F(X, Y) = (X, Y).
- Reconstruction of binary sources equivalent to addition in \mathbb{F}_4 .

\oplus_4	00	01	10	11
00	00	01	10	11
01	01	00	11	10
10	10	11	00	01
11	11	10	01	00

Table: Addition in \mathbb{F}_4

3

- Function to be reconstructed F(X, Y) = (X, Y).
- Reconstruction of binary sources equivalent to addition in \mathbb{F}_4 .

\oplus_4	00	01	10	11
00	00	01	10	11
01	01	00	11	10
10	10	11	00	01
11	11	10	01	00

Table: Mapping for SW-coding

• Treat binary sources as \mathbb{F}_4 sources.

- Function to be reconstructed F(X, Y) = (X, Y).
- Reconstruction of binary sources equivalent to addition in \mathbb{F}_4 .

\oplus_4	00	01	10	11
00	00	01	10	11
01	01	00	11	10
10	10	11	00	01
11	11	10	01	00

Table: Mapping for SW-coding

- Treat binary sources as \mathbb{F}_4 sources.
- Function to be reconstructed is $Z = \tilde{X} \oplus_4 \tilde{Y}$.

Digit Decomposition Approach

• We encode the vector function one component at a time.

イロト 不得下 イヨト イヨト 二日

Digit Decomposition Approach

• We encode the vector function one component at a time.

3
Digit Decomposition Approach

• We encode the vector function one component at a time.

Table: First Digit of \tilde{Z}

Table: Second Digit of \tilde{Z}

A B A A B A

Use KM encoding for each "digit"

3

Digit Decomposition Approach

• We encode the vector function one component at a time.

Table: First Digit of \tilde{Z}

Table: Second Digit of \tilde{Z}

Image: Image:

- Use KM encoding for each "digit"
- First digit can be encoded at rate $H(\tilde{X}_1) = H(X)$
- Second digit can be encoded at rate $H(\tilde{Y}_2|\tilde{X}_1) = H(Y|X)$

• Existence proofs by ensemble averaging P_e over all $\phi: \mathbb{Z}_{p^r}^n \to \mathbb{Z}_{p^r}^k$

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 二直 - のへで

- Existence proofs by ensemble averaging P_e over all $\phi: \mathbb{Z}_{p^r}^n \to \mathbb{Z}_{p^r}^k$
- Good group channel codes: Recover z^n from $\phi(z^n)$

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 二直 - のへで

- Existence proofs by ensemble averaging P_e over all $\phi: \mathbb{Z}_{p^r}^n \to \mathbb{Z}_{p^r}^k$
- Good group channel codes: Recover z^n from $\phi(z^n)$

$$P_e = P\left(\bigcup_{\substack{z^n \in A_e^n(Z)\\ \tilde{z}^n \neq z^n}} (\phi(\tilde{z}^n) = \phi(z^n))\right)$$

- Existence proofs by ensemble averaging P_e over all $\phi: \mathbb{Z}_{p^r}^n \to \mathbb{Z}_{p^r}^k$
- Good group channel codes: Recover z^n from $\phi(z^n)$

$$P_e \leq \sum_{\substack{z^n \in A_e^n(Z)\\ \tilde{z}^n \neq z^n}} P\left(\phi(\tilde{z}^n - z^n) = 0^k\right)$$

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 二直 - のへで

- Existence proofs by ensemble averaging P_e over all $\phi: \mathbb{Z}_{p^r}^n \to \mathbb{Z}_{p^r}^k$
- Good group channel codes: Recover z^n from $\phi(z^n)$

$$P_e \le \sum_{\substack{z^n \in A_e^n(Z)\\ \tilde{z}^n \neq z^n}} P\left(\phi(\tilde{z}^n - z^n) = 0^k\right)$$

• Depends on which subgroup $p^i \mathbb{Z}_{p^r}^n$ the term $(\tilde{z}^n - z^n)$ belongs to

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへの

- Existence proofs by ensemble averaging P_e over all $\phi: \mathbb{Z}_{p^r}^n \to \mathbb{Z}_{p^r}^k$
- Good group channel codes: Recover z^n from $\phi(z^n)$

$$P_e \le \sum_{\substack{z^n \in A_e^n(Z)\\ \tilde{z}^n \neq z^n}} P\left(\phi(\tilde{z}^n - z^n) = 0^k\right)$$

• Depends on which subgroup $p^i \mathbb{Z}_{p^r}^n$ the term $(\tilde{z}^n - z^n)$ belongs to

• Suppose
$$\mathcal{Z} = \mathbb{Z}_8$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへの

- Existence proofs by ensemble averaging P_e over all $\phi: \mathbb{Z}_{p^r}^n \to \mathbb{Z}_{p^r}^k$
- Good group channel codes: Recover z^n from $\phi(z^n)$

$$P_e \leq \sum_{\substack{\bar{z}^n \in A_e^n(Z) \\ \tilde{z}^n \neq Z^n}} P\left(\phi(\tilde{z}^n - z^n) = 0^k\right)$$

• Depends on which subgroup $p^i \mathbb{Z}_{p^r}^n$ the term $(\tilde{z}^n - z^n)$ belongs to

• Suppose
$$\mathcal{Z} = \mathbb{Z}_8$$

• $\tilde{z}^n - z^n \in 4\mathbb{Z}_8^n \implies \phi(\tilde{z}^n - z^n) \in 4\mathbb{Z}_8^k \implies \text{probability} = \left(\frac{1}{2}\right)^k$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへの

- Existence proofs by ensemble averaging P_e over all $\phi: \mathbb{Z}_{p^r}^n \to \mathbb{Z}_{p^r}^k$
- Good group channel codes: Recover z^n from $\phi(z^n)$

$$P_e \leq \sum_{\substack{\bar{z}^n \in A_e^n(Z) \\ \tilde{z}^n \neq Z^n}} P\left(\phi(\tilde{z}^n - z^n) = 0^k\right)$$

• Depends on which subgroup $p^i \mathbb{Z}_{p^r}^n$ the term $(\tilde{z}^n - z^n)$ belongs to

• Suppose
$$\mathcal{Z} = \mathbb{Z}_8$$

• $\tilde{z}^n - z^n \in 4\mathbb{Z}_8^n \Longrightarrow \phi(\tilde{z}^n - z^n) \in 4\mathbb{Z}_8^k \Longrightarrow$ probability $= \left(\frac{1}{2}\right)^k$
• $\tilde{z}^n - z^n \in 2\mathbb{Z}_8^n \Longrightarrow \phi(\tilde{z}^n - z^n) \in 2\mathbb{Z}_8^k \Longrightarrow$ probability $= \left(\frac{1}{4}\right)^k$

D. Krithivasan (U of M)

55 / 58

- Existence proofs by ensemble averaging P_e over all $\phi: \mathbb{Z}_{p^r}^n \to \mathbb{Z}_{p^r}^k$
- Good group channel codes: Recover z^n from $\phi(z^n)$

$$P_e \leq \sum_{\substack{\bar{z}^n \in A_e^n(Z) \\ \tilde{z}^n \neq Z^n}} P\left(\phi(\tilde{z}^n - z^n) = 0^k\right)$$

- Depends on which subgroup $p^i \mathbb{Z}_{p^r}^n$ the term $(\tilde{z}^n z^n)$ belongs to
- Estimate cardinality of $(z^n + p^i \mathbb{Z}_{p^r}^n) \cap A_{\epsilon}^n(Z)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへの

- Existence proofs by ensemble averaging P_e over all $\phi: \mathbb{Z}_{p^r}^n \to \mathbb{Z}_{p^r}^k$
- Good group channel codes: Recover z^n from $\phi(z^n)$

$$P_e \leq \sum_{\substack{z^n \in A_e^n(Z)\\ \tilde{z}^n \neq z^n}} P\left(\phi(\tilde{z}^n - z^n) = 0^k\right)$$

- Depends on which subgroup $p^i \mathbb{Z}_{p^r}^n$ the term $(\tilde{z}^n z^n)$ belongs to
- Estimate cardinality of $(z^n + p^i \mathbb{Z}_{p^r}^n) \cap A_{\epsilon}^n(Z)$
 - Equivalent to entropy maximization under affine constraints

◆□▶ ◆禪▶ ◆臣▶ ◆臣▶ 三臣 - 釣ぬの

• Good group source code:

3

< ロト (母) (き) (き) (

• Good group source code:

$$P\left(\left[\sum_{u^n\in A^n_\epsilon(x^n)}\mathbf{1}_{\{u^n\in\mathcal{C}\}}\right]=0\right)$$

• Group structure introduces dependencies

э

A B A A B A

• Good group source code:

$$P\left(\left[\sum_{u^n\in A^n_{\epsilon}(x^n)}\mathbf{1}_{\{u^n\in\mathscr{C}\}}\right]=0\right)$$

- Group structure introduces dependencies
- Suen's inequality from random graph literature

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Bounds on sum of "sparsely" dependent indicator random variables

3

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Bounds on sum of "sparsely" dependent indicator random variables

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Bounds on sum of "sparsely" dependent indicator random variables

• Edges between dependent indicators

• Bounds on sum of "sparsely" dependent indicator random variables

- $\lambda = \sum_i \mathbb{E}I_i$
- $\Delta = \frac{1}{2} \sum_{i} \sum_{j \sim i} \mathbb{E}(I_i I_j)$

Image: Image:

•
$$\delta = \max_i \sum_{k \sim i} \mathbb{E}I_k$$

• Bounds on sum of "sparsely" dependent indicator random variables

57 / 58

• Need to evaluate $P(u^n \in \mathscr{C})$ and $P(u_1^n, u_2^n \in \mathscr{C})$

- Need to evaluate $P(u^n \in \mathscr{C})$ and $P(u_1^n, u_2^n \in \mathscr{C})$
- $P(u^n \in \mathscr{C})$ easy to evaluate

A B A A B A

- Need to evaluate $P(u^n \in \mathscr{C})$ and $P(u_1^n, u_2^n \in \mathscr{C})$
- $P(u^n \in \mathscr{C})$ easy to evaluate
- $P(u_1^n, u_2^n \in \mathcal{C})$

イロト 不得下 イヨト イヨト 二日

- Need to evaluate $P(u^n \in \mathscr{C})$ and $P(u_1^n, u_2^n \in \mathscr{C})$
- $P(u^n \in \mathscr{C})$ easy to evaluate
- $P(u_1^n, u_2^n \in \mathcal{C})$
 - Depends on number of solutions in (α, β) to $\alpha u_1^n + \beta u_2^n = 0$

イロト 不得下 イヨト イヨト 二日

- Need to evaluate $P(u^n \in \mathscr{C})$ and $P(u_1^n, u_2^n \in \mathscr{C})$
- $P(u^n \in \mathscr{C})$ easy to evaluate
- $P(u_1^n, u_2^n \in \mathcal{C})$
 - Depends on number of solutions in (α, β) to $\alpha u_1^n + \beta u_2^n = 0$

•
$$P(u_1^n, u_2^n \in \mathscr{C}) = \frac{\text{Number of solution pairs}(\alpha, \beta)}{p^{2r}}$$

イロト 不得下 イヨト イヨト 二日

- Need to evaluate $P(u^n \in \mathscr{C})$ and $P(u_1^n, u_2^n \in \mathscr{C})$
- $P(u^n \in \mathscr{C})$ easy to evaluate
- $P(u_1^n, u_2^n \in \mathcal{C})$
 - Depends on number of solutions in (α, β) to $\alpha u_1^n + \beta u_2^n = 0$
 - $P(u_1^n, u_2^n \in \mathscr{C}) = \frac{\text{Number of solution pairs}(\alpha, \beta)}{p^{2r}}$
 - Have to estimate the degree of each vertex in the dependency graph

• $X_1, X_2 \sim \mathcal{N}(0, 1), \mathbb{E}(X_1 X_2) = \rho > 0$

3

イロト イポト イヨト イヨト

• $\hat{Z} = X_1 - cX_2, c > 0$

3

(日) (周) (日) (日)

• $\mathbb{E}d(X_1, X_2, \hat{Z}) = \mathbb{E}(X_1 - cX_2 - \hat{Z})^2$

3

イロト イポト イヨト イヨト

• Objective: Achievable rates (R_1, R_2) at distortion D

3

< ロト (伊) (三) (三)

• Achievable rate region using nested lattice codes

3

< ロト (伊) (三) (三)

• Showed achievability of (R_1, R_2, D) when

$$2^{-2R_1} + 2^{-2R_2} \le \left(\frac{\sigma_Z^2}{D}\right)^{-1}$$

3