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Distributed Information Processing

Proliferation of wireless sensor network applications

Supported by distributed information processing

Look at distributed source coding problems

Information-theoretic perspective
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Information and Coding theory: Traditional Approach

Information Theory:

Develop efficient information processing strategies for communication

Obtain computable performance limits

Random coding: probability distribution on a collection of

communication systems

Show good average performance

Encoding and decoding have exponential complexity

(Univ. of Michigan) Harnessing Group Structure Univ. of California 2009 3 / 1



Information and Coding theory: Traditional Approach

Information Theory:

Develop efficient information processing strategies for communication

Obtain computable performance limits

Random coding: probability distribution on a collection of

communication systems

Show good average performance

Encoding and decoding have exponential complexity

Coding Theory:

Approach these limits using structured codes (Ex: linear codes)

Fast encoding and decoding algorithms

Objective: use structured codes for practical implementability
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Random Coding in multi-terminal systems

Prob. distribution on a collection of codebooks (ensemble)

Lot of bad codebooks in the ensemble

Average performance significantly affected by these bad ’apples’
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Random Coding in multi-terminal systems

Prob. distribution on a collection of codebooks (ensemble)

Lot of bad codebooks in the ensemble

Average performance significantly affected by these bad ’apples’

Algebraic structure can be used to weed out bad ‘apples’

Better ensemble with better performance

Gain barely noticeable in point-to-point communication

Improvement in second order performance (error exponents)

Binary Symmetric case: almost all linear codes achieve expurgated

bound without expurgation

Gains significant in multi-terminal communication

(Univ. of Michigan) Harnessing Group Structure Univ. of California 2009 4 / 1



Linear Codes: Built on Galois Fields

Caution: Even in point-to-point set-up

Linear codes do not achieve in general

Shannon rate-distortion function

Shannon capacity-cost function
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Linear Codes: Built on Galois Fields

Caution: Even in point-to-point set-up

Linear codes do not achieve in general

Shannon rate-distortion function

Shannon capacity-cost function

Injection of some non-linearity appears to be necessary for optimality
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Prior Work: Linear codes for multi-terminal communication

Linear codes for symmetric source/channel coding problems

Lattice codes for Gaussian source/channel coding problems
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Prior Work: Linear codes for multi-terminal communication

Linear codes for symmetric source/channel coding problems

Lattice codes for Gaussian source/channel coding problems

Examples: (incomplete list)

Korner-Marton

Han-Kobayashi

Ahlswede-Han

Forney-Barg

Philosof-Zamir-Erez

Nazer-Gastpar

Krithivasan-Pradhan

Viswanath

. . .
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Contributions of the present work

A unified approach to distributed source coding problem

Discrete memoryless setting

Applicable to general source statistics and distortion functions
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Contributions of the present work

A unified approach to distributed source coding problem

Discrete memoryless setting

Applicable to general source statistics and distortion functions

Based on abstract abelian groups: groups capture structure

Nested codes over groups

New rate-distortion region

Previously known rate distortion regions can be achieved using nested

linear codes
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A Distributed Source Coding Problem

Xn

Y n

f1(·)

f2(·)

Ẑ

Encoder 1

Encoder 2

Decoder

R1

R2

Ed(X, Y, Ẑ) ≤ D

Set of encoders observe different components of a vector source

Central decoder receives quantized observations from the encoders

Best known rate region - Berger-Tung based
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Berger-Tung Based Rate Region: Known Results

X

Y

U

V

Rate=R

Rate=R2

1

Quantizer

Quantizer

2

1
Binning

Binning
Stage 1

Decoder

Estimator
(U,V)

Z
^

For given distortion D

Quantize X to U and quantize Y to V
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best estimator Ẑ = F (U, V ) from (U, V ) satisfies distortion D.

(Univ. of Michigan) Harnessing Group Structure Univ. of California 2009 9 / 1



Berger-Tung Based Rate Region: Known Results

X

Y

U

V

Rate=R

Rate=R2

1

Quantizer

Quantizer

2

1
Binning

Binning
Stage 1

Decoder

Estimator
(U,V)

Z
^

For given distortion D

Quantize X to U and quantize Y to V

Find two quantizer transformations pU |X and pV |Y such that
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U
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Rate=R

Rate=R2

1

Quantizer

Quantizer

2

1
Binning

Binning
Stage 1

Decoder

Estimator
(U,V)

Z
^

For given distortion D

Quantize X to U and quantize Y to V

Find two quantizer transformations pU |X and pV |Y such that

best estimator Ẑ = F (U, V ) from (U, V ) satisfies distortion D.

Rates incurred in quantization = I(X;U) and I(Y ;V )

Rate rebate by exploiting correlation between U and V = I(U ;V )
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Berger-Tung Based Rate Region contd.

Hence

R1 ≥ I(X;U) − I(U ;V )

R2 ≥ I(Y ;V ) − I(U ;V )

R1 + R2 ≥ I(X;U) + I(Y ;V ) − I(U ;V )

Achieved using random quantization and random binning
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Berger-Tung Based Rate Region contd.

Hence

R1 ≥ I(X;U) − I(U ;V )

R2 ≥ I(Y ;V ) − I(U ;V )

R1 + R2 ≥ I(X;U) + I(Y ;V ) − I(U ;V )

Achieved using random quantization and random binning

Observations:

Estimator Ẑ = F (U, V ) may be an information lossy transformation

Is it possible to reconstruct directly Ẑ at the decoder?

Can we get a rate rebate that is greater than I(U ; V )?

Can a joint design of quantizer and binning get better performance?
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Example 1

X,Y - 3 bit correlated binary sources, dH(X,Y ) ≤ 1

Decoder interested in reconstructing

Ẑ = X ⊕2 Y ∈ {000, 001, 010, 100}
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Example 1

X,Y - 3 bit correlated binary sources, dH(X,Y ) ≤ 1

Decoder interested in reconstructing

Ẑ = X ⊕2 Y ∈ {000, 001, 010, 100}

Berger-Tung based coding scheme:

Reconstruct sources X, Y . Compute Ẑ = X ⊕2 Y

Sum rate: H(X, Y ) = 5 bits

Can we do better?
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Example 1: Linear Coding Scheme







Z1 ⊕ Z2

Z1 ⊕ Z3







X1X2X3







1 1 0

1 0 1













1 1 0

1 0 1







Y1Y2Y3







X1 ⊕X2

X1 ⊕X3













Y1 ⊕ Y2

Y1 ⊕ Y3







X1 ⊕ X2 ⊕ Y1 ⊕ Y2 = X1 ⊕ Y1 ⊕ X2 ⊕ Y2 = Ẑ1 ⊕ Ẑ2

Sum rate: 2 + 2 = 4 bits
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
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

1 1 0

1 0 1







Y1Y2Y3







X1 ⊕X2

X1 ⊕X3













Y1 ⊕ Y2

Y1 ⊕ Y3







X1 ⊕ X2 ⊕ Y1 ⊕ Y2 = X1 ⊕ Y1 ⊕ X2 ⊕ Y2 = Ẑ1 ⊕ Ẑ2

Sum rate: 2 + 2 = 4 bits

Significant features:

encoding function commutes with function Ẑ = X ⊕ Y

Identical binning at both encoders

Linear codes
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Example 2: Reconstruct the pair (X, Y ) (Slepian-Wolf)

(X,Y ) - binary correlated sources
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Example 2: Reconstruct the pair (X, Y ) (Slepian-Wolf)

(X,Y ) - binary correlated sources

Can be thought of as addition in F4

00

01

10

11

00

00

00

00

01

01

01

01

10

10

11

11

11 10

11

10

00 1001 11

Map binary sources into F4

(Univ. of Michigan) Harnessing Group Structure Univ. of California 2009 13 / 1



Example 2: Reconstruct the pair (X, Y ) (Slepian-Wolf)

(X,Y ) - binary correlated sources

Can be thought of as addition in F4

00

01

10

11

00

00

00

00

01

01

01

01

10

10

11

11

11 10

11

10

00 1001 11

Map binary sources into F4

Encode sequentially one digit at a time

Previously decoded digits = side information at the decoder
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Example 3: Reconstruct the function X ∨ Y

(X,Y ) - binary correlated sources
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Example 3: Reconstruct the function X ∨ Y

(X,Y ) - binary correlated sources

Can be embedded in the addition table in F3

0

1

2

10 2

0

0

0

1

1

1

2

2

2

Map binary sources into F3
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Example 3: Reconstruct the function X ∨ Y

(X,Y ) - binary correlated sources

Can be embedded in the addition table in F3

0

1

2

10 2

0

0

0

1

1

1

2

2

2

Map binary sources into F3

Construct linear codes over F3

Can do better than Slepian-Wolf coding
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Overview of our Coding Scheme

Fix test channel pU |X , pV |Y
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Overview of our Coding Scheme

Fix test channel pU |X , pV |Y

Function to be reconstructed F (U, V ) - embed in the addition table

of some abelian group

Abelian groups decomposable into primary cyclic groups

Encode sequentially using nested group codes

All codes used in encoding have the same algebraic structure

Two quantizers and the binning operation is designed jointly

A framework applicable to arbitrary source statistics and distortion

measures

We looked at linear codes for binning.

How to do quantization using structured codes?
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Berger-Tung Rate Region: Closer Look

XSource
Sink

Z
Decoder

V

  ^1Rate=R
Encoder

1

R2 = I(Y ;V ), R1 = I(X;U) − I(U ;V )

Source X: alphabet X , distribution pX

Side Information V: alphabet V, distribution pV |X .

Reconstruction: alphabet Ẑ .

Compress X into bits to achieve a target distortion.
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Berger-Tung Rate Region Contd.

Encoding: Quantization + Binning

Quantize X to U with rate I(X;U)

Partition the quantizer into bins of rate I(U ;V )

Each bin is a good channel code for the channel pV |U .

Send the bin index to the decoder

Recover the quantizer codeword from the bin using V .
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Space in which quantizer is built

Space: Un

Quantizer : X to U

Joint histogram of source word and its quantized version ≈ pXU
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Good Quantizer

Quantize X to U

Must cover a specific region

Typical set with respect to pU .

Rate: I(X;U).

Shannon source code
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Quantizer Partition into bins

Partition into bins
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Quantizer Partition into bins

Partition into bins

Bin = Good channel code

Fictitious channel

VU
Channel

I/P Distribution: PU

Conditional distribution: pV |U .
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Quantizer Partition into bins

Partition into bins

Bin = Good channel code

Fictitious channel

VU
Channel

I/P Distribution: PU

Conditional distribution: pV |U .

Bin Rate: I(U ;V ).

Bin density rate:

= I(X;U) − I(U ;V )
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Good Channel Code

Each bin is a good channel code

Pack codewords in the region

Typical set with respect to U

Rate: I(U ;V ).

Shannon channel code
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Illustration of Encoding

Source

Side Info.
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Illustration of Decoding

Source

Side Info.
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Illustration of Decoding

Source

Side Info.

None of the codes used here have any algebraic structure
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Try this with linear codes

RECALL

Linear Codes do not achieve

Shannon rate-distortion function

Shannon capacity-cost function

Linear code do not achieve

the source rate I(X ; U)

the channel rate I(U ; V )
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Try this with linear codes

RECALL

Linear Codes do not achieve

Shannon rate-distortion function

Shannon capacity-cost function

Linear code do not achieve

the source rate I(X ; U)

the channel rate I(U ; V )

Q: How to achieve I(X;U) − I(U ;V ) using linear codes?
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Linear code as a Quantizer: Lemma 1

Linear code C1
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Linear code as a Quantizer: Lemma 1

Linear code C1

Contains a good quantizer

True for arbitrary (X ,U , pXU )
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Linear code as a Quantizer: Lemma 1

Linear code C1

Contains a good quantizer

True for arbitrary (X ,U , pXU )

Codeword density as before

Expand beyond typical set
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Linear code as a Quantizer: Lemma 1

Linear code C1

Contains a good quantizer

True for arbitrary (X ,U , pXU )

Codeword density as before

Expand beyond typical set

Rate of the code:

log |U| − H(U |X)

Penalty for linearity:

log |U| − H(U).

Refer: Good linear source code
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Linear code as a channel code: Lemma 2

Linear code C2

Every coset contains a good

channel code
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Linear code as a channel code: Lemma 2

Linear code C2

Every coset contains a good

channel code

True for arbitrary (U ,V, pUV )

Codeword density as before
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Linear code as a channel code: Lemma 2

Linear code C2

Every coset contains a good

channel code

True for arbitrary (U ,V, pUV )

Codeword density as before

Expand beyond typical set

Rate of the code:

log |U| − H(U |V )

Penalty for linearity:

log |U| − H(U)

Refer: Good linear channel code
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Linear code Partition

Partition C1 into cosets of C2

Coset density as before
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Linear code Partition

Partition C1 into cosets of C2

Coset density as before

Coset density rate = log |U| − H(U |X) − log |U| + H(U |V )

= I(X;U) − I(U ;V )
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Linear Codes: Upshot

Built on Galois fields

Nested linear codes can achieve Berger-Tung bound

Good nested linear codes can achieve Shannon limit

Take V =constant

Source Code Rate: log |U| − H(U |X)

Channel Code Rate: log |U| − H(U)

A specific form of non-linearity

(Univ. of Michigan) Harnessing Group Structure Univ. of California 2009 28 / 1



Linear Codes: Upshot

Built on Galois fields

Nested linear codes can achieve Berger-Tung bound

Good nested linear codes can achieve Shannon limit

Take V =constant

Source Code Rate: log |U| − H(U |X)

Channel Code Rate: log |U| − H(U)

A specific form of non-linearity

Next: extension to arbitrary abelian groups
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Groups - An Introduction

G - a finite abelian group of order n

G ∼= Zp
e1
1
× Zp

e2
2
· · · × Z

p
ek

k

G isomorphic to direct product of possibly repeating primary cyclic

groups

g ∈ G ⇔ g = (g1, . . . , gk), gi ∈ Zp
ei

i

Call gi as the ith digit of g
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Groups - An Introduction

G - a finite abelian group of order n

G ∼= Zp
e1
1
× Zp

e2
2
· · · × Z

p
ek

k

G isomorphic to direct product of possibly repeating primary cyclic

groups

g ∈ G ⇔ g = (g1, . . . , gk), gi ∈ Zp
ei

i

Call gi as the ith digit of g

Enough to prove coding theorems for primary cyclic groups

Extension to arbitrary abelian groups through digit decomposition
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Example 4:

Let group size be 36

36 = 22 × 32

Abelian groups of order 36:

Z4 × Z9: Two digits

Z2 × Z2 × Z9: Three digits

Z4 × Z3 × Z3: Three digits

Z2 × Z2 × Z3 × Z3: Four digits
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Embedding a function in a group G

A function F : U × V → Ẑ can be embedded in G if
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Embedding a function in a group G

A function F : U × V → Ẑ can be embedded in G if

∃ a one-to-one mapping F1 : U → G

∃ a one-to-one mapping F2 : V → G

∃ a mapping F3 : G → Ẑ

such that F (U, V ) = F3 [F1(U) ⊕G F2(V )]

Example: Ẑ = U ∨ V can be embedded in Z3
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Nested Group Codes - Motivation

Codes used in KM,SW - good channel codes

Cosets bin the entire space

Suitable for lossless coding
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Nested Group Codes - Motivation

Codes used in KM,SW - good channel codes

Cosets bin the entire space

Suitable for lossless coding

Lossy coding: Need to quantize first

Dilute coset density - Nested group codes

Fine code - Quantizes the sources

Coarse code - Bins only the fine code
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Nested Group Codes

Group code over Z
n
pr : C < Z

n
pr

C = ker(φ) for some homomorphism φ : Z
n
pr → Z

k
pr
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Nested Group Codes

Group code over Z
n
pr : C < Z

n
pr

C = ker(φ) for some homomorphism φ : Z
n
pr → Z

k
pr

(C1, C2) nested if C2 ⊂ C1
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Nested Group Codes

Group code over Z
n
pr : C < Z

n
pr

C = ker(φ) for some homomorphism φ : Z
n
pr → Z

k
pr

(C1, C2) nested if C2 ⊂ C1

We need:

C1 < Z
n
pr : “good” source code

Can find u
n
∈ C1 jointly typical with source x

n

C2 < Z
n
pr : “good” channel code

Can distinguish between typical channel noise sequences
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Good Group Source Codes

Good group source code C1 for the triple (X ,U , PXU )

Assume U = Zpr for some prime p and exponent r > 0
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Good Group Source Codes

Good group source code C1 for the triple (X ,U , PXU )

Assume U = Zpr for some prime p and exponent r > 0

Lemma

Exists for large n if

1
n

log |C1| ≥ log pr − min{H(U |X), r|H(U |X) − log pr−1|+}
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Good Group Source Codes

Good group source code C1 for the triple (X ,U , PXU )

Assume U = Zpr for some prime p and exponent r > 0

Lemma

Exists for large n if

1
n

log |C1| ≥ log pr − min{H(U |X), r|H(U |X) − log pr−1|+}

Compare with optimal random code: H(U) − H(U |X) = I(X;U)

Compare with linear code: log pr − H(U |X)

Not good in Shannon sense

Extra penalty for imposing group structure beyond linearity
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Good Group Channel Codes

Good group channel code C2 for the triple (U ,V, PUV )

Assume U = Zpr for some prime p and exponent r > 0
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Good Group Channel Codes

Good group channel code C2 for the triple (U ,V, PUV )

Assume U = Zpr for some prime p and exponent r > 0

Lemma

Exists for large n if

1
n

log |C2| ≤ log pr − max0≤i<r

(

r
r−i

)

(H(U |V ) − H([U ]i|V ))
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Good Group Channel Codes

Good group channel code C2 for the triple (U ,V, PUV )

Assume U = Zpr for some prime p and exponent r > 0

Lemma

Exists for large n if

1
n

log |C2| ≤ log pr − max0≤i<r

(

r
r−i

)

(H(U |V ) − H([U ]i|V ))

[U ]i is a function of U .

Compare with optimal random code: H(U) − H(U |V )

Compare with linear code: log pr − H(U |V )

Not good in Shannon sense

Extra penalty for imposing group structure beyond linearity
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Proof Technique

Matrix characterization of subgroups of direct product of a group

random coding over subgroups

Suen’s inequality [1998]
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Coding Approach: 5 steps

Fix pU |X , pV |Y such that Ed(X,Y, F (U, V )) ≤ D
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Coding Approach: 5 steps

Fix pU |X , pV |Y such that Ed(X,Y, F (U, V )) ≤ D

Step 1: Embed F (U, V ) in an abelian group G

Step 2: Decompose G into primary cyclic groups: G1, . . . , GK

Represent U = (U1, . . . , UK) and V = (V1, . . . , VK)
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Coding Approach: 5 steps

Fix pU |X , pV |Y such that Ed(X,Y, F (U, V )) ≤ D

Step 1: Embed F (U, V ) in an abelian group G

Step 2: Decompose G into primary cyclic groups: G1, . . . , GK

Represent U = (U1, . . . , UK) and V = (V1, . . . , VK)

Step 3: Group source code over Gi for every i: C11(i), C12(i)

Step 4: Group channel code over Gi for every i: C2(i)

Step 5: Nest the channel code inside the source codes

C2(i) < C11(i) and C2(i) < C12(i)

Identical binning of quantizers
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Encoding and Decoding

Encoders: at the ith stage

Encode the sources X and Y to digits Ui and Vi sequentially

quantize + bin
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Encoding and Decoding

Encoders: at the ith stage

Encode the sources X and Y to digits Ui and Vi sequentially

quantize + bin

Decoder: at the ith stage

Recover Ẑi = Ui ⊕Gi
Vi

Use previously decoded digits as side information
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Example 5

Suppose we embed F (U, V ) in Z4 × Z7

We have two digits: (U1, V1, Ẑ1) and (U2, V2, Ẑ2)

Two stages

Stage 1: Z4 operation

Stage 2: Z7 operation
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Coding Strategy: Nested group codes C2 < C11, C12

yn

C11

C12

vn

un

xn

H2u
n

H2v
n

H2z
n
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Achievable Rates

Theorem

The set of tuples (R1, R2, D) that satisfy

R1 ≥ max
0≤i<r

(

r

r − i

)

(H(Ẑ) − H([Ẑ]i)) − min{H(U |X), r|H(U |X)− log pr−1|+}

R2 ≥ max
0≤i<r

(

r

r − i

)

(H(Ẑ) − H([Ẑ]i)) − min{H(V |Y ), r|H(V |Y ) − log pr−1|+}

D ≥ Ed(X, Y, F (U, V ))

are achievable.
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Achievable Rates

Theorem

The set of tuples (R1, R2, D) that satisfy

R1 ≥ max
0≤i<r

(

r

r − i

)

(H(Ẑ) − H([Ẑ]i)) − min{H(U |X), r|H(U |X)− log pr−1|+}

R2 ≥ max
0≤i<r

(

r

r − i

)

(H(Ẑ) − H([Ẑ]i)) − min{H(V |Y ), r|H(V |Y ) − log pr−1|+}

D ≥ Ed(X, Y, F (U, V ))

are achievable.

More general rate region possible by

Embedding in general groups and using digit decomposition

Alternative coding strategy at ith stage - Encode (Ui, Vi) instead of Ẑi
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Example 6: Lossless reconstruction of quaternary function

X and Y take values in {0, 1, 2, 3}

Lossless reconstruction of Ẑ = X − Y mod 4
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X and Y take values in {0, 1, 2, 3}

Lossless reconstruction of Ẑ = X − Y mod 4

Can be embedded in abelian groups of order ≤ 16

Z4, Z7, Z2 ⊕ Z2 ⊕ Z2, Z4 ⊕ Z4 give non-trivial performance
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Example 6: Lossless reconstruction of quaternary function

X and Y take values in {0, 1, 2, 3}

Lossless reconstruction of Ẑ = X − Y mod 4

Can be embedded in abelian groups of order ≤ 16

Z4, Z7, Z2 ⊕ Z2 ⊕ Z2, Z4 ⊕ Z4 give non-trivial performance

pX pE RZ4 RZ7 RZ2⊕Z2⊕Z2 RZ4⊕Z4

[14
1
4

1
4

1
4 ] [12 0 1

4
1
4 ] 3 3.9056 3.1887 3.5

[ 3
10

6
10

1
10 0] [0 4

5
1
20

3
20 ] 2.3911 2.0797 2.4529 2.1796

[13
1
10

1
2

1
15 ] [37

1
7

1
7

2
7 ] 3.6847 4.5925 3.3495 3.4633

[ 9
10

1
30

1
30

1
30 ] [ 3

20
3
4

1
20

1
20 ] 2.308 2.7065 1.9395 1.7815

Table: Example distributions for which embedding in a given group gives the

lowest sum rate.

(Univ. of Michigan) Harnessing Group Structure Univ. of California 2009 42 / 1



Example 7: Lossy Reconstruction of binary XOR

Correlated binary sources (X,Y )

Reconstruct Ẑ = X ⊕2 Y within Hamming distortion D

U, V - binary auxiliary random variables

F (U, V ) - one of 16 possibilities depending on (pU |X , pV |Y )
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Lossy Example contd.
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Comparison of the two lower convex envelopes
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2 Berger−Tung based coding scheme

Group code based coding scheme

Rate gains over the Berger-Tung based scheme

Implies Berger-Tung inner bound not tight for three-user case
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Special cases

Lossless compression using group codes - achievable rates

Lossy compression for arbitrary sources and distortion measures using

group codes

Nested linear codes - Shannon rate-distortion bound for arbitrary

sources and additive distortion measures
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Special cases

Lossless compression using group codes - achievable rates

Lossy compression for arbitrary sources and distortion measures using

group codes

Nested linear codes - Shannon rate-distortion bound for arbitrary

sources and additive distortion measures

Recovers known rate regions (using nested linear codes) of

Berger-Tung problem

Wyner-Ziv problem, Wyner-Ahlswede-Korner problem

Yeung-Berger problem

Slepian-Wolf problem, Korner-Marton problem
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Conclusions

Presented a nested group codes based coding scheme

Recovered known rate regions of several distributed source coding

problems

Offers rate gains over the Berger-Tung based coding scheme

Extensions:

Codes over groups for multi-user channel coding problems

Codes over non-abelian groups
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