Toward a New Approach to Distributed Information Processing: Harnessing Group Structure

> S. Sandeep Pradhan (Joint work with Dinesh Krithivasan)

> University of Michigan, Ann Arbor

- Proliferation of wireless sensor network applications
- Supported by distributed information processing
- Look at distributed source coding problems
- Information-theoretic perspective

Information and Coding theory: Traditional Approach

Information Theory:

- Develop efficient information processing strategies for communication
- Obtain computable performance limits
- Random coding: probability distribution on a collection of communication systems
- Show good average performance
- Encoding and decoding have exponential complexity

Information and Coding theory: Traditional Approach

Information Theory:

- Develop efficient information processing strategies for communication
- Obtain computable performance limits
- Random coding: probability distribution on a collection of communication systems
- Show good average performance
- Encoding and decoding have exponential complexity

Coding Theory:

- Approach these limits using structured codes (Ex: linear codes)
- Fast encoding and decoding algorithms
- Objective: use structured codes for practical implementability

(Univ. of Michigan)

- Prob. distribution on a collection of codebooks (ensemble)
- Lot of bad codebooks in the ensemble
- Average performance significantly affected by these bad 'apples'

- Prob. distribution on a collection of codebooks (ensemble)
- Lot of bad codebooks in the ensemble
- Average performance significantly affected by these bad 'apples'
- Algebraic structure can be used to weed out bad 'apples'
- Better ensemble with better performance

- Prob. distribution on a collection of codebooks (ensemble)
- Lot of bad codebooks in the ensemble
- Average performance significantly affected by these bad 'apples'
- Algebraic structure can be used to weed out bad 'apples'
- Better ensemble with better performance
- Gain barely noticeable in point-to-point communication
 - Improvement in second order performance (error exponents)
 - Binary Symmetric case: almost all linear codes achieve expurgated bound without expurgation

- Prob. distribution on a collection of codebooks (ensemble)
- Lot of bad codebooks in the ensemble
- Average performance significantly affected by these bad 'apples'
- Algebraic structure can be used to weed out bad 'apples'
- Better ensemble with better performance
- Gain barely noticeable in point-to-point communication
 - Improvement in second order performance (error exponents)
 - Binary Symmetric case: almost all linear codes achieve expurgated bound without expurgation
- Gains significant in multi-terminal communication

Caution: Even in point-to-point set-up

- Linear codes do not achieve in general
 - Shannon rate-distortion function
 - Shannon capacity-cost function

Caution: Even in point-to-point set-up

- Linear codes do not achieve in general
 - Shannon rate-distortion function
 - Shannon capacity-cost function
- Injection of some non-linearity appears to be necessary for optimality

Prior Work: Linear codes for multi-terminal communication

- Linear codes for symmetric source/channel coding problems
- Lattice codes for Gaussian source/channel coding problems

Prior Work: Linear codes for multi-terminal communication

- Linear codes for symmetric source/channel coding problems
- Lattice codes for Gaussian source/channel coding problems
- Examples: (incomplete list)
 - Korner-Marton
 - Han-Kobayashi
 - Ahlswede-Han
 - Forney-Barg
 - Philosof-Zamir-Erez
 - Nazer-Gastpar
 - Krithivasan-Pradhan
 - Viswanath
 - . . .

- A unified approach to distributed source coding problem
- Discrete memoryless setting
- Applicable to general source statistics and distortion functions

- A unified approach to distributed source coding problem
- Discrete memoryless setting
- Applicable to general source statistics and distortion functions
- Based on abstract abelian groups: groups capture structure
- Nested codes over groups
- New rate-distortion region

- A unified approach to distributed source coding problem
- Discrete memoryless setting
- Applicable to general source statistics and distortion functions
- Based on abstract abelian groups: groups capture structure
- Nested codes over groups
- New rate-distortion region
- Previously known rate distortion regions can be achieved using nested linear codes

A Distributed Source Coding Problem

- Set of encoders observe different components of a vector source
- Central decoder receives quantized observations from the encoders
- Best known rate region Berger-Tung based

(Univ. of Michigan)

- For given distortion D
- Quantize X to U and quantize Y to V

- For given distortion D
- Quantize X to U and quantize Y to V
- Find two quantizer transformations $p_{U|X}$ and $p_{V|Y}$ such that
 - best estimator $\hat{Z} = F(U, V)$ from (U, V) satisfies distortion D.

- For given distortion D
- Quantize X to U and quantize Y to V
- Find two quantizer transformations $p_{U|X}$ and $p_{V|Y}$ such that
 - best estimator $\hat{Z} = F(U, V)$ from (U, V) satisfies distortion D.
- Rates incurred in quantization = I(X; U) and I(Y; V)

- For given distortion D
- Quantize X to U and quantize Y to V
- Find two quantizer transformations $p_{U|X}$ and $p_{V|Y}$ such that
 - best estimator $\hat{Z} = F(U, V)$ from (U, V) satisfies distortion D.
- Rates incurred in quantization = I(X; U) and I(Y; V)
- Rate rebate by exploiting correlation between U and V = I(U; V)

9 / 1

Hence

$$R_1 \geq I(X;U) - I(U;V)$$

$$R_2 \geq I(Y;V) - I(U;V)$$

$$R_1 + R_2 \geq I(X;U) + I(Y;V) - I(U;V)$$

• Achieved using random quantization and random binning

Hence

$$R_1 \geq I(X;U) - I(U;V)$$

$$R_2 \geq I(Y;V) - I(U;V)$$

$$R_1 + R_2 \geq I(X;U) + I(Y;V) - I(U;V)$$

- Achieved using random quantization and random binning
- Observations:
 - Estimator $\hat{Z} = F(U, V)$ may be an information lossy transformation
 - Is it possible to reconstruct directly \hat{Z} at the decoder?
 - Can we get a rate rebate that is greater than I(U; V)?

Hence

$$R_1 \geq I(X;U) - I(U;V)$$

$$R_2 \geq I(Y;V) - I(U;V)$$

$$R_1 + R_2 \geq I(X;U) + I(Y;V) - I(U;V)$$

- Achieved using random quantization and random binning
- Observations:
 - Estimator $\hat{Z} = F(U, V)$ may be an information lossy transformation
 - Is it possible to reconstruct directly \hat{Z} at the decoder?
 - Can we get a rate rebate that is greater than I(U; V)?
 - Can a joint design of quantizer and binning get better performance?

- X, Y 3 bit correlated binary sources, $d_H(X, Y) \leq 1$
- Decoder interested in reconstructing $\hat{Z} = X \oplus_2 Y \in \{000, 001, 010, 100\}$

- X, Y 3 bit correlated binary sources, $d_H(X, Y) \leq 1$
- Decoder interested in reconstructing $\hat{Z} = X \oplus_2 Y \in \{000, 001, 010, 100\}$
- Berger-Tung based coding scheme:
 - Reconstruct sources X, Y. Compute $\hat{Z} = X \oplus_2 Y$
 - Sum rate: H(X, Y) = 5 bits

- X, Y 3 bit correlated binary sources, $d_H(X, Y) \leq 1$
- Decoder interested in reconstructing $\hat{Z} = X \oplus_2 Y \in \{000, 001, 010, 100\}$
- Berger-Tung based coding scheme:
 - Reconstruct sources X, Y. Compute $\hat{Z} = X \oplus_2 Y$
 - Sum rate: H(X, Y) = 5 bits
- Can we do better?

Example 1: Linear Coding Scheme

- $X_1 \oplus X_2 \oplus Y_1 \oplus Y_2 = X_1 \oplus Y_1 \oplus X_2 \oplus Y_2 = \hat{Z}_1 \oplus \hat{Z}_2$
- Sum rate: 2 + 2 = 4 bits

Example 1: Linear Coding Scheme

- $X_1 \oplus X_2 \oplus Y_1 \oplus Y_2 = X_1 \oplus Y_1 \oplus X_2 \oplus Y_2 = \hat{Z}_1 \oplus \hat{Z}_2$
- Sum rate: 2 + 2 = 4 bits
- Significant features:
 - encoding function commutes with function $\hat{Z} = X \oplus Y$
 - Identical binning at both encoders
 - Linear codes

(Univ. of Michigan)

12 / 1

Example 2: Reconstruct the pair (X, Y) (Slepian-Wolf)

• (X, Y) - binary correlated sources

Example 2: Reconstruct the pair (X, Y) (Slepian-Wolf)

- (X, Y) binary correlated sources
- Can be thought of as addition in \mathbb{F}_4

	00	01	10	11
00	00	01	10	11
01	01	00	11	10
10	10	11	00	01
11	11	10	01	00

• Map binary sources into \mathbb{F}_4

Example 2: Reconstruct the pair (X, Y) (Slepian-Wolf)

- (X, Y) binary correlated sources
- Can be thought of as addition in \mathbb{F}_4

	00	01	10	11
00	00	01	10	11
01	01	00	11	10
10	10	11	00	01
11	11	10	01	00

- Map binary sources into \mathbb{F}_4
- Encode sequentially one digit at a time
- Previously decoded digits = side information at the decoder

(Univ. of Michigan)

13 / 1

• (X, Y) - binary correlated sources

Example 3: Reconstruct the function $X \lor Y$

- (X, Y) binary correlated sources
- Can be embedded in the addition table in \mathbb{F}_3

• Map binary sources into \mathbb{F}_3

Example 3: Reconstruct the function $X \lor Y$

- (X, Y) binary correlated sources
- Can be embedded in the addition table in \mathbb{F}_3

- Map binary sources into \mathbb{F}_3
- Construct linear codes over \mathbb{F}_3
- Can do better than Slepian-Wolf coding

Overview of our Coding Scheme

• Fix test channel $p_{U|X}, p_{V|Y}$

Overview of our Coding Scheme

- Fix test channel $p_{U|X}, p_{V|Y}$
- Function to be reconstructed F(U, V) embed in the addition table of some abelian group
- Abelian groups decomposable into primary cyclic groups
Overview of our Coding Scheme

- Fix test channel $p_{U|X}, p_{V|Y}$
- Function to be reconstructed F(U, V) embed in the addition table of some abelian group
- Abelian groups decomposable into primary cyclic groups
- Encode sequentially using nested group codes
- All codes used in encoding have the same algebraic structure

Overview of our Coding Scheme

- Fix test channel $p_{U|X}, p_{V|Y}$
- Function to be reconstructed F(U, V) embed in the addition table of some abelian group
- Abelian groups decomposable into primary cyclic groups
- Encode sequentially using nested group codes
- All codes used in encoding have the same algebraic structure
- Two quantizers and the binning operation is designed jointly
- A framework applicable to arbitrary source statistics and distortion measures

Overview of our Coding Scheme

- Fix test channel $p_{U|X}, p_{V|Y}$
- Function to be reconstructed F(U, V) embed in the addition table of some abelian group
- Abelian groups decomposable into primary cyclic groups
- Encode sequentially using nested group codes
- All codes used in encoding have the same algebraic structure
- Two quantizers and the binning operation is designed jointly
- A framework applicable to arbitrary source statistics and distortion measures
- We looked at linear codes for binning.
- How to do quantization using structured codes?

Berger-Tung Rate Region: Closer Look

- $R_2 = I(Y; V), \quad R_1 = I(X; U) I(U; V)$
- Source X: alphabet \mathcal{X} , distribution p_X
- Side Information V: alphabet \mathcal{V} , distribution $p_{V|X}$.
- Reconstruction: alphabet $\hat{\mathcal{Z}}$.
- Compress X into bits to achieve a target distortion.

Encoding: Quantization + Binning

- Quantize X to U with rate I(X; U)
- Partition the quantizer into bins of rate I(U; V)
- Each bin is a good channel code for the channel $p_{V|U}$.
- Send the bin index to the decoder
- Recover the quantizer codeword from the bin using $\boldsymbol{V}.$

Space in which quantizer is built

• Joint histogram of source word and its quantized version $pprox p_{XU}$

Good Quantizer

- Quantize X to U
- Must cover a specific region
- Typical set with respect to p_U .
- Rate: I(X; U).
- Shannon source code

Quantizer Partition into bins

Partition into bins

Quantizer Partition into bins

- Partition into bins
- Bin = Good channel code
- Fictitious channel

- I/P Distribution: P_U
- Conditional distribution: $p_{V|U}$.

Quantizer Partition into bins

- Partition into bins
- Bin = Good channel code
- Fictitious channel

- I/P Distribution: P_U
- Conditional distribution: $p_{V|U}$.
- Bin Rate: I(U; V).
- Bin density rate:

$$= I(X; U) - I(U; V)$$

Good Channel Code

- Each bin is a good channel code
- Pack codewords in the region
- Typical set with respect to \boldsymbol{U}
- Rate: I(U; V).
- Shannon channel code

Illustration of Encoding

э

Illustration of Decoding

2

Illustration of Decoding

• None of the codes used here have any algebraic structure

RECALL

- Linear Codes do not achieve
 - Shannon rate-distortion function
 - Shannon capacity-cost function
- Linear code do not achieve
 - the source rate I(X; U)
 - the channel rate I(U; V)

RECALL

- Linear Codes do not achieve
 - Shannon rate-distortion function
 - Shannon capacity-cost function
- Linear code do not achieve
 - the source rate I(X; U)
 - the channel rate I(U; V)

Q: How to achieve I(X; U) - I(U; V) using linear codes?

• Linear code C_1

- Linear code \mathcal{C}_1
- Contains a good quantizer
- True for arbitrary $(\mathcal{X}, \mathcal{U}, p_{XU})$

- Linear code \mathcal{C}_1
- Contains a good quantizer
- True for arbitrary $(\mathcal{X}, \mathcal{U}, p_{XU})$
- Codeword density as before
- Expand beyond typical set

- Linear code \mathcal{C}_1
- Contains a good quantizer
- True for arbitrary $(\mathcal{X}, \mathcal{U}, p_{XU})$
- Codeword density as before
- Expand beyond typical set
- Rate of the code:
 - $\log |\mathcal{U}| H(U|X)$
- Penalty for linearity: $\log |\mathcal{U}| - H(U).$
- Refer: Good linear source code

Linear code as a channel code: Lemma 2

- Linear code \mathcal{C}_2
- Every coset contains a good channel code

Linear code as a channel code: Lemma 2

- Linear code C_2
- Every coset contains a good channel code
- True for arbitrary $(\mathcal{U}, \mathcal{V}, p_{UV})$
- Codeword density as before
- Expand beyond typical set

Linear code as a channel code: Lemma 2

- Linear code \mathcal{C}_2
- Every coset contains a good channel code
- True for arbitrary $(\mathcal{U}, \mathcal{V}, p_{UV})$
- Codeword density as before
- Expand beyond typical set
- Rate of the code: $\log |\mathcal{U}| - H(U|V)$
- Penalty for linearity:
 - $\log |\mathcal{U}| H(U)$
- Refer: Good linear channel code

Linear code Partition

- Partition C_1 into cosets of C_2
- Coset density as before

Linear code Partition

- Partition C_1 into cosets of C_2
- Coset density as before

• Coset density rate $= \log |\mathcal{U}| - H(U|X) - \log |\mathcal{U}| + H(U|V)$ = I(X;U) - I(U;V)

- Built on Galois fields
- Nested linear codes can achieve Berger-Tung bound
- Good nested linear codes can achieve Shannon limit
 - Take V=constant
 - Source Code Rate: $\log |\mathcal{U}| H(U|X)$
 - Channel Code Rate: $\log |\mathcal{U}| H(U)$
- A specific form of non-linearity

- Built on Galois fields
- Nested linear codes can achieve Berger-Tung bound
- Good nested linear codes can achieve Shannon limit
 - Take V=constant
 - Source Code Rate: $\log |\mathcal{U}| H(U|X)$
 - Channel Code Rate: $\log |\mathcal{U}| H(U)$
- A specific form of non-linearity

Next: extension to arbitrary abelian groups

 $\bullet \ G$ - a finite abelian group of order n

•
$$G \cong \mathbb{Z}_{p_1^{e_1}} \times \mathbb{Z}_{p_2^{e_2}} \cdots \times \mathbb{Z}_{p_k^{e_k}}$$

• G isomorphic to direct product of possibly repeating primary cyclic groups

$$g \in G \Leftrightarrow g = (g_1, \ldots, g_k), \ g_i \in \mathbb{Z}_{p_i^{e_i}}$$

• Call g_i as the *i*th digit of g

 $\bullet \ G$ - a finite abelian group of order n

•
$$G \cong \mathbb{Z}_{p_1^{e_1}} \times \mathbb{Z}_{p_2^{e_2}} \cdots \times \mathbb{Z}_{p_k^{e_k}}$$

• G isomorphic to direct product of possibly repeating primary cyclic groups

$$g \in G \Leftrightarrow g = (g_1, \ldots, g_k), \ g_i \in \mathbb{Z}_{p_i^{e_i}}$$

- Call g_i as the *i*th digit of g
- Enough to prove coding theorems for primary cyclic groups
- Extension to arbitrary abelian groups through digit decomposition

- Let group size be 36
- $36 = 2^2 \times 3^2$
- Abelian groups of order 36:
 - $\mathbb{Z}_4 \times \mathbb{Z}_9$: Two digits
 - $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_9$: Three digits
 - $\mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_3$: Three digits
 - $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3$: Four digits

A function $F:\mathcal{U}\times\mathcal{V}\to\hat{\mathcal{Z}}$ can be embedded in G if

A function $F: \mathcal{U} \times \mathcal{V} \to \hat{\mathcal{Z}}$ can be embedded in G if

- \exists a one-to-one mapping $F_1: \mathcal{U} \to G$
- \exists a one-to-one mapping $F_2: \mathcal{V} \to G$
- \exists a mapping $F_3: G \to \hat{\mathcal{Z}}$
- such that $F(U,V) = F_3[F_1(U) \oplus_G F_2(V)]$

A function $F: \mathcal{U} \times \mathcal{V} \to \hat{\mathcal{Z}}$ can be embedded in G if

- \exists a one-to-one mapping $F_1: \mathcal{U} \to G$
- \exists a one-to-one mapping $F_2: \mathcal{V} \to G$
- \exists a mapping $F_3: G \to \hat{\mathcal{Z}}$
- such that $F(U,V) = F_3[F_1(U) \oplus_G F_2(V)]$

Example: $\hat{Z} = U \lor V$ can be embedded in \mathbb{Z}_3

- Codes used in KM,SW good channel codes
 - Cosets bin the entire space
 - Suitable for lossless coding

- Codes used in KM,SW good channel codes
 - Cosets bin the entire space
 - Suitable for lossless coding
- Lossy coding: Need to quantize first
 - Dilute coset density Nested group codes
 - Fine code Quantizes the sources
 - Coarse code Bins only the fine code

- Group code over $\mathbb{Z}_{p^r}^n$: $\mathcal{C} < \mathbb{Z}_{p^r}^n$
- $\mathcal{C} = \text{ker}(\phi)$ for some homomorphism $\phi \colon \mathbb{Z}_{p^r}^n \to \mathbb{Z}_{p^r}^k$

3
- Group code over $\mathbb{Z}_{p^r}^n\colon \,\mathcal{C}<\mathbb{Z}_{p^r}^n$
- $\mathcal{C} = \text{ker}(\phi)$ for some homomorphism $\phi \colon \mathbb{Z}_{p^r}^n \to \mathbb{Z}_{p^r}^k$
- $(\mathcal{C}_1,\mathcal{C}_2)$ nested if $\mathcal{C}_2\subset \mathcal{C}_1$

- Group code over $\mathbb{Z}_{p^r}^n \colon \mathcal{C} < \mathbb{Z}_{p^r}^n$
- $\mathcal{C} = \text{ker}(\phi)$ for some homomorphism $\phi \colon \mathbb{Z}_{p^r}^n \to \mathbb{Z}_{p^r}^k$
- $(\mathcal{C}_1,\mathcal{C}_2)$ nested if $\mathcal{C}_2\subset \mathcal{C}_1$
- We need:
 - $\mathcal{C}_1 < \mathbb{Z}_{p^r}^n$: "good" source code
 - Can find $u^n \in \mathcal{C}_1$ jointly typical with source x^n
 - $\mathcal{C}_2 < \mathbb{Z}_{p^r}^n$: "good" channel code
 - Can distinguish between typical channel noise sequences

Good Group Source Codes

- Good group source code C_1 for the triple $(\mathcal{X}, \mathcal{U}, P_{XU})$
- Assume $\mathcal{U} = \mathbb{Z}_{p^r}$ for some prime p and exponent r > 0

Good Group Source Codes

- Good group source code C_1 for the triple $(\mathcal{X}, \mathcal{U}, P_{XU})$
- Assume $\mathcal{U} = \mathbb{Z}_{p^r}$ for some prime p and exponent r > 0

Lemma

Exists for large n if $\frac{1}{n}\log |\mathcal{C}_1| \ge \log p^r - \min\{H(U|X), r|H(U|X) - \log p^{r-1}|^+\}$

- Good group source code C_1 for the triple $(\mathcal{X}, \mathcal{U}, P_{XU})$
- Assume $\mathcal{U} = \mathbb{Z}_{p^r}$ for some prime p and exponent r > 0

Lemma

Exists for large n if

$$\frac{1}{n}\log|\mathcal{C}_1| \geq \log p^r - \min\{H(U|X), r|H(U|X) - \log p^{r-1}|^+\}$$

- Compare with optimal random code: H(U) H(U|X) = I(X;U)
- Compare with linear code: $\log p^r H(U|X)$
- Not good in Shannon sense
- Extra penalty for imposing group structure beyond linearity

Good Group Channel Codes

- Good group channel code C_2 for the triple $(\mathcal{U}, \mathcal{V}, P_{UV})$
- Assume $\mathcal{U} = \mathbb{Z}_{p^r}$ for some prime p and exponent r > 0

Good Group Channel Codes

- Good group channel code C_2 for the triple $(\mathcal{U}, \mathcal{V}, P_{UV})$
- Assume $\mathcal{U} = \mathbb{Z}_{p^r}$ for some prime p and exponent r > 0

Lemma

Exists for large n if $\frac{1}{n} \log |\mathcal{C}_2| \le \log p^r - \max_{0 \le i < r} \left(\frac{r}{r-i}\right) \left(H(U|V) - H([U]_i|V)\right)$

Good Group Channel Codes

- Good group channel code C_2 for the triple $(\mathcal{U}, \mathcal{V}, P_{UV})$
- Assume $\mathcal{U} = \mathbb{Z}_{p^r}$ for some prime p and exponent r > 0

Lemma

Exists for large n if

$$\frac{1}{n} \log |\mathcal{C}_2| \leq \log p^r - \max_{0 \leq i < r} \left(\frac{r}{r-i} \right) \left(H(U|V) - H([U]_i|V) \right)$$

- $[U]_i$ is a function of U.
- Compare with optimal random code: H(U) H(U|V)
- Compare with linear code: $\log p^r H(U|V)$
- Not good in Shannon sense
- Extra penalty for imposing group structure beyond linearity

- Matrix characterization of subgroups of direct product of a group
- random coding over subgroups
- Suen's inequality [1998]

3

- Step 1: Embed F(U, V) in an abelian group G
- Step 2: Decompose G into primary cyclic groups: G_1, \ldots, G_K
 - Represent $U = (U_1, \ldots, U_K)$ and $V = (V_1, \ldots, V_K)$

- Step 1: Embed F(U, V) in an abelian group G
- Step 2: Decompose G into primary cyclic groups: G_1, \ldots, G_K
 - Represent $U = (U_1, \ldots, U_K)$ and $V = (V_1, \ldots, V_K)$
- Step 3: Group source code over G_i for every $i: C_{11}(i), C_{12}(i)$
- Step 4: Group channel code over G_i for every i: $C_2(i)$

- Step 1: Embed F(U, V) in an abelian group G
- Step 2: Decompose G into primary cyclic groups: G_1, \ldots, G_K
 - Represent $U = (U_1, \ldots, U_K)$ and $V = (V_1, \ldots, V_K)$
- Step 3: Group source code over G_i for every $i: C_{11}(i), C_{12}(i)$
- Step 4: Group channel code over G_i for every i: $C_2(i)$
- Step 5: Nest the channel code inside the source codes
 - $\mathcal{C}_2(i) < \mathcal{C}_{11}(i)$ and $\mathcal{C}_2(i) < \mathcal{C}_{12}(i)$
 - Identical binning of quantizers

Encoders: at the ith stage

- Encode the sources X and Y to digits U_i and V_i sequentially
 - quantize + bin

Encoders: at the ith stage

- Encode the sources X and Y to digits U_i and V_i sequentially
 - $\bullet \ \ \mathsf{quantize} + \mathsf{bin}$

Decoder: at the ith stage

- Recover $\hat{Z}_i = U_i \oplus_{G_i} V_i$
- Use previously decoded digits as side information

Suppose we embed F(U, V) in $\mathbb{Z}_4 \times \mathbb{Z}_7$

- We have two digits: (U_1, V_1, \hat{Z}_1) and (U_2, V_2, \hat{Z}_2)
- Two stages
- Stage 1: \mathbb{Z}_4 operation
- Stage 2: \mathbb{Z}_7 operation

Coding Strategy: Nested group codes $C_2 < C_{11}, C_{12}$

Theorem

The set of tuples (R_1, R_2, D) that satisfy

$$R_{1} \geq \max_{0 \leq i < r} \left(\frac{r}{r-i} \right) (H(\hat{Z}) - H([\hat{Z}]_{i})) - \min\{H(U|X), r|H(U|X) - \log p^{r-1}|^{+}\}$$

$$R_{2} \geq \max_{0 \leq i < r} \left(\frac{r}{r-i} \right) (H(\hat{Z}) - H([\hat{Z}]_{i})) - \min\{H(V|Y), r|H(V|Y) - \log p^{r-1}|^{+}\}$$

$$D \geq \mathbb{E}d(X, Y, F(U, V))$$

are achievable.

3

Theorem

The set of tuples (R_1, R_2, D) that satisfy

$$R_{1} \geq \max_{0 \leq i < r} \left(\frac{r}{r-i} \right) (H(\hat{Z}) - H([\hat{Z}]_{i})) - \min\{H(U|X), r|H(U|X) - \log p^{r-1}|^{+}\}$$

$$R_{2} \geq \max_{0 \leq i < r} \left(\frac{r}{r-i} \right) (H(\hat{Z}) - H([\hat{Z}]_{i})) - \min\{H(V|Y), r|H(V|Y) - \log p^{r-1}|^{+}\}$$

$$D \geq \mathbb{E}d(X, Y, F(U, V))$$

are achievable.

- More general rate region possible by
 - Embedding in general groups and using digit decomposition
 - Alternative coding strategy at ith stage Encode (U_i,V_i) instead of \hat{Z}_i

Example 6: Lossless reconstruction of quaternary function

- X and Y take values in $\{0, 1, 2, 3\}$
- Lossless reconstruction of $\hat{Z} = X Y \mod 4$

Example 6: Lossless reconstruction of quaternary function

- X and Y take values in $\{0, 1, 2, 3\}$
- Lossless reconstruction of $\hat{Z} = X Y \mod 4$
- $\bullet\,$ Can be embedded in abelian groups of order $\leq 16\,$
- $\mathbb{Z}_4, \ \mathbb{Z}_7, \ \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2, \ \mathbb{Z}_4 \oplus \mathbb{Z}_4$ give non-trivial performance

Example 6: Lossless reconstruction of quaternary function

- X and Y take values in $\{0, 1, 2, 3\}$
- Lossless reconstruction of $\hat{Z} = X Y \mod 4$
- Can be embedded in abelian groups of order \leq 16
- \mathbb{Z}_4 , \mathbb{Z}_7 , $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$, $\mathbb{Z}_4 \oplus \mathbb{Z}_4$ give non-trivial performance

p_X	p_E	$R_{\mathbb{Z}_4}$	$R_{\mathbb{Z}_7}$	$R_{\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2}$	$R_{\mathbb{Z}_4 \oplus \mathbb{Z}_4}$
$\left[\frac{1}{4} \ \frac{1}{4} \ \frac{1}{4} \ \frac{1}{4}\right]$	$\left[\frac{1}{2} 0 \frac{1}{4} \frac{1}{4}\right]$	3	3.9056	3.1887	3.5
$\left[\frac{3}{10} \frac{6}{10} \frac{1}{10} 0\right]$	$\left[0 \frac{4}{5} \frac{1}{20} \frac{3}{20}\right]$	2.3911	2.0797	2.4529	2.1796
$\begin{bmatrix} \frac{1}{3} & \frac{1}{10} & \frac{1}{2} & \frac{1}{15} \end{bmatrix}$	$\left[\frac{3}{7} \frac{1}{7} \frac{1}{7} \frac{2}{7}\right]$	3.6847	4.5925	3.3495	3.4633
$\left[\frac{9}{10} \ \frac{1}{30} \ \frac{1}{30} \ \frac{1}{30} \ \frac{1}{30}\right]$	$\left[\frac{3}{20} \frac{3}{4} \frac{1}{20} \frac{1}{20}\right]$	2.308	2.7065	1.9395	1.7815

Table: Example distributions for which embedding in a given group gives the lowest sum rate.

- Correlated binary sources (X, Y)
- Reconstruct $\hat{Z} = X \oplus_2 Y$ within Hamming distortion D
- U, V binary auxiliary random variables
- F(U,V) one of 16 possibilities depending on $(p_{U|X},p_{V|Y})$

Lossy Example contd.

- Rate gains over the Berger-Tung based scheme
- Implies Berger-Tung inner bound not tight for three-user case

(Univ. of Michigan)

- Lossless compression using group codes achievable rates
- Lossy compression for arbitrary sources and distortion measures using group codes
- Nested linear codes Shannon rate-distortion bound for arbitrary sources and additive distortion measures

- Lossless compression using group codes achievable rates
- Lossy compression for arbitrary sources and distortion measures using group codes
- Nested linear codes Shannon rate-distortion bound for arbitrary sources and additive distortion measures
- Recovers known rate regions (using nested linear codes) of
 - Berger-Tung problem
 - Wyner-Ziv problem, Wyner-Ahlswede-Korner problem
 - Yeung-Berger problem
 - Slepian-Wolf problem, Korner-Marton problem

- Presented a nested group codes based coding scheme
- Recovered known rate regions of several distributed source coding problems
- Offers rate gains over the Berger-Tung based coding scheme
- Extensions:
 - Codes over groups for multi-user channel coding problems
 - Codes over non-abelian groups