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A Distributed Source Coding Problem
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Ed(X, Y, Ẑ) ≤ D

Set of encoders observe different components of a vector source

Central decoder receives quantized observations from the encoders

Best known rate region - Berger-Tung based
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An Illustrative Example

X ,Y - 3 bit correlated binary sources, dH (X ,Y )≤ 1

Decoder interested in reconstructing Z = X ⊕2 Y ∈ {000,001,010,100}

Berger-Tung based coding scheme:

Reconstruct sources X ,Y . Compute Z = X ⊕2 Y

Sum rate: H(X ,Y ) = 5 bits

Can we do better?
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An Illustrative Example contd.

A linear coding scheme:
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Sum rate: 2+2 = 4 bits

Significant features:

Identical binning at both encoders

Linear codes
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Slepian-Wolf coding

(X ,Y ) - binary correlated sources

Can be thought of as addition in F4
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Map binary sources into F4

Encode sequentially one digit at a time

Previously decoded digits - side information at the decoder
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Overview of our Coding Scheme

Fix test channel PX Y UV = PX Y PU |X PV |Y

Function to be reconstructed G(U ,V ) - equivalent to addition in some

abelian group

Abelian groups decomposable into primary cyclic groups

Encode sequentially using nested group codes
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Groups - An Introduction

G - a finite abelian group of order n

G ∼=Zp
e1
1
⊕Zp

e2
2
· · ·⊕Z

p
ek
k

G isomorphic to direct sum of possibly repeating primary cyclic groups

g ∈G ⇔ g = (g1, . . . , gk ), gi ∈Zp
ei
i

Enough to prove coding theorems for primary cyclic groups

Extension to arbitrary abelian groups through digit decomposition

D. Krithivasan & S.S. Pradhan (U of M) Harnessing Group Structure ITA 2009 7 / 18



Nested Group Codes - Motivation

Codes used in KM,SW - good channel codes

Cosets bin the entire space

Suitable for lossless coding

Lossy coding: Need to quantize first

Dilute coset density - Nested group codes

Fine code - Quantizes the sources

Coarse code - Bins only the fine code
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Nested Group Codes

Group code over Z
n
pr : C <Z

n
pr

C = ker(φ) for some homomorphism φ : Zn
pr →Z

k
pr

(C1,C2) nested if C2 ⊂C1

We need:

C1 <Z
n
pr : “good” source code

Can find un ∈C1 jointly typical with source xn

C2 <Z
n
pr : “good” channel code

Can distinguish between typical channel noise sequences
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Good Group Source Codes

Good group source code C1 for the triple (X ,U ,PXU )

Assume U =Zpr for some prime p and exponent r > 0

Lemma

Exists for large n if 1
n log |C1| ≥ log pr −min{H (U |X ),r |H (U |X )− log pr−1|+}

Compare with optimal random code’s size: H (U )−H (U |X ) = I (X ;U )

Not good in Shannon sense

Penalty for imposing group structure
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Good Group Channel Codes

Good group channel code C2 for the triple (Z ,S ,PZ S )

Assume Z =Zpr for some prime p and exponent r > 0

Lemma

Exists for large n if 1
n log |C2| ≤ log pr −max0≤i<r

(

r
r−i

)

(H (Z |S)−H ([Z ]i |S))

Compare with optimal random code’s size: log pr −H (Z |S)

Not good in Shannon sense

Penalty for presence of subgroups
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Notation

Fix PU |X ,PV |Y such that Ed (X ,Y ,G(U ,V )) ≤D

Suppose G(U ,V ) equivalent to group operation in abelian group G

Decompose G into primary cyclic groups. Encode one digit at a time

Decoder: At the bth stage, previously decoded digits as side

information
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Coding Strategy

Nested group codes C2 <C11,C12

yn

C11
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vn
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H2u
n

H2v
n

H2z
n

1
n

log |C11| ≥

log pr −min{H (U |X ),r |H (U |X )−

log pr−1|+}.

1
n log |C12| ≥

log pr −min{H (V |Y ),r |H (V |Y )−

log pr−1|+}.

1
n log |C2| ≤ log pr −

max0≤i<r

(

r
r−i

)

(H (Z )−H ([Z ]i )).
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Achievable Rates

Theorem

The set of tuples (R1,R2,D) that satisfy

R1 ≥ max
0≤i<r

( r

r − i

)

(H (Z )−H ([Z ]i ))−min{H (U |X ),r |H (U |X )− log pr−1
|
+}

R2 ≥ max
0≤i<r

( r

r − i

)

(H (Z )−H ([Z ]i ))−min{H (V |Y ),r |H (V |Y )− log pr−1
|
+}

D ≥ Ed (X ,Y ,G(U ,V ))

are achievable.

More general rate region possible by

Embedding in general groups and using digit decomposition

Alternative coding strategy at bth stage - Encode (Ub,Vb) instead of Zb
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Lossy Reconstruction of binary XOR

Correlated binary sources (X ,Y )

Reconstruct Z = X ⊕2 Y within Hamming distortion D

U ,V - binary auxiliary random variables

G(U ,V ) - one of 16 possibilities depending on (PU |X ,PV |Y )
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Lossy Example contd.
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2 Berger−Tung based coding scheme
Group code based coding scheme

Rate gains over the Berger-Tung based scheme

Implies Berger-Tung inner bound not tight for three-user case
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Special cases

Lossless compression using group codes - achievable rates

Lossy compression for arbitrary sources and distortion measures using

group codes

Nested linear codes - Shannon rate-distortion bound for arbitrary

sources and additive distortion measures

Recovers known rate regions (using nested linear codes) of

Berger-Tung problem

Wyner-Ziv problem, Wyner-Ahlswede-Korner problem

Yeung-Berger problem

Slepian-Wolf problem, Korner-Marton problem

Function computation - Lossless reconstruction of Z = X ⊕4 Y
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Conclusions

Presented a nested group codes based coding scheme

Recovered known rate regions of several distributed source coding

problems

Offers rate gains over the Berger-Tung based coding scheme

Extensions:

Codes over groups for multi-user channel coding problems

Codes over non-abelian groups
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