Toward a New Approach to Distributed Source Coding: Harnessing Group Structure

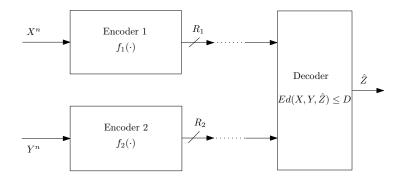
Dinesh Krithivasan and S. Sandeep Pradhan

University of Michigan

ITA 2009

D. Krithivasan & S.S. Pradhan (U of M) Harnessing Group Structure

A Distributed Source Coding Problem

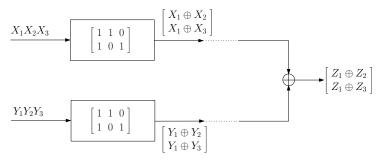


- Set of encoders observe different components of a vector source
- Central decoder receives quantized observations from the encoders
- Best known rate region Berger-Tung based

- X, Y 3 bit correlated binary sources, $d_H(X, Y) \le 1$
- Decoder interested in reconstructing $Z = X \oplus_2 Y \in \{000, 001, 010, 100\}$
- Berger-Tung based coding scheme:
 - Reconstruct sources X, Y. Compute $Z = X \oplus_2 Y$
 - Sum rate: H(X, Y) = 5 bits
- Can we do better?

An Illustrative Example contd.

• A linear coding scheme:



- Sum rate: 2+2=4 bits
- Significant features:
 - Identical binning at both encoders
 - Linear codes

Slepian-Wolf coding

- (X, Y) binary correlated sources
- $\bullet\,$ Can be thought of as addition in \mathbb{F}_4

	00	01	10	11
00	00	01	10	11
01	01	00	11	10
10	10	11	00	01
11	11	10	01	00

- Map binary sources into \mathbb{F}_4
- Encode sequentially one digit at a time
- Previously decoded digits side information at the decoder

- Fix test channel $P_{XYUV} = P_{XY}P_{U|X}P_{V|Y}$
- Function to be reconstructed G(U, V) equivalent to addition in some abelian group
- Abelian groups decomposable into primary cyclic groups
- Encode sequentially using nested group codes

- G a finite abelian group of order n
- $G \cong \mathbb{Z}_{p_1^{e_1}} \oplus \mathbb{Z}_{p_2^{e_2}} \cdots \oplus \mathbb{Z}_{p_k^{e_k}}$
- G isomorphic to direct sum of possibly repeating primary cyclic groups

$$g \in G \Leftrightarrow g = (g_1, \dots, g_k), \ g_i \in \mathbb{Z}_{p_i^{e_i}}$$

- Enough to prove coding theorems for primary cyclic groups
- Extension to arbitrary abelian groups through digit decomposition

- Codes used in KM,SW good channel codes
 - Cosets bin the entire space
 - Suitable for lossless coding
- Lossy coding: Need to quantize first
 - Dilute coset density Nested group codes
 - Fine code Quantizes the sources
 - Coarse code Bins only the fine code

- Group code over $\mathbb{Z}_{p^r}^n$: $\mathscr{C} < \mathbb{Z}_{p^r}^n$
- $\mathscr{C} = \ker(\phi)$ for some homomorphism $\phi \colon \mathbb{Z}_{p^r}^n \to \mathbb{Z}_{p^r}^k$
- $(\mathscr{C}_1, \mathscr{C}_2)$ nested if $\mathscr{C}_2 \subset \mathscr{C}_1$
- We need:
 - $\mathscr{C}_1 < \mathbb{Z}_{p^r}^n$: "good" source code
 - Can find $u^n \in \mathscr{C}_1$ jointly typical with source x^n
 - $\mathscr{C}_2 < \mathbb{Z}_{p^r}^n$: "good" channel code
 - Can distinguish between typical channel noise sequences

- Good group source code \mathscr{C}_1 for the triple $(\mathscr{X}, \mathscr{U}, P_{XU})$
- Assume $\mathscr{U} = \mathbb{Z}_{p^r}$ for some prime p and exponent r > 0

Lemma

Exists for large n if $\frac{1}{n}\log|\mathscr{C}_1| \ge \log p^r - \min\{H(U|X), r|H(U|X) - \log p^{r-1}|^+\}$

- Compare with optimal random code's size: H(U) H(U|X) = I(X;U)
- Not good in Shannon sense
- Penalty for imposing group structure

- Good group channel code \mathscr{C}_2 for the triple $(\mathcal{Z}, \mathscr{S}, P_{ZS})$
- Assume $\mathcal{Z} = \mathbb{Z}_{p^r}$ for some prime p and exponent r > 0

Lemma

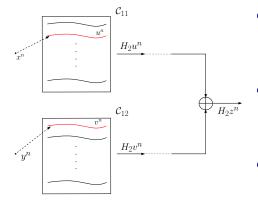
Exists for large n if $\frac{1}{n}\log|\mathscr{C}_2| \le \log p^r - \max_{0 \le i < r} \left(\frac{r}{r-i}\right) (H(Z|S) - H([Z]_i|S))$

- Compare with optimal random code's size: $\log p^r H(Z|S)$
- Not good in Shannon sense
- Penalty for presence of subgroups

- Fix $P_{U|X}, P_{V|Y}$ such that $\mathbb{E}d(X, Y, G(U, V)) \leq D$
- Suppose G(U, V) equivalent to group operation in abelian group G
- Decompose G into primary cyclic groups. Encode one digit at a time
- Decoder: At the *b*th stage, previously decoded digits as side information

Coding Strategy

• Nested group codes $\mathscr{C}_2 < \mathscr{C}_{11}, \mathscr{C}_{12}$



- $\frac{1}{n}\log|\mathscr{C}_{11}| \ge$ $\log p^r - \min\{H(U|X), r|H(U|X) - \log p^{r-1}|^+\}.$
- $\frac{1}{n}\log|\mathscr{C}_{12}| \ge$ $\log p^r - \min\{H(V|Y), r|H(V|Y) - \log p^{r-1}|^+\}.$

•
$$\frac{1}{n}\log|\mathscr{C}_2| \le \log p^r - \max_{0\le i< r}\left(\frac{r}{r-i}\right)(H(Z) - H([Z]_i)).$$

Theorem

The set of tuples (R_1, R_2, D) that satisfy

$$R_{1} \ge \max_{0 \le i < r} \left(\frac{r}{r-i} \right) (H(Z) - H([Z]_{i})) - \min\{H(U|X), r|H(U|X) - \log p^{r-1}|^{+}\}$$

$$R_{2} \ge \max_{0 \le i < r} \left(\frac{r}{r-i} \right) (H(Z) - H([Z]_{i})) - \min\{H(V|Y), r|H(V|Y) - \log p^{r-1}|^{+}\}$$

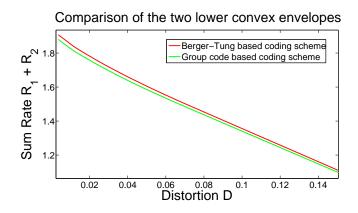
$$D \ge \mathbb{E}d(X, Y, G(U, V))$$

are achievable.

- More general rate region possible by
 - Embedding in general groups and using digit decomposition
 - Alternative coding strategy at bth stage Encode (U_b, V_b) instead of Z_b

- Correlated binary sources (X, Y)
- Reconstruct $Z = X \oplus_2 Y$ within Hamming distortion D
- *U*, *V* binary auxiliary random variables
- G(U, V) one of 16 possibilities depending on $(P_{U|X}, P_{V|Y})$

Lossy Example contd.



- Rate gains over the Berger-Tung based scheme
- Implies Berger-Tung inner bound not tight for three-user case

D. Krithivasan & S.S. Pradhan (U of M)

Harnessing Group Structure

ITA 2009 16 / 18

- Lossless compression using group codes achievable rates
- Lossy compression for arbitrary sources and distortion measures using group codes
- Nested linear codes Shannon rate-distortion bound for arbitrary sources and additive distortion measures
- Recovers known rate regions (using nested linear codes) of
 - Berger-Tung problem
 - Wyner-Ziv problem, Wyner-Ahlswede-Korner problem
 - Yeung-Berger problem
 - Slepian-Wolf problem, Korner-Marton problem
- Function computation Lossless reconstruction of $Z = X \oplus_4 Y$

- Presented a nested group codes based coding scheme
- Recovered known rate regions of several distributed source coding problems
- Offers rate gains over the Berger-Tung based coding scheme
- Extensions:
 - Codes over groups for multi-user channel coding problems
 - Codes over non-abelian groups