An Information-Theoretic Study of Communication Problems with Feedback and/or Feed-forward.

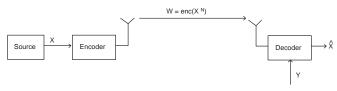
Ramji Venkataramanan S. Sandeep Pradhan

Dept. of EECS, University of Michigan

Overview of research

- Source Coding with Feed-forward
 - ▶ Rate-distortion function of a general source with feed-forward.
 - ► Error exponents of a general source with feed-forward.
- Channel Coding with delayed feedback, state information
- Second to the state of the s

Source Coding with Side-Information



Example: Block length N = 5

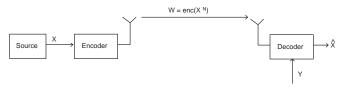
Time 1 2 3 4 5 6 7 8 9 10

Source
$$X_1$$
 X_2 X_3 X_4 X_5 X_6 X_7 X_8 X_9 X_{10}

Encoder - - - - W - - - - W

Side Info Y_1 Y_2 Y_3 Y_4 Y_5 Y_6 Y_7 Y_8 Y_9 Y_{10}

Source Coding with Side-Information



Example: Block length N = 5

Time 1 2 3 4 5 6 7 8 9 10

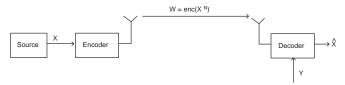
Source
$$X_1$$
 X_2 X_3 X_4 X_5 X_6 X_7 X_8 X_9 X_{10}

Encoder - - - - W - - - - W

Side Info Y_1 Y_2 Y_3 Y_4 Y_5 Y_6 Y_7 Y_8 Y_9 Y_{10}

Decoder

Source Coding with Side-Information

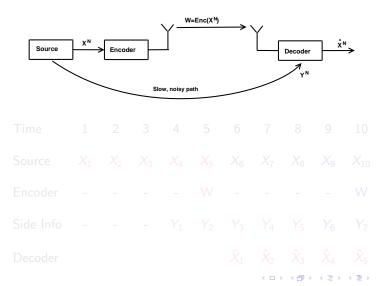


Example: Block length N=5

Time	1	2	3	4	5	6	7	8	9	10
Source	X_1	X_2	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	<i>X</i> ₇	<i>X</i> ₈	<i>X</i> ₉	X ₁₀
Encoder	-	-	-	-	W	-	-	-	-	W
Side Info	Y_1	<i>Y</i> ₂	<i>Y</i> ₃	<i>Y</i> ₄	<i>Y</i> ₅	<i>Y</i> ₆	<i>Y</i> ₇	<i>Y</i> ₈	<i>Y</i> ₉	Y ₁₀
Decoder						\hat{X}_1	\hat{X}_2	\hat{X}_3	\hat{X}_4	\hat{X}_5

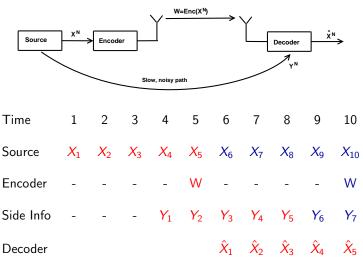
Side-Information with Delay

Suppose there is a delay in the side info available at the decoder.



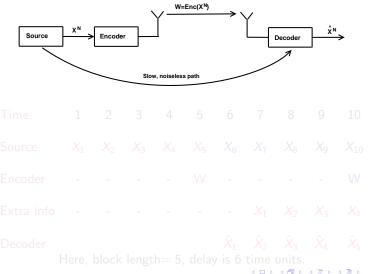
Side-Information with Delay

Suppose there is a delay in the side info available at the decoder.



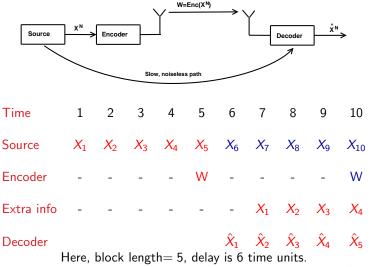
What is feed-forward?

The source field itself may be available in a delayed form at the decoder.



What is feed-forward?

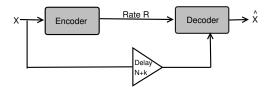
The source field itself may be available in a delayed form at the decoder.



Source Coding with Feed-Forward

Feed-forward

Decoder knows some of the past source samples.

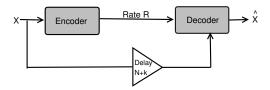


Feed-forward with delay k, block length N.

- To reconstruct X_n , the decoder knows index W and (X_1, \ldots, X_{n-k}) .
- Applications in other areas too..

Source Coding with Feed-Forward

 Feed-forward⇒ Decoder knows some of the past source samples.

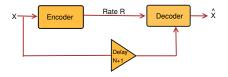


Feed-forward with delay k, block length N.

- To reconstruct X_n , the decoder knows index W and (X_1, \ldots, X_{n-k}) .
- Applications in other areas too...

Feed-Forward: A Formal Definition

First: Feed forward delay = 1
 [Weissman et al 03],[Pradhan 04],[Martinian et al 04]



- Source X: Alphabet \mathcal{X} , reconstruction alphabet $\widehat{\mathcal{X}}$
- ullet Encoder: Rate R , $e:\mathcal{X}^{ extsf{N}}
 ightarrow \{1,\dots,2^{ extsf{NR}}\}$
- **Decoder**: knows all the past (n-1) source samples to reconstruct nth sample.

$$g_n: \{1,\ldots,2^{NR}\} \times \mathcal{X}^{n-1} \to \widehat{\mathcal{X}}, \quad n=1,\ldots,N.$$

A Formal Definition (contd.)

• Distortion measure $d_N(X^N, \hat{X}^N)$.

GOAL

Given any source X, find the least R such that

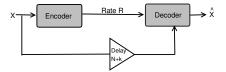
$$E[d_N(x^N,\hat{x}^N)] \leq D.$$

Rate-Distortion function with Feed-forward!

Directed Information

• [Massey] The directed information flowing from A^N to B^N

$$I(A^N \to B^N) = \sum_{n=1}^N I(A^n; B_n | B^{n-1}).$$



• Interestingly:

$$I(A^N \to B^N) = I(A^N; B^N) - \sum_{n=2}^N I(B^{n-1}; A_n | A^{n-1})$$

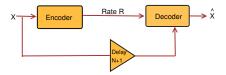
Interpretation of Directed Information

Without FF, need $I(\hat{X}^N; X^N)$ bits to represent X^N with $\hat{X^N}$.

- With feed-forward, to produce \hat{X}_n , the decoder knows X^{n-1} .
- Number of bits required is reduced by $I(\hat{X}_n; X^{n-1} | \hat{X}^{n-1})$.

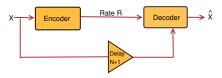
Interpretation of Directed Information

Without FF, need $I(\hat{X}^N; X^N)$ bits to represent X^N with $\hat{X^N}$.



- With feed-forward, to produce \hat{X}_n , the decoder knows X^{n-1} .
- Number of bits required is reduced by $I(\hat{X}_n; X^{n-1}|\hat{X}^{n-1})$.

Delay 1 feed-forward

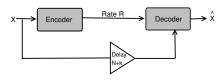


• With delay 1 feed-forward, we need

$$I(\hat{X}^N; X^N) - \sum_{n=2}^N I(\hat{X}_n; X^{n-1} | \hat{X}^{n-1})$$
 bits.

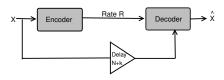
• Directed information from \hat{X}^N to X^N !

Delay k feed-forward



- With delay k feed-forward, to produce \hat{X}_n , the decoder knows X^{n-k} .
- No. of bits: $I(\hat{X}^N; X^N) \sum_{n=k+1}^N I(\hat{X}_n; X^{n-k} | \hat{X}^{n-1})$
- Not Directed Information- will denote it $I_k(\hat{X}^N \to X^N)$
- 'k-directed information'.

Delay k feed-forward



- With delay k feed-forward, to produce \hat{X}_n , the decoder knows X^{n-k} .
- No. of bits: $I(\hat{X}^N; X^N) \sum_{n=k+1}^N I(\hat{X}_n; X^{n-k} | \hat{X}^{n-1})$
- ullet Not Directed Information- will denote it $I_k(\hat{X}^N o X^N)$
- 'k-directed information'.

General source, general distortion measure

- Source could be non-stationary, non-ergodic
- Sequence of distortion functions $d_n(.,.)$

- Even when source is stationary and ergodic, with feed-forward the optimal joint distribution may not be.
- Need to use information-spectrum methods [Han, Verdu]

General source, general distortion measure

- Source could be non-stationary, non-ergodic
- Sequence of distortion functions $d_n(.,.)$

- Even when source is stationary and ergodic, with feed-forward, the optimal joint distribution may not be.
- Need to use information-spectrum methods [Han, Verdu]

General source, general distortion measure

- Source could be non-stationary, non-ergodic
- Sequence of distortion functions $d_n(.,.)$

- Even when source is stationary and ergodic, with feed-forward, the optimal joint distribution may not be.
- Need to use information-spectrum methods [Han, Verdu]

Definitions

•
$$P_X = \{P_{X_1}, P_{X^2}, \dots, P_{X^N}, \dots\}$$

$$\bullet \ \mathbf{P}_{\hat{\mathbf{X}}|\mathbf{X}} = \{P_{\hat{X}_1|X_1}, P_{\hat{X}^2|X^2}, \dots, P_{\hat{X}^N|X^N}, \dots\}$$

$$a_1, a_2, \ldots$$
: random sequence

• $\limsup_{n \text{ prob }} a_n = \overline{a}$: Smallest number α such that

$$\lim_{n\to\infty} \Pr(a_n > \alpha) = 0.$$

Definitions...

We will need

$$i_k(\hat{x}^n \to x^n) = \frac{1}{n} \log \frac{P(x^n, \hat{x}^n)}{P(x^n) \cdot \prod_{i=1}^n P(\hat{x}_i | \hat{x}^{i-1}, x^{i-k})}$$

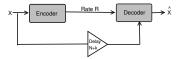
Definitions...

We will need

$$i_k(\hat{x}^n \to x^n) = \frac{1}{n} \log \frac{P(x^n, \hat{x}^n)}{P(x^n) \cdot \prod_{i=1}^n P(\hat{x}_i | \hat{x}^{i-1}, x^{i-k})}$$



Rate-Distortion Theorem for a general source



Theorem

For an arbitrary source X characterized by a distribution $\mathbf{P}_{\mathbf{X}}$, the rate-distortion function with feed-forward delay k, the infimum of all achievable rates at probability-1 distortion D, is given by

$$R_{ff}(D) = \inf_{\mathbf{P}_{\hat{\mathbf{X}}|\mathbf{X}}: \rho(\mathbf{P}_{\hat{\mathbf{X}}|\mathbf{X}}) \leq D} \overline{I}_k(\hat{X} \to X),$$

where

$$\rho(\mathbf{P}_{\hat{\mathbf{X}}|\mathbf{X}}) \triangleq \limsup_{inprob} d_n(x^n, \hat{x}^n)$$

Stationary Ergodic Source

- Stationary, ergodic source: $\mathbf{P}_{\mathbf{X}} = \{P_{X^N}\}_{N=1}^{\infty}$.
- Distortion measure d_N .

Generalization of the AEP

Lemma

 $(\mathbf{X}, \mathbf{Y}) = \{X_n, Y_n\}$ be a stationary, ergodic joint process characterized by $P_{\mathbf{X}^n, \mathbf{Y}^n}$, $n = \cdots, -1, 0, 1, \cdots$. Let

$$P_{X^n|Y^n}^k \triangleq \prod_{i=1}^n P_{X_i|X^{i-1},Y^{i-k}}.$$

Then

$$-\frac{1}{n}\log P_{X^n|Y^n}^k\to \lim_{n\to\infty}H(X_n|X^{n-1},Y^{n-k}).$$

What happens as delay changes

- Compare delay 1 FF, delay k FF, no FF.
- Space of optimization remains the same-

$$\mathbf{P}_{\hat{\mathbf{X}}|\mathbf{X}} = \{P_{\hat{\mathbf{X}}^n|\mathbf{X}^n}\}$$
 that satisfy the distortion constraint.

No constraints on the conditional distribution ⇒

$$I(\hat{X}^N; X^N) - \sum I(\hat{X}_n; X^{n-k} | \hat{X}^{n-1}),$$
 $I(\hat{X}^N \to X^N),$
 $I(\hat{X}^N; X^N)$

- With FF, the reduction in rate is due to smaller objective function
- Space of optimization remains the same

What happens as delay changes

- Compare delay 1 FF, delay k FF, no FF.
- Space of optimization remains the same-

$$\mathbf{P}_{\hat{\mathbf{X}}|\mathbf{X}} = \{P_{\hat{\mathbf{X}}^n|\mathbf{X}^n}\}$$
 that satisfy the distortion constraint.

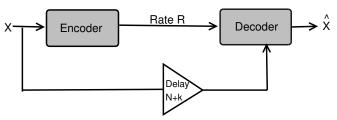
No constraints on the conditional distribution ⇒

$$\begin{split} &I(\hat{X}^N;X^N) - \sum I(\hat{X}_n;X^{n-k}|\hat{X}^{n-1}), \\ &I(\hat{X}^N \to X^N), \\ &I(\hat{X}^N;X^N) \end{split}$$

- Are all different!
- With FF, the reduction in rate is due to smaller objective function.
- Space of optimization remains the same!

Source Coding Optimization

• Source X with distribution P_X .



Multi-letter optimization- difficult!

Source Coding Optimization

- Given source $\mathbf{P}_{\mathbf{X}} = \{P_{X^n}\}$
- Pick a conditional distribution $\mathbf{P}_{\hat{\mathbf{X}}|\mathbf{X}} = \{P_{\hat{X}^n|X^n}\}$
- For what sequence of distortion measures d_n does $\mathbf{P}_{\hat{\mathbf{X}}|\mathbf{X}}$ achieve the infimum in the rate-distortion formula ?
- ullet $\mathbf{P}_{\hat{\mathbf{X}}|\mathbf{X}}$ has to minimize $\overline{I}_k(\hat{X} o X)$ over the set

$$\mathcal{Q}(D) = \{ \mathbf{W}_{\hat{\mathbf{X}}|\mathbf{X}} : \limsup_{\substack{\text{in prob } PW}} d_n(X^n, \hat{X}^n) \leq D \}$$

 Approach- similar in spirit to [Csiszar and Korner], [Gastpar et al], [Pradhan et al]

Source Coding Optimization

- Given source $P_X = \{P_{X^n}\}$
- Pick a conditional distribution $\mathbf{P}_{\hat{\mathbf{X}}|\mathbf{X}} = \{P_{\hat{X}^n|X^n}\}$
- For what sequence of distortion measures d_n does $\mathbf{P}_{\hat{\mathbf{X}}|\mathbf{X}}$ achieve the infimum in the rate-distortion formula ?
- ullet $\mathbf{P}_{\hat{\mathbf{X}}|\mathbf{X}}$ has to minimize $\overline{I}_k(\hat{X} o X)$ over the set

$$\mathcal{Q}(D) = \{ \mathbf{W}_{\hat{\mathbf{X}}|\mathbf{X}} : \limsup_{\substack{in \ prob \ PW}} d_n(X^n, \hat{X}^n) \leq D \}.$$

• Approach- similar in spirit to [Csiszar and Korner], [Gastpar et al], [Pradhan et al]

Structure of Distortion Function

Theorem

A stationary, ergodic source X characterized by $\mathbf{P}_{\mathbf{X}} = \{P_{X^n}\}_{n=1}^{\infty}$ with feed-forward delay k. $\mathbf{P}_{\hat{\mathbf{X}}|\mathbf{X}} = \{P_{X^n|X^n}\}_{n=1}^{\infty}$ is a conditional distribution such that the joint distribution is stationary and ergodic. Then $\mathbf{P}_{\hat{\mathbf{X}}|\mathbf{X}}$ achieves the rate-distortion function if for all sufficiently large n, the distortion measure satisfies

$$d_n(x^n, \hat{x}^n) = -c \cdot \frac{1}{n} \log \frac{P_{X^n, \hat{X}^n}(x^n, \hat{x}^n)}{\vec{P}_{\hat{X}^n|X^n}^k(\hat{x}^n|x^n)} + d_0(x^n),$$

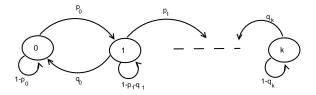
where

$$\vec{P}_{\hat{X}^{n}|X^{n}}^{k}(\hat{x}^{n}|X^{n}) = \prod_{i=1}^{n} P_{\hat{X}_{i}|X^{i-k},\hat{X}^{i-1}}(\hat{x}_{i}|X^{i-k},\hat{x}^{i-1})$$

and c is any positive number and $d_0(.)$ is an arbitrary function.

Stock Market Example

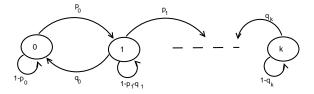
- Wish to observe the behavior of a particular stock over an N-day period.
- Value of the stock- modeled as a k + 1-state Markov chain.



- Investor has this stock over an N—day period, needs to be forewarned whenever the value drops.
- There is an insider with a priori knowledge about the behavior of the stock.
- Can give information to the investor at a cost c/bit of info.

Stock Market Example

- Wish to observe the behavior of a particular stock over an N-day period.
- Value of the stock- modeled as a k + 1-state Markov chain.



- Investor has this stock over an N-day period, needs to be forewarned whenever the value drops.
- There is an insider with a priori knowledge about the behavior of the stock.
- Can give information to the investor at a cost c/bit of info.

Stock Price Model

- Value of the stock: Markov source $\{X_n\}$
- Decision of investor on day n: \hat{X}_n
- $\hat{X}_n = 1 \Rightarrow$ price is going to drop from day n-1 to n, $\hat{X}_n = 0$ means otherwise.
- Hamming distortion:
 Distortion 1 when investor fails to predict drop, or falsely predicts.
- Before day n, investor knows all the previous values of the stock X^{n-1} , has to make the decision \hat{X}_n feed-forward!

Stock Price Model

- Value of the stock: Markov source $\{X_n\}$
- Decision of investor on day n: \hat{X}_n
- $\hat{X}_n = 1 \Rightarrow$ price is going to drop from day n-1 to n, $\hat{X}_n = 0$ means otherwise.
- Hamming distortion:
 Distortion 1 when investor fails to predict drop, or falsely predicts.
- Before day n, investor knows all the previous values of the stock X^{n-1} , has to make the decision \hat{X}_n feed-forward!

Stock Market Example

- $R_{ff}(D)$: Minimum information (in bits/sample) the investor needs to predict drops in value with distortion D.
- Try first-order Markov conditional distribution.

Proposition

For the stock-market problem described above,

$$R_{ff}(D) = \sum_{i=1}^{k-1} \quad \pi_i \quad \left[h(p_i, q_i, 1 - p_i - q_i) - h(\epsilon, 1 - \epsilon) \right] + \pi_k \left(h(q_k, 1 - q_k) - h(\epsilon, 1 - \epsilon) \right),$$

where h() is the entropy function, $\left[\pi_0,\pi_1,\cdots,\pi_k
ight]$ is the stationary distribution of the Markov chain and $\epsilon=rac{D}{1-\pi_0}$.

Stock Market Example

- $R_{ff}(D)$: Minimum information (in bits/sample) the investor needs to predict drops in value with distortion D.
- Try first-order Markov conditional distribution.

Proposition

For the stock-market problem described above,

$$R_{ff}(D) = \sum_{i=1}^{k-1} \pi_i \left[h(p_i, q_i, 1 - p_i - q_i) - h(\epsilon, 1 - \epsilon) \right] + \pi_k \left(h(q_k, 1 - q_k) - h(\epsilon, 1 - \epsilon) \right),$$

where h() is the entropy function, $\left[\pi_0, \pi_1, \cdots, \pi_k\right]$ is the stationary distribution of the Markov chain and $\epsilon = \frac{D}{1-\pi_0}$.

Cost function for feedback channels

Theorem

Suppose we are given a channel $P_{\mathbf{Y}|\mathbf{X}}^{ch}$ with k-delay feedback and an input distribution $P_{\mathbf{X}|\mathbf{Y}}^{k}$ such that the joint process $P_{\mathbf{X},\mathbf{Y}}$ is stationary, ergodic. Then the input distribution $P_{\mathbf{X}|\mathbf{Y}}^{k}$ achieves the k-delay feedback capacity of the channel if for all sufficiently large n, the cost measure satisfies

$$c_n(x^n, y^n) = \lambda \cdot \frac{1}{n} \log \frac{\vec{P}_{Y^n|X^n}^{ch}(y^n|x^n)}{P_{Y^n}(y^n)} + d_0,$$

where λ is any positive number and d_0 is an arbitrary constant

Cost function for feedback channels

Theorem

Suppose we are given a channel $P_{\mathbf{Y}|\mathbf{X}}^{ch}$ with k-delay feedback and an input distribution $P_{\mathbf{X}|\mathbf{Y}}^{k}$ such that the joint process $P_{\mathbf{X},\mathbf{Y}}$ is stationary, ergodic. Then the input distribution $P_{\mathbf{X}|\mathbf{Y}}^{k}$ achieves the k-delay feedback capacity of the channel if for all sufficiently large n, the cost measure satisfies

$$c_n(x^n, y^n) = \lambda \cdot \frac{1}{n} \log \frac{\vec{P}_{Y^n|X^n}^{ch}(y^n|x^n)}{P_{Y^n}(y^n)} + d_0,$$

where λ is any positive number and d_0 is an arbitrary constant.

Summary

- Source Coding with Feed-forward
 - Rate-distortion function of a general source- why we get k-directed information!
 - ► Error exponents of a general source with feed-forward.
- Channel Coding with delayed feedback, state information
- Second to the state of the s