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Typicality - An Overview

Sequence sn is typical with respect to a distribution p(s) if its empirical

histogram is close to p(s)

Typical set A(n)
ε (S) is the set of all n-length typical sequences

Properties of typical sequences

|A(n)
ε (S) |≈ 2nH(S)

Si is drawn i.i.d ∼ p(s). Then Pr(Sn ∈A(n)
ε (S))→ 1 as n→∞

All typical sequences nearly equally likely
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Typicality Contd.

Typicality can be extended to pairs of sources (S ,T ) with distribution

p(s ,t)

Roughly 2nH(S ,T ) jointly typical sequences

All such sequences are equally likely

For every typical sn, nearly 2nH(T |S) typical tn sequences such that

(sn,tn) is jointly typical

Joint typicality captured by a bipartite graph called the typicality graph

D.Krithivasan and S.S.Pradhan (U of M) Sampling from Typical Sets ITA 2007, San Diego 6 / 28



Typicality Graph

D.Krithivasan and S.S.Pradhan (U of M) Sampling from Typical Sets ITA 2007, San Diego 7 / 28



Random Sampling of the Typicality Graph

Induce a random sampling of the typicality graph

θ1 = 2nR1 (respectively θ2 = 2nR2) sequences are sampled from the

typical set of S (respectively T ) independently with replacement

Will assume WLOG that R1 ≥R2

We study the probability that this random graph

has no edges

has number of edges is significantly smaller than expected
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Applications

Correlated sources viewed through typicality graphs has applications in

transmitting these sources through multiuser channels

Partial characterizations of bipartite graphs that can be reliably

transmitted over multiple-access channels and broadcast channels are

available.
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No Jointly Typical Sequences

X ,Y are correlated finite-alphabet random variables with distribution

p(x ,y)

Given : ε> 0, positive real numbers R1 and R2 such that

R1+R2 > I (X ;Y )

Pick 2nR1 sequences CX from typical set A(n)
ε (X )

Pick 2nR2 sequences CY from typical set A(n)
ε (Y )

U - number of jointly typical sequences in this collection

Theorem

lim
n→∞

1
n

log log
1

P(U = 0)
≥min(R2,R1+R2− I (X ;Y ))

Result holds with equality for R2 ≤R1 < I (X ;Y ).
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Few Jointly Typical Sequences

Same assumptions as before

Choose any γ> 0

Result gives bound on probability that number of jointly typical

sequences is exponentially smaller than expected

Let An be the event E(U)−U
E(U) ≥ e−nγ

Theorem

lim
n→∞

1
n

log log
1

P(An)
≥

 R1+R2− I (X ;Y )−γ if R1 < I (X ;Y )

R2−γ if R1 ≥ I (X ;Y )
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Suen’s Correlation Inequalities

Suen’s Inequalities deal with sums of possibly dependent random

variables

Uses Dependency graphs

Vertex i represents the indicator random variable Ii
Vertices i and j are connected if random variables Ii and Ij are dependent
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Suen’s Inequalities contd.

Ii , i ∈I - Bernoulli random variable of parameter pi

Corresponding dependency graph L has vertex set I and edge set E (L)

Write i ∼ j if (i , j) ∈E (L)

X =∑
i Ii

Theorem
Suen’s Inequality I

P(X = 0)≤ exp
{
−min

(
λ2

8∆
,
λ

2
,
λ

6δ

)}

Definitions
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Suen’s Inequality Contd.

Under same assumptions, we can also derive upper bounds for the lower

tail of X

Theorem
Suen’s Inequality II For 0≤ a≤ 1, we have

P(X ≤ aλ)≤ exp
{
−min

(
(1−a)2

λ2

8∆+2λ
,(1−a)

λ

6δ

)}
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Lovász Local Lemma

Bound on probability that none of the events in a given collection

E1,E2, . . . ,En occurs

L is the dependency graph for events E1,E2, . . . ,En

Theorem
Lovász Local Lemma: Suppose there exists xi ∈ [0,1] for 1≤ i ≤ n such that

P(Ei )≤ xi
∏

(i ,j)∈E(L)

(1−xj)

Then, we have the lower bound

P(∩n
i=1Ei )≥

n∏
i=1

(1−xi )
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Proof Idea

For 1≤ i ≤ θ1, 1≤ j ≤ θ2, define Indicator random variables

Uij =
 1 (X n(i),Y n(j)) ∈A(n)

ε (X ,Y )

0 else

Number of jointly typical sequences U =∑
i
∑

j Uij

Use Suen’s Inequality on this family of θ1θ2 indicator random variables
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Dependency Graph

Indicator random variable Uij represented by vertex (i , j)

U11 depends on Ui1, 2≤ i ≤ θ1 and U1j , 2≤ j ≤ θ2

Dependency graph is a regular graph

Each vertex (i , j) is connected to exactly θ1+θ2−2 vertices
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Derivation of the Upper Bound

P(X = 0)≤ exp
{
−min

(
λ2

8∆
,
λ

2
,
λ

6δ

)}

Bounds

λ ≥ θ1θ22−n(I+ε1)

∆ ≤ 1
2
θ1θ2(θ1+θ2−2)2−2n(I−2ε2)

δ ≤ (θ1+θ2−2)2−n(I−ε1)

λ2

8∆
≥ 1

8
2nR2

λ

2
≥ 1

2
2n(R1+R2−I−ε1)

λ

6δ
≥ 1

12
2n(R2−2ε1)
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Tail Estimates and Lower Bound

Substitution gives main result for probability of non-existence of jointly

typical sequences

Using Suen’s Inequality II gives bounds on tail estimates

Lower bound derived using Lovász local lemma and coincides with the

upper bound for R2 ≤R1 < I (X ;Y )

All results can be extended to the case of more than 2 random variables
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Fully Connected Graph

Pick M typical sequences from A(n)
ε (X )

Pick N typical sequences from A(n)
ε (Y )

We investigate probability that all MN pairs are jointly typical

Call this event FC
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Fully Connected Graph contd.

Theorem

lim
n→∞−1

n
logP(FC )≥ (M +N −1)I (X ;Y )+min

P
(N −1)I (Y ;X2, . . .XM |X1)

+A(X1; . . . ;XM |Y )

Xi , 1≤ i ≤M are random variables of distribution PX

P - family of conditional distributions PX1,...,XM |Y

A(X1, . . . ,XM) ,
∑M

i=1H(Xi )−H(X1, . . . ,XM)
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Fully Connected Graph - Example

Lets take M =N = 2

lim
n→∞−1

n
logP(FC )≥ 3I (X ;Y )+min

P
I (Y ;X2 |X1)+ I (X1;X2 |Y )

X1,X2 are random variables of distribution PX

P - family of conditional distributions PX1,X2|Y
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Conclusions

Joint typicality can be characterized by typicality graph

Studied asymptotic properties of samples taken from it

Derived bounds on the probabilities of the following events

Typicality graph has no edges

Typicality graph has significantly fewer edges than expected

Derived bounds for the probability that the typicality graph is

completely connected

Results have applications in certain frameworks of transmitting

correlated sources over multiuser channels
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