New Achievable Rates for the Multiple-Access Channel with Feedback

Ramji Venkataramanan S. Sandeep Pradhan

Stanford University

University of Michigan

Multiple-access Channel (MAC)

Feedback

- X_{1n} function of (W_1, Y^{n-1})
- X_{2n} function of (W_2, Y^{n-1})
- Example of [Gaarder-Wolf '75] showed FB can increase capacity

Cover-Leung Scheme [1981]

Message graph before transmission

Cover-Leung Scheme [1981]

Message graph before transmission

Typicality Graph

After receiving Y

- LEFT vertices: $\mathbf{x_1}[w_1]$ j.typ with \mathbf{Y}
- RIGHT vertices: $x_2[w_2]$ j.typ with Y
- Edge: \Rightarrow ($\mathbf{x_1}[w_1], \mathbf{x_2}[w_2]$) j.typ with \mathbf{Y} Possible message pair

Typicality graph

C-L impose conditions so that

$2^{N(R_1+R_2)} \cdot 2^{-NI(X_1X_2;Y|U))}$ edges

NEXT STAGE

- Y is common side information
- Point-to-point communication
- Source coding + channel coding
 - Can be resolved by $\mathbf{U} \sim P_U$ if

number of edges $< 2^{NI(U;Y)}$

Typicality graph

C-L impose conditions so that

$$2^{N(R_1+R_2)} \cdot 2^{-NI(X_1X_2;Y|U))}$$
 edges

NEXT STAGE

- Y is common side information
- Point-to-point communication
- Source coding + channel coding
- Can be resolved by $\mathbf{U} \sim P_U$ if

number of edges $< 2^{NI(U;Y)}$

C-L Rates

How to achieve this graph?

RESOLUTION with **U**: $R_1 + R_2 - I(X_1X_2; Y|U) < I(U; Y)$

C-L Rates

How to achieve this graph?

RESOLUTION with **U**: $R_1 + R_2 - I(X_1X_2; Y|U) < I(U; Y)$

Block-Markov Superposition

Transmission in blocks $1, \ldots, L$

· Pu · Pxilu · Pxilu · Pylxix

Block b: fresh info X_{1b}, X_{2b} superposed on resolution info U_b

Block-Markov Superposition

Transmission in blocks $1, \ldots, L$

- $\bullet P_U \cdot P_{X_1|U} \cdot P_{X_2|U} \cdot P_{Y|X_1X_2}$
- ullet Block b: fresh info $old X_{1b}, old X_{2b}$ superposed on resolution info $old U_b$

Optimality

C-L scheme optimal for channels where

$$X_1 = f(X_2, Y)$$
 or $X_2 = g(X_1, Y)$

- The channel ensures we always get the graph we want!
- Not optimal in general
 - white Gaussian MAC [Ozarow 84]

Outside the C-L region

Bross-Lapidoth '05

- C-L scheme: block length n
 - encoders now cannot decode using FB
- ullet Spend EXTRA time $\eta \cdot n$ to exchange messages
- New block length $(1 + \eta)n$
- Can improve rates

Our approach

In terms of message graph \dots

Graph at decoder

- \bullet Each encoder CANNOT decode message of the other using \boldsymbol{Y}
- Degree of each vertex > 1
- But messages are CORRELATED

Correlated messages

- Correlated messages on MAC (no FB)
 - [Cover, EIG, Salehi 81], [Pradhan et al 07]
- Can achieve higher rates than independent messages.

First attempt ...

Sending correlated messages

Common output two-way channel Typicality graph given ${\bf Y}$

For each \mathbf{X}_1 , generate one $\mathbf{A} \sim P_{A|X_1Y}$

For each \mathbf{X}_2 , generate one $\mathbf{B} \sim P_{B|X_2Y}$

- Enc. 1 sends A corresp. to LEFT vertex
- Enc. 2 sends **B** corresp. to RIGHT vertex
- A and B are correlated

Sending correlated messages

Common output two-way channel Typicality graph given ${\bf Y}$

For each \mathbf{X}_1 , generate one $\mathbf{A} \sim P_{A|X_1Y}$

For each \mathbf{X}_2 , generate one $\mathbf{B} \sim P_{B|X_2Y}$

- Enc. 1 sends **A** corresp. to LEFT vertex
- Enc. 2 sends **B** corresp. to RIGHT vertex
- A and B are correlated

Decoding

- Enc. 1 decodes B, enc. 2 decodes A
- Decoder cannot yet decode A, B

Decoder's typicality graph:

Decoding

- Enc. 1 decodes B, enc. 2 decodes A
- Decoder cannot yet decode A, B

Decoder's typicality graph:

Block Markov Superposition

Message pair for block b

After receiving \mathbf{Y}_{b+1} :

After receiving \mathbf{Y}_b

Block Markov Superposition

Message pair for block b

After receiving \mathbf{Y}_{b+1} :

After receiving \mathbf{Y}_b

Issues

- L blocks of transmission
- For block b, $1 \le b \le L$, if we generate

$$\mathbf{A}_b \leftrightarrow (\mathbf{Y}_{b-1}, \mathbf{X}_{1(b-1)}), \qquad \mathbf{B}_b \leftrightarrow (\mathbf{Y}_{b-1}, \mathbf{X}_{2(b-1)})$$

Dependence ripples across blocks!

Does not vield 'single-letter' characterization

Issues

- L blocks of transmission
- For block b, $1 \le b \le L$, if we generate

$$\mathbf{A}_b \leftrightarrow (\mathbf{Y}_{b-1}, \mathbf{X}_{1(b-1)}), \qquad \mathbf{B}_b \leftrightarrow (\mathbf{Y}_{b-1}, \mathbf{X}_{2(b-1)})$$

Dependence ripples across blocks!

Does not yield 'single-letter' characterization

WANT

Seqs. in each block $\sim P_U \cdot P_{WAB} \cdot P_{X_1|UA} \cdot P_{X_2|UB} \cdot P_{Y|X_1X_2}$

• Define fn. $f: \mathcal{U} \times \mathcal{A} \times \mathcal{B} \times \mathcal{Y} \rightarrow \mathcal{W}$

$$\mathbf{W}_b = f((\mathbf{U}, \mathbf{A}, \mathbf{B}, \mathbf{Y})_{b-1})$$

• W summarizes info common to both encoders at end of prev. block - e.g. $\mathbf{W}_b = \mathbf{Y}_{b-1}$

CONSISTENCY COND. 1

GOAL: Ensure $\mathbf{W}_b \sim P_W$ in each block:

$$P_W(w) = \sum P(u, a, b, y) \mathbf{1}(f(u, a, b, y) = w)$$

WANT

Seqs. in each block $\sim P_U \cdot P_{WAB} \cdot P_{X_1|UA} \cdot P_{X_2|UB} \cdot P_{Y|X_1X_2}$

• Define fn. $f: \mathcal{U} \times \mathcal{A} \times \mathcal{B} \times \mathcal{Y} \rightarrow \mathcal{W}$

$$\mathbf{W}_b = f((\mathbf{U}, \mathbf{A}, \mathbf{B}, \mathbf{Y})_{b-1})$$

• W summarizes info common to both encoders at end of prev. block - e.g. $\mathbf{W}_b = \mathbf{Y}_{b-1}$

CONSISTENCY COND. 1

GOAL: Ensure $\mathbf{W}_b \sim P_W$ in each block:

$$P_W(w) = \sum P(u, a, b, y) \mathbf{1}(f(u, a, b, y) = w)$$

Conditions ctd. Want seqs. to be $\sim P_U \cdot P_{WAB} \cdot P_{X_1|UA} \cdot P_{X_2|UB} \cdot P_{Y|X_1X_2}$

CONSISTENCY COND. 2

- A_b gen. from $(U, A, B, Y, X_1)_{b-1} \sim Q^1$
- \mathbf{B}_b gen. from $(\mathbf{U}, \mathbf{A}, \mathbf{B}, \mathbf{Y}, \mathbf{X_2})_{b-1} \sim Q^2$

Given \mathbf{W}_b , ensure $\mathbf{A}_b, \mathbf{B}_b \sim P_{AB|W}$ in each block

 $\forall (u, a, b, y)$, need:

$$\sum_{x_1,x_2} Q^1(a_b|u,a,b,y,x_1) \cdot Q^1(b_b|u,a,b,y,x_2) \cdot P(x_1,x_2|u,a,b,y)$$

$$= P_{AB|W}(a_b, b_b|f(u, a, b, y))$$

Conditions ctd. Want seqs. to be $\sim P_U \cdot P_{WAB} \cdot P_{X_1|UA} \cdot P_{X_2|UB} \cdot P_{Y|X_1X_2}$

CONSISTENCY COND. 2

- A_b gen. from $(U, A, B, Y, X_1)_{b-1} \sim Q^1$
- \mathbf{B}_b gen. from $(\mathbf{U}, \mathbf{A}, \mathbf{B}, \mathbf{Y}, \mathbf{X_2})_{b-1} \sim Q^2$

Given \mathbf{W}_b , ensure $\mathbf{A}_b, \mathbf{B}_b \sim P_{AB|W}$ in each block

 $\forall (u, a, b, y), \text{ need:}$

$$\sum_{x_1,x_2} Q^1(a_b|u,a,b,y,x_1) \cdot Q^1(b_b|u,a,b,y,x_2) \cdot P(x_1,x_2|u,a,b,y)$$

$$= P_{AB|W}(a_b, b_b|f(u, a, b, y))$$

Block-Markov Scheme

Assume conditions satisfied $P_U \cdot P_{WAB} \cdot P_{X_1|UA} \cdot P_{X_2|UB} \cdot P_{Y|X_1X_2}$

Message pair for block b

After receiving \mathbf{Y}_b :

Encoder 1 needs to decode \mathbf{B}_{b+1} from \mathbf{Y}_{b+1} :

 $R_2 - I(X_2; Y|X_1ABWU) < I(B; Y|X_1AWU)$

or $R_2 < I(X_2; Y|X_1AWU)$

Block-Markov Scheme

Assume conditions satisfied $P_U \cdot P_{WAB} \cdot P_{X_1|UA} \cdot P_{X_2|UB} \cdot P_{Y|X_1X_2}$

Message pair for block b

After receiving \mathbf{Y}_b :

Encoder 1 needs to decode \mathbf{B}_{b+1} from \mathbf{Y}_{b+1} :

$$R_2 - I(X_2; Y|X_1ABWU) < I(B; Y|X_1AWU)$$

or $R_2 < I(X_2; Y|X_1AWU)$

Upon receiving \mathbf{Y}_{b+1} , decoder's graph:

For \mathbf{U}_{b+2} to resolve this:

Number of edges < I(U; Y)

Result

Theorem

For the MAC $P_{Y|X_1X_2}$, let $P_U \cdot P_{WAB} \cdot P_{X_1|UA} \cdot P_{X_2|UB} \cdot P_{Y|X_1X_2}$ be any joint distribution that satisfies the consistency conditions. Then the following rate pairs (R_1, R_2) are achievable.

$$R_1 < I(X_1; Y|X_2BWU) - [I(A; X_2|YBWU) - I(U; Y)]^+$$

 $R_2 < I(X_2; Y|X_1AWU) - [I(B; X_1|YAWU) - I(U; Y)]^+$
 $R_1 + R_2 < I(X_1X_2; Y|UW) + I(U; Y)$

$$W = A = B = \phi$$
 recovers Cover-Leung region

Binary MAC [Bross-Lapidoth '05]:

$$P_{Y|X_1X_2}(1|01) = P_{Y|X_1X_2}(1|10) = q$$

 $P_{Y|X_1X_2}(1|11) = 2q$
 $P_{Y|X_1X_2}(1|00) = 0$

- Capacity \rightarrow 0 as $q \rightarrow$ 0
- $\bullet \ \ \frac{\mathsf{Max. \ sum \ rate}}{q} \ \ \mathsf{as} \ \ q \to 0$

C-L region: 0.499

Bross-Lapidoth: 0.553

Our region: 0.651

Summary

- Exploiting feedback ⇒ thinning of graph of typical messages
 - Then cooperate to help the decoder
- C-L scheme thins graph in 1 block
 - we achieved gains by thinning over 2 blocks
- Potential gains by gradually thinning over 3, 4, ... blocks
 - More auxiliary random variables