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Dense, low-power

sensor-networks

Motivation: sensor networks

 Consider correlated nodes X, Y

 Communication between X and 

Y expensive.

 Can we exploit correlation 

without communicating?

 Assume Y is compressed 

independently.  How to 

compress X close to H(X|Y)?

 Key idea: discount I(X;Y).

H(X|Y) = H(X) – I(X;Y)



Distributed source coding: Slepian-Wolf ’73
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Source coding with side information: (Slepian-Wolf, „73, Wyner-Ziv, „76)

Distributed source coding

 Lossless coding (S-W): no loss of performance over when Y is 
available at both ends if  the statistical correlation between X 
and Y is known.

 Lossy coding (W-Z): for Gaussian statistics, no loss of 
performance over when Y known at both ends.

 Constructive solutions:      (Pradhan & Ramchandran (DISCUS) DCC „99 , 
Garcia-Frias & Zhao Comm. Letters ‟01,

Aaron & Girod DCC ‟02, 
Liveris, Xiong & Georghiades DCC '03,…)

 Employs statistical instead of deterministic mindset.

 X and Y are correlated sources.

 Y is available only to decoder.



X+Y=

0 0 0

0 0 1

0 1 0

1 0 0

Need 2 bits to index this.

Example: 3-bit illustration

 Let X and Y be length-3 binary data (equally likely), with 

the correlation: Hamming distance between X and Y is 

at most 1.

 Example: When X=[0 1 0], Y is equally likely to be

[0 1 0], [0 1 1], [0 0 0], [1 1 0].

Encoder DecoderX

Y

System 1R  H(X|Y)

X = X
^



 X and Y are correlated

 Y is available only at decoder (side information) 

 What is the best that one can do?

 The answer is still 2 bits!

 How?

0 0 0 

1 1 1
Coset-1
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011

X

Y

Encoder DecoderX

Y

System 2R = ?

X = X
^

Example: 3-bit illustration



 Encoder: sends the index of the coset (bin) containing X.                                          

 Decoder: using index and Y, decode X without error.

 Coset 1 is a length-3 repetition code

 Each coset has a unique associated “syndrome” 

Use of syndromes in IT literature: Wyner ‟74, Csiszar „82

Practical code construction (DISCUS): SP& KR „99
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Example: geometric illustration
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Assume signal and noise are Gaussian, iid



Example: geometric illustration
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

Example: scalar Wyner-Ziv

 Encoder: send the index of the coset (log23 bits)

 Decoder: decode X based on Y and signaled coset
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Outline

 Session I. Introduction and theory : 9.00 am-10.00 am
 Motivation and intuition

 Distributed source coding foundations 

 Break: 10.00-10.10 am

 Session II. Constructions: 10.10 am-10.50 am
 Structure of distributed source codes

 Constructions based on trellis codes

 Constructions based on codes on graphs

 Break: 10.50-11.00 am

 Session III. Connections and Applications: 11.00 am-12.00 
noon
 Overview of connections and applications with snippets 

 Compression of encrypted data

 Distributed video coding
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Source coding: lossless case [Shannon ’49]

 Source alphabet  X

 Source distribution ~ pX(x)

 Encoder: e: XN → {1, 2, …, 2NR}

 Decoder: f: {1, 2, …, 2NR} → XN

 Goal: minimize rate R such that probability of decoding error ~ 0

 Answer: R ≥ H(X)

 Idea: index only typical sequences 

Set of all N-length sequences

(Size ≈ 2Nlog|x|)

DecoderEncoderX X



Source coding: lossless case

 Source alphabet  X

 Source distribution ~ pX(x)

 Encoder: e: XN → {1, 2, …, 2NR}

 Decoder: f: {1, 2, …, 2NR} → XN

 Goal: minimize rate R such that probability of decoding error ~ 0

 Answer: R ≥ H(X)

 Idea: index only typical sequences 
 Probability of typical set ~ 1

Set of typical sequences

(Size ≈ 2NH(X))

DecoderEncoderX X

Set of all N-length sequences

(Size ≈ 2Nlog|x|)



Source coding: lossy case [Shannon ’58]

 Distortion function: 

 Goal: minimize rate R such that expected distortion < D

 Answer:

 Idea

 Cover typical set with “spheres”  of radius D, 

 Index these “spheres”

 Size of each “sphere”

 Rate

 Sequences which get the same index are nearby

)ˆ;(min)(
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)ˆ,( xxd
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DecoderEncoderX X̂
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Source coding: lossy case [Shannon ’58]

 Distortion function: 
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 Source X

 Side information Y

 Goal: minimize rate R s.t. prob. of reconstruction error ~ 0 

 Answer: R = H(X|Y)

 Idea
 Given side information sequence YN, index conditionally typical 

sequences of XN given YN

Source coding w/side information: lossless case

DecoderEncoderX X

Y
[Gray ‟73, Berger ‟71]
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 Source X

 Side information Y

 Source distribution ~ pX|Y(x|y)

 Goal: minimize rate R such that expected distortion < D

Source coding w/side information: lossy case

DecoderEncoderX

Y
[Gray ‟73, Berger ‟71]

X̂



 Source X

 Side information Y

 Source distribution ~ pX|Y(x|y)

 Goal: minimize rate R such that expected distortion < D

 Answer: conditional rate-distortion function

 Idea
 Given side information sequence YN, cover the conditionally typical 

set of XN given YN using “spheres” of radius D

 Index these spheres

Source coding w/side information: lossy case

DecoderEncoderX

Y
[Gray ‟73, Berger ‟71]
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 Source X

 Side information Y

 Source distribution ~ pX|Y(x|y)

 Goal: minimize rate R s.t. prob. of reconstruction error ~ 0

 Idea

 Typical X-sequences which are far apart given the same 

index

 Induces a partition on the space of X : binning

 Any valid Y-sequence → there do not exist more than one 

conditionally typical X-sequence having the same index

Source coding w/ SI at decoder only: lossless

EncoderX X

Y
[Slepian-Wolf ‟73]

Decoder
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 Set of X-sequences that get the same index ↔ channel code  
for the fictitious channel with input X, output Y

 Channel:  input distribution pX(x), transition probabiliy ~ pX|Y(x|y)

 Max. reliable rate of transmission = I(X;Y)

 This rate comes for free from this fictitious channel

 Source space partitioned into cosets (shift) of channel 

codebooks

 No loss in performance for lack of Y at encoder

Source coding w/ SI at decoder only: lossless

EncoderX X

Y
[Slepian-Wolf ‟73]

Decoder

Conditionally typical set of X|Y Y-sequence
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 Source X

 Side information Y

 Distortion function 

 Goal: minimize rate R such that expected distortion < D

Source coding w/ SI at decoder only: lossy

EncoderX

Y
[Wyner Ziv ‟76]

Decoder

)ˆ,( xxd

X̂



 Quantize X to some intermediate reconstruction U

 From standard R-D theory, this would incur a rate of I(X; U)

 Apply source coding with SI idea losslessly

 New fictitious channel has input U, and output Y

 This gives a rebate in rate of I(U; Y)

 Total rate = I(X; U) - I(U; Y)

Source coding w/ SI at decoder only: lossy

EncoderX

Y
[Wyner Ziv ‟76]

Decoder X̂
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Source coding w/ SI at decoder only: lossy

 Encoder does not observe Y 

 Choosing p(u|x) fixes the joint distribution of X,Y,U using Markov

chain condition Y → X → U as  p(y)p(x|y)p(u|x)

 The decoder has two looks at X: through U, through Y

 Get an optimal estimate of X given U and Y:

 SI Y is used twice: recovering U, estimating X



EncoderX

Y
[Wyner Ziv ‟76]

Decoder X̂

Y-sequenceConditionally typical sequences of U|Y
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Remark

 Quantizer for the source X is partitioned into cosets (shift) of channel 

codebooks for the fictitious channel with i/p U and o/p Y

 Contrast between two kinds of many-to-one encoding functions:

 Quantization: sequences that get the same index are nearby

 Binning: sequences that get the same index are far apart



Example: Gaussian with quadratic distortion

Lossy source coding with no side information

 X is zero-mean Gaussian with variance

 Quadratic distortion:



 Test channel is given by:
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Example: Gaussian with quadratic distortion

Lossy source coding with side information

 X=Y+N, where N is zero-mean Gaussian with variance

 Y is arbitrary and independent of N

 Quadratic distortion:



 Test channel is given by:
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Lossy source coding with side information at decoder only

 Source, side information, and distortion as before  

 → no performance loss for lack of  Y at encoder 

 Test channel when SI is present 

at both ends

 Test channel when SI is present at decoder only

Example: Gaussian with quadratic distortion
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Distributed source coding: lossless case

 Minimize rate pair RX, RY such that probability of decoding error ~ 0 

Decoder
YX ,

Encoder
X

Encoder
Y

XR

YR

ACHIEVABLE 

RATE-REGION

Rx

Ry

H(Y)

H(Y|X)

H(X|Y) H(X)

A

B

C Separate encoding

of X and Y



Example 

 X and Y → length-7 equally likely binary data with 

Hamming distance between them at most 1.

 H(X)= 7 bits

 H(Y|X)= 3 bits = H(Y|X)

 H(X,Y)=10 bits

ACHIEVABLE 

RATE-REGION

Rx

Ry

H(Y)=7

H(Y|X)=3

H(X|Y)=3 H(X)=7

A

B

C
Separate encoding

of X and Y



Distributed source coding: lossy case

 Minimize rate pair RX, RY such that

 Optimal performance limit: open problem!

 Approach: [Berger-Tung ‟77]

 Quantize Y to V

 Treat V as side information   

YYXX DYYdEDXXdE  )]ˆ,([and,)]ˆ,([

Decoder
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Y
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 For every choice of 

that satisfies distortion constraints

 Overall rate region is the union of 

such regions 

 Can be easily generalized to more 

general distortion functions 

 Shown to be tight in some special 

cases
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Distributed source coding: lossy case
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Remarks

 All results → random quantization and binning

 Structured random codes may give a better performance 

than unstructured random codes [Korner-Marton ‟79]

 Structured codes for quantization and binning is a topic 

of active research.



BREAK

10.00 AM-10.10 AM



Outline

 Session I. Introduction and theory: 9.00 am-10.00 am
 Motivation and intuition

 Distributed source coding foundations 

 Break: 10.00-10.10 am

 Session II. Constructions: 10.10 am-10.50 am
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 Distributed video coding



Active area of recent research

 Theory
 D. Slepian & J. Wolf (‟73)

 A. Wyner (‟74)
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 S. Pradhan & K. Ramchandran (‟99)

 Y. Zhao & J. Garcia-Frias (‟02, larger alphabets)

 A. Liveris, Z. Xiong, & C. Georghiades (‟02)

 D. Schonberg, S. Pradhan, & K. Ramchandran (‟02)

 P. Mitran & J. Bajcsy (‟02)

 A. Aaron & B. Girod (‟02)

 A. Liveris, Z. Xiong, & C. Georgihades (‟03)

 J. Li, Z. Tu, & R. Blum (‟04)

 M. Sartipi & F. Fekri (‟05)

 Source coding with side information – Correlated Sources
 J. Garcia-Frias & W. Zhong (‟03)

 D. Varodayan, A. Aaron, & B. Girod (‟06)



Example 

 X and Y  -> length-7 equally likely binary data with Hamming distance 

between them at most 1.

− H(X)= ? bits

− H(Y|X)= ? bits = H(Y|X)

− H(X,Y)=? bits

ACHIEVABLE 

RATE-REGION

Rx

Ry

7

3

3 7

A

B

C

Answer: 

•H(x)=H(Y)=7 bits, H(X,Y)=10 bits

•Use (7,4,3) Hamming code

•Send Y as is (7 bits)

•Send syndrome for X (3 bits)



Symmetric Coding

 Example:
 X and Y  -> length-7 equally likely binary data.

 Hamming distance between  X and Y  is at most  1

 Solution 1:
 Y sends its data with 7 bits.

 X sends syndromes with 3 bits.

 { (7,4) Hamming code } -> Total of 10 bits

 Solution 2: source splitting [Willems „88, Urbanke-Rimoldi ‟97]

 Can correct decoding be done if X and Y  send 5 bits each ?

Decoder
YX ,

Encoder
X

Encoder
Y

XR

YR



Symmetric Coding

 Solution: Map valid (X,Y) pairs into a coset matrix [SP & KR „00]

 Construct  2 codes,  assign them to  encoders 

 Encoders → send index of coset of codes containing the outcome

1   2   3        . . .           31 32

32

31

.

.

.

2

1

Coset Matrix

Y

X



1  0  1  1  0  1  0 

0  1  0  0  1  0  1

0  1  1  0  0  1  0

1  1  1  0  0  0  1

G =

1 0 1 1 0 1 0

0 1 0 0 1 0 1

0 1 1 0 0 1 0

1 1 1 0 0 0 1

G1 =

G2 =

 72, 21 GG Syndromes are 5 bits long

Symmetric Coding

 Decoder: Find a pair of codewords (one from each coset) that satisfy the 
distance criterion

 There exists a fast algorithm for this

 This concept can be generalized to Euclidean-space codes.



3,3:,  yxyx RRRR

10 yx RR
The rate region is:

xR

yR

3   4   5   6    7

7

6

5

4

3

 All 5 optimal points can be 

constructively achieved with the 

same complexity.

 All are based on a single linear code

 Can be generalized to arbitrary 

statistics [Schonberg et al. 2002]

Rate Region



LDPC Codes: Brief Overview

 Need linear codes  use LDPC codes.

 Class of capacity approaching linear block codes.

 Sparse parity check matrix depicted by Tanner graph

 Circles represent bits.  

 Squares represent constraints.

X2 X3 X4 X5X1 X6 X7 X8 X9 X10

f1 f2 f3 f4 f5



LDPC Codes Overview: decoding

 Decoded via message passing algorithm.  

 Messages passed in two phases.

 Update rules:

 Distribution of each variable estimated after n 

iterations.

Xi

fs

ft

  














isNx isΝj

jjssNsisi xxfx
\)( \)(

)( )()()( 

)( iti x





siΝt

itiiis xx
\)(

)()(  )( iis x





)(

)(
1

)(
iΝs

isii x
Z

xp 



Source coding w/ side information at decoder

 X=Y+N, Y is arbitrary

 N is zero-mean Gaussian with variance

 Y and N are independent

 Quadratic distortion:

 Performance limit: 

 Key idea: source codebook partitioned into cosets of channel codebooks

 Goal: computationally efficient way to construct

 Source codebook (quantizer) with an encoding procedure

 Partition of the quantizer into cosets of channel codebooks











D
DR n

WZ

2

log
2

1
)(



2

n

Decoder
X̂Encoder

X

Y

)ˆ,( xxd



Symmetric Coding: illustration

 Source bits, compressed 

bits, and LDPC code 

applied to Y

 Source bits, compressed 

bits, and LDPC code 

applied to K

 Correlation constraints

fY1

UY1

f1

K1

Y1

fY2

UY2

fY3

UY3

fYmy

UYm

f2

K2

Y2

f3

K3

Y3

f4

K4

Y4

fn

Kn

Yn

fK1

UK1

fK2

UK2

fK3

UK3

fKmk

UKm



Standard 
source coding

Distributed 
source coding

 Boundary gain ~ 6 - 9 dB:  
achieved by entropy coding

 Granular gain ~ 1.53 dB: achieved    
by vector quantization

 Coding gain ~ 6 - 9 dB:  achieved by 
partition using LDPC channel  codes

 Granular gain ~ 1.53 dB: achieved    
by vector quantization 

Voronoi region

Bounding region



Standard 
source coding

Distributed 
source coding

 VQ and entropy coding can be 
done independently

 TCQ gets 1.36 dB of granular gain 
=> within 0.15 dB from R-D limit 

 VQ and partition using channel codes  
cannot be done independently

 Algebraic structure of TCQ does not 
“gel” well with that of LDPC codes 

 Need new block-coded quantization 
techniques!



 Quantize X to W

 W => “Source Codes”

Role of “source codes”

Joint  quantization and estimation:

Estimation: Estimate X  using W and  Y.   

Quantizer
X

Estimator

Y

X̂W W

“Source Code”:  Desired distortion performance.

Active source codeword:  Codeword  ->  X is quantized.

Quantization:



Role of “channel codes”

 Partition of the “source codes” into cosets of “channel codes”:

Source

Codewords

(elements 

of the set W)

A subset 

of W -> 

channel

coset code -> 

Channel  p(y|w).

 “Channel Codes”: Reduce source coding rate by exploiting correlation

W

 Y and W are correlated=>induces an equivalent channel p(y|w).

 Build “channel coset codes” on  W for channel  p(y|w)



Role of “channel codes”

 Partition W into cosets of such “channel codes”.

Decoder:
 Recovers active source codeword  by channel decoding Y  in given  coset 

 Channel decoding fails => Outage

Coset-2 Coset-3Coset-1 W 

 Source code => a collection of channel codes.

 Send index of  coset



Y

Find

index of 

active

codeword

Compute

index of the 

coset

containing the 

active 

codeword

Channel 

decode

Y in the coset

U  to find the 

active 

codeword

Estimate 

X

X W U X
^

Encoder Decoder

W

Encoder and Decoder Structure



 Source coding theory

 Quantization

 Indexing

 Fidelity criterion

 Channel coding theory

 Algebraic structure

 Minimum distance 

 Prob. of decoding error

 Estimation theory

 Estimation with rate constraints

Intricate

Interplay

Distributed Source Coding Theory



r r1 5

r2 r6

3 7rr

r0
r4

4  Cosets

Illustrative Example:

Partition:

Consider a fixed-length scalar quantizer 

(say with  8 levels)

r3
r

1r0 r 7r6
r

2
r54r

Basic Concept



 has            sequences

Trellis based coset construction

Example:    Rate of transmission= 1 bit/ source sample.

Quantizer: fixed-length scalar quantizer ->8 levels.

 =>set of codewords.3r2r1r0 r7r6r5r4rC ,       ,        ,       ,      ,        ,        ,

NC N32

 Partition        into         cosets each containing          sequences.

 Use Ungerboeck trellis  for such partitioning.

NC N22
N2

Trellis Coding:

Sequences generated by this 

machine form a coset in space  

Coset ->         sequences.

LC

N22

Convolutional

Coder G(t)

CQ 3}1,0{:

Mapping

Q



Trellis Partitioning:

 Source Codebook = CN

 Channel Codebook= set of sequences generated by the finite state 

machine

 Task: partition CN into 2N cosets, containing 22N sequences (in a 

computationally efficient way)

 Fast Encoding:  Send syndrome sequence of  active codeword

 Fast Decoding:  Modified Viterbi algorithm using relabeling.



 Connection with earlier picture

C = {r0, r1, …, r7} → codewords of scalar quantizer

NC

Trellis Partitioning

Convolutional

Coder G(t)

CQ 3}1,0{:

Mapping

Q

Set of N-length sequences generated 

by the finite state machine



Simulation Results

 Model:  

 Source: X~ i.i.d. Gaussian

 Side information: Y= X+N, where N ~ i.i.d. Gaussian

 Correlation SNR: ratio of variances of X and N

 Normalized distortion: ratio of distortion and variance of X

 Effective source coding rate = 1 bit per source sample

 Quantizers:

 Fixed-length  scalar quantizers with 4, 8 and 16 levels

 Shannon R-D Bound: distortion= -6.021 dB at 1 bit/sample.



Correlation-SNR in dB Correlation-SNR in dB

Simulation Results

 Distortion Performance  Probability of error

(uncoded system)



Probability of  Error: Trellis coset coded system

4-level root scalar quantizer 8-level root scalar quantizer

3 dB gain 3 dB gain

Gains (at C-SNR=18 dB) :  Theoretical =  18 dB.

over Shannon bound           DISCUS =   14 dB  at Prob. of error
410



Approaches based on codes on graph

 Trellis codes → codes on graph to effect this partition

 Need good source code and good channel code 

 Start with simple (not so good) source codebook and 

very good channel codebooks.

 Use belief propagation at the decoder to recover active 

source codeword



Reminder: graphical models

 Factor Graphs

 Circles: Variables,  Squares: Constraints

 Graphical representation for linear transformation

 Y – source bits, U – compressed bits

 Squares – Linear transformation Equations

 Transformation inversion: Belief propagation

 Iterative application of inference algorithm

Y2 Y3 Y4 Y5Y1 Y6 Y7 Y8 Y9 Y10

f1 f2 f3 f4 f5

U1 U2 U3 U4 U5



 has            sequences

Example:    Rate of transmission= 1 bit/ source sample.

Quantizer: fixed-length scalar quantizer ->8 levels.

 =>set of codewords.3r2r1r0 r7r6r5r4rC ,       ,        ,       ,      ,        ,        ,

NC N32

 Partition        into         cosets each containing          sequences.NC N22
N2

Multi-level Coding using binary block codes of code rate 2/3

Sequences generated by this 

machine form a coset in space  

Coset ->         sequences.

 within 1.53 dB from R-D limit

LC

N22

Approaches based on codes on graph
Xiong et al., Garcia-Frias et al.

Encoder of 

LDPC code G

CQ 3}1,0{:

Mapping

Q



=> codewords of scalar 

quantizer
3r2r1r0 r7r6r5r4rC ,       ,        ,       ,      ,        ,        ,

Connection with earlier picture:

NC

Set of N-length sequences 
generated by the block code

Encoder of 

LDPC code G

CQ 3}1,0{:

Mapping

Q

Partitioning based on LDPC codes



Binary Memoryless Sources

 X, Y: binary symmetric correlated sources 

 Correlation:                  , Z is Bernoulli(p) and independent of X

 Distortion:

 Goal: 

 Build a quantizer for X (U represents the quantized version)

 Build a channel code for the channel with i/p  U  and  o/p  Y

 Put a linear structure on both quantizer and channel code

 Channel code is a subcode of the quantizer => induces a coset partition 

ZXY 

)ˆ()ˆ,( xxwxxd H 

Decoder
X̂Encoder

X

Y



Binary Memoryless Sources

 Linear codes: 

 Channel code: 
 Theory of binary linear channel codes → well-developed 

 LDPC codes with belief propagation (BP) algorithm

 Gets the ultimate rebate I(U;Y)

 Block quantizer:
 LDPC codes are not good quantizers,  BP fails for quantization

 A new theory of binary block quantizers

 LDGM (low-density generator matrix) codes

 Survey propagation (SP) algorithm [Mezard 2002, Wainwright-
Martinian 2006]]

Decoder
X̂Encoder

X

Y



Source codebook

Probability distribution of the source word

Probability distribution of the channel output



Channel codebook

Channel decoding: belief propagation approximates min. distance decoding

Channel output realization

Quantization: survey propagation approximates min. distance encoding

Source word realization

Belief propagation vs Survey propagation



Fine hexagonal lattice = source quantizer

Coarse hexagonal lattice = channel codebook 

Encoder-1

Encoder-2

Lattice codes:



BREAK

10.50 AM-11.00 AM



Outline

 Session I. Introduction and theory : 9.00 am-10.00 am
 Motivation and intuition

 Distributed source coding foundations 

 Break: 10.00-10.10 am

 Session II. Constructions: 10.10 am-10.50 am
 Structure of distributed source codes

 Constructions based on trellis codes & codes on graphs

 Break: 10.50-11.00 am

 Session III. Connections and Applications: 11.00 am-
12.00 noon
 Overview of connections and applications with snippets 

 Compression of encrypted data

 Distributed video coding



Connections and Applications

 Fundamental duality between source coding and channel coding 

with side-information 

 Media security: data-hiding, watermarking, steganography

 Digital upgrade of legacy analog systems

 M-channel Multiple Description codes

 Robust rate-constrained distributed estimation (CEO problem)

 Media broadcast using hybrid analog/digital techniques

 Distributed compression in sensor networks 

 Compression of encrypted data

 Distributed Video Coding



• Source coding with side information (SCSI)

• Channel coding with side information (CCSI)

DecoderX X̂
Encoder m

m

S
Sensor networks, video-over-wireless, 
multiple description, secure compression

X Y m̂

S

m
Encoder DecoderChannel

Watermarking, audio data hiding,

interference pre-cancellation,

multi-antenna wireless broadcast.

SP, J. Chou and KR, Trans. on IT, May 2003

Duality b/w source & channel coding with SI



 The encoder sends watermarked image X

 Attacker distorts X to Y

 Decoder extracts watermark from Y

Embed (authentication) signature that is robust

Encoder DecoderX Y

Attack

Channel

Multimedia Watermarking and Data Hiding



Application: digital audio/video simulcast

Ex.: Upgrading NTSC to HDTV with a 

digital side-channel.  (also PAL+)

Digital

Encoder
Decoder

Digital 

+

Noise

analog

SP & KR,, DCC ‘01



Digital

Music/TV

Legacy receiver

X̂
X Transmitter

Data

Embedder

Data

Extra 

data

Broadcast

Digital

Upgrader

Side-Info 

coding inside

What is the optimal tradeoff  between simultaneously delivered

analog an digital quality?  Need a combination of  SCSI/CCSI

R.Puri, V. Prabhakran & KR, Trans. On Info Theory, April „08

Application: spectrum “recycling”



Hybrid Analog-Digital Simulcast

+

SCSI CCSI

α



ga

CCSI-1 SCSI-1

gd



What is noise for analog receiver 

is music for digital receiver!

R.Puri, V. Prabhakran & KR, Trans. On Info Theory, April „08



 Packet erasure model: some subset of packets reach decoder.

 Connection to DSC:   Uncertainty re. which packets reach decoder?

 Fundamental connection between MD coding and distributed source coding:

leads to new achievable rate results!

X
Encoder Decoder

1

2

n

1i

2i

mi

Packet 

Erasure 

Network

X^

R.Puri, SP & KR (Trans. on IT- Jan 04, Apr 05)

Multiple Description (MD) coding



•
•
•

Sensors

X

Source

Channel
•
•
•

R

R

R

Data processing 

unit

Distributed  rate-constrained estimation

• Sensors make noisy (correlated) measurements of a physical quantity X, e.g., 

temperature, pressure, seismic waves, audio data, video signals, etc.

• Central decoder needs to estimate X (many-one topology).

• Power conservation, node failures, communication failure => need robustness.



• For a (k, k) reliable Gaussian network, full range of rate-MSE tradeoff: [Oohama, IT 1998].
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Robust distributed rate-constrained estimation



• For a (k, k) reliable Gaussian network, full range of rate-MSE tradeoff: [Oohama, IT 1998, 

Prabhakaran, Tse & KR ISIT 2001].

• For an (n, k) unreliable Gaussian network, can match above performance for the reception of   

any k packets and get better quality upon receiving more packets! 

• => Robustness without loss in performance.

0    R … kR   mR  nR 

O(1/m) 

active-network rate

M
S

E

m>=k links are up

Robust distributed rate-constrained estimation

P.Ishwar, R. Puri, SP & KR, IPSN‟03.



Adaptive filtering for distributed 

compression in sensor networks

J. Chou, D. Petrovic & KR: “A distributed and adaptive signal processing approach to 

exploiting correlation in sensor networks.” Ad Hoc Networks 2(4): 387-403 (2004).

http://www.informatik.uni-trier.de/~ley/db/journals/adhoc/adhoc2.html


Deployment setup

 Network consists of many 
sensors, a few controllers, and 
a few actuators

 Sensors give their 
measurements to controllers, 
which process them and make 
decisions

 Many sensors have highly 
correlated data

 It would be beneficial to 
exploit this correlation to 
compress sensor readings

Controller
Sensors



Challenges of Real World

 Theory says what is possible given the correlation.

 Codes exist which achieve bounds when correlation is 
known.

 How does one find the correlation?

Theory

What is

Possible?

Practical

Codes

How is it

Possible?

Real

Systems

Correlation

Tracking

Algorithms

What codes

to use?



Setup

1. Controller receives 
uncoded data from 
sensors

2. Breaks them up into 
clusters s.t. nodes 
within cluster are highly 
correlated

3. Tells each cluster what 
code-book to use



• Depth of  tree specifies number of bits used for encoding

• Path in the tree specifies the encoded value.

• Can tolerate 2i-1 of correlation noise using an ith level codebook



0 12 2

X

Y

0 01 1 44

Tree-Structured Code



• Sensor nodes measure X, data controller node has Y

• Controller needs to estimate number of bits, i, it           

needs from sensor nodes for X.

X = Y + N; N = correlation noise
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How Much Compression?



Decoding and Correlation Tracking

Decoding of compressed readings and correlation tracking

Z-1

)(ny )(nx)1( nx Adaptive

Filter



DISCUS

Decoder

c(n)

B(n)

+

-

)(neNoise 

Tracker

i(n+1)

B(n) = decoded readings of all other sensors

c(n) = coset index of x(n), sent by encoder of x

i(n+1) = number of bits to use in encoding x at time n+1, fed back to encoder of x

Standard LMS
Z-1

)(ˆ nu )(nu)1( nu Adaptive

Filter 

d(n)



Adaptation Algorithm

 U(n) = Mx1 input at time n

 y(n) = W(n)‟ * U(n)

 Use DISCUS decoding to find x(n)

 e(n) = x(n) – y(n)

 W(n+1) = W(n) + *e(n)*u(n)



Experimental Setup

 Collected data from 

PicoRadio test-bed nodes

 5 light, 

5 temperature, 

5 humidity sensors

 Data was collected and 

used for testing real-time 

algorithms



Simulations (correlation tracking)
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•Avg. Temp Savings = 66.6%

•Avg. Humidity Savings = 44.9%

•Avg. Light Savings = 11.7%
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Compressing encrypted content 

without the cryptographic key



Secure multimedia for home networks

 Uncompressed encrypted video (HDCP protocol)

 Can increase wireless range with lower data rate

 But how to compress encrypted video without access to 

crytpographic key?



Application: Compressing Encrypted Data

Traditional/Best Practice:

Novel Structure:

Reconstructed 
Source

Compression Encryption

Eavesdropper

Secure Channel

Decryption Decompression

Message 
Source

Public Channel

Key )(K

)(X

Joint Decompression 
and Decryption

)(Y
Cipher 
Text

Reconstructed 
Source

CompressionEncryption

Eavesdropper

Secure Channel

Message 
Source

Public Channel

Key )(K

)(X

Johnson & Ramchandran (ICIP 2003),

Johnson et. al (Trans. on SP, Oct. 2004)



Compressed 

Encrypted Image

5,000 
bits

Encrypted ImageOriginal Image

10,000 bits

Final Reconstructed ImageDecoding compressed Image

Example 



Application: compressing encrypted data

Source

Reconstructed 

Source

Encrypter Encoder Decoder Decrypter

Joint Decoder/Decrypter

X

Key
K

K

Y U

Syndrome X̂

Key

Key Insight!

Source Image Encrypted Image Decoded Image

10,000 bits How to compress to 5,000 bits?
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fn
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Illustration: coding in action

 Bits of Source Y

 Bits of Source K

 Y,K correlation 

 LDPC code applied to Y

 Compressed bits of Y



Overview

 Y = X + K where X is indep. of K

 Slepian-Wolf theorem: can send X at 

rate H(Y|K) = H(X)

 Security is not compromised!

S Joint
Decoder

K

ISP

End user

X

Content provider

Encryption

X

K

Y=X+K

Compression

Johnson, Ishwar, Prabhakaran & KR (Trans. on SP, Oct. 2004)



Framework: Encryption

Encryption:

 Stream cipher

 Graphical model 

captures exact 

encryption 

relationship

X1

K1

Source

X2 X3 Xn···

K2

K3

Kn

Compression

Y1 Y2 Y3 Yn···

S1 S2 Sm···

iii kxy 



Source Models

 IID Model

 1-D Markov Model

 2-D Markov Model

X1 X2 X3 Xn

X1 X2 X3 Xn

Xi-1,j-1 Xi-1,j

Xi,j-1 Xi,j



Encrypted image compression results

 100 x 100 pixel image (10,000 bits)
 No compression possible with IID model

2-D Markov Source Model

1-D Markov Source Model

Source Image Encrypted Image Compressed Bits Decoded Image



Key problems

 Data

 When source statistics        are unknown

 How to learn how much to compress?

 How fast can limits be learned?

 When source statistics        are known

 How to develop practical compression codes?

 How well can they perform?
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“Blind” compression protocol

 For development: X is IID, 

 Blocks indexed by i

 Encoder uses source estimate

 Compressible:
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Sample run
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Rate selection
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Redundancy
i

 Choose    parameter to minimize redundancy.

 Large → Low              , High 

 Small → High              , Low

 Define    as the transmission rate of block i.

 Minimize expected total rate: 

 Intuition – must go down 
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Analysis assumptions and bound

 Decoding errors are detected

 Decoding errors occur when empirical entropy exceed 
code rate (perfect codes)

 Resulting Bound Form:

 Linear term → Make ε small

 Exponential term → ε decays slower than 
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H(Bernoulli(0.027))=0.1791

Encoder With Known Source Statistics

Uncompressed Transmission

 H(Q1=.027)=0.17912

 Uncompressed transmission (top line) 

 With knowledge of source statistic Q (bottom line)
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Temporal Prediction Scheme

Decoded Frame n-3 Decoded Frame n-2 Decoded Frame n-1 Actual Frame n

Decoder
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Key

Encrypted Frame n

Encrypter

Encoder

Compressed Bits
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Compression of encrypted video

Schonberg,Yeo, Draper & 
Ramchandran, DCC ‘07

Blind approach (encoder 

has no access to key)

Foreman Saves 33.00% 

Garden Saves 17.64% 

Football Saves 7.17% 

•Video offers both temporal and spatial prediction

•Decoder has access to unencrypted prior frames



Distributed Video Compression



Active research area

 Puri and KR: Allerton‟02, ICASSP‟03, ICIP‟03.

 Aaron, Zhang and Girod: Asilomar‟02

 Aaron, Rane, Zhang and Girod: DCC‟03

 Aaron, Setton and Girod: ICIP‟03

 Sehgal, Jagmohan and Ahuja: DCC‟03, ICIP‟03.

 Wang, Majumdar and KR: ACM MM‟04

 Yaman and AlRegib: ICASSP‟04

 Xu & Xiong: VCIP ‟04

 Wang & Ortega: ICIP ‟04

First side-information-coding based video coding

idea was however in 1978!!



Application scope

 Motivation: Uncertainty in the side information

 Low complexity encoding

 Transmission packet drops

 Multicast & scalable video coding

 Flexible decoding

 Physically distributed sources

 Multi-camera setups

 Other interesting applications?



 Motivation

Puri & Ramchandran, Allerton 2002

Aaron, Zhang & Girod, Asilomar 2002

Artigas, Ascenso, Dalai, Klomp, Kubasov & Ouaret, PCS 2007
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Low complexity encoding

DSC

Encoder

current frame

DSC

Decoder

reference frame

current frame

S-I

Generator

Low-complexity

• No motion search

• Various channel codes
High-complexity

• Block or frame-level

• Interpolated or

compensated motion



Transmission packet loss

 FEC solutions may be inadequate

 Can be made compatible with existing codec

 Corrupted current frame is S-I at DSC robustness decoder
A. Aaron, S. Rane, D. Rebollo-Monedero & B. Girod: DCC‟03, ICIP‟04, ICIP‟05

A. Sehgal, A. Jagmohan & N. Ahuja: Trans‟04

B. J. Wang, A. Majumdar, K. Ramchandran & H. Garudadri: PCS‟04, ICASSP‟05

MPEG

Encoder

X = Frame n

MPEG

Decoder

X = Frame n

DSC

Decoder

X’ = corrupted Frame n

Y = Frame n-1 Y’ = corrupted Frame n-1

DSC

Encoder



Multicast & scalable video coding

 Multicast

 Accommodate heterogeneous users
 Different channel conditions

 Different video qualities (spatial, temporal, PSNR)

Majumdar & Ramchandran, ICIP 2004

Tagliasacchi, Majumdar & Ramchandran, PCS 2004

Sehgal, Jagmohan & Ahuja, PCS 2004

Wang, Cheung & Ortega, EURASIP 2006

Xu & Xiong, Trans. Image Processing 2006

Enhancement layer at Rate R

Base layer at Rate R



Flexible decoding

 {Y1, Y2, …, YN} could be

 Neighboring frames in time 

→ forward/backward playback without buffering

 Neighboring frames in space 

→ random access to frame in multi-view setup

 …

Cheung, Wang & Ortega, VCIP 2006, PCS 2007

Draper & Martinian, ISIT 2007

Encoder DecoderX

{Y1, Y2, …, YN}

Yi

X
^

User 

Control



 Dense placement of low-end video sensors

 Sophisticated back-end processing
 3-D view reconstruction

 Object tracking

 Super-resolution

 Multi-view coding and transmission

Back-end server

Multi-camera setups



Other applications?

 Rate-efficient camera calibration

 Visual correspondence determination
Tosic & Frossard, EUSIPCO 2007

Yeo, Ahammad & Ramchandran, VCIP 2008

Scene



PRISM: DSC based video compression

 Motivation:

 Low encoding complexity

 Robustness under low latency



A closer look at temporal aspects of video

XYT

Z

 Motion is a “local” phenomenon

Block-motion estimation is key to success



DFD Statistics: mixture process

Z1



DFD Statistics: mixture process

Z2



DFD Statistics: mixture process

Zi



DFD statistics: mixture process

ZM

 Frame-level treatment of DFD ignores block-level statistical variations.

 Suggests block-level study of side-information coding problem

 Challenge: How to approach MCPC-like performance with/without doing 
motion search at the encoder?
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MCPC: a closer look



Motion-free encoding?

log M
n

1

MCPC

Decoder
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Encoder …  Quantized  …

DFD
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1

MCPC

Decoder

MCPC

Encoder …  Quantized  …

DFD

X

. . .
Y1 YM

. . .
Y1 YM

…   Motion T … X

Motion-free encoding?

 The encoder does not have or cannot use Y1, …, YM

 The decoder does not know T

R(D)



 The encoder does not have or cannot use Y1, …, YM

 The decoder does not know T

 The encoder may work at rate: R(D) + (1/n )log M bits per 

pixel.

 How to decode and what is the performance?

Motion-free encoding?

?? …  ?  …
X

. . .
Y1 YM

X

MSE = ?R(D) + (1/n) log M



Let’s cheat!

Wyzer-Ziv

Decoder

Wyner-Ziv

Encoder

Wyner-Ziv

coset-index
X

YT

X

 Let‟s cheat and let the decoder have the motion vector T

 “classical” Wyner-Ziv problem

 The encoder works at same rate as predictive coder

Motion

Vector T

R(D) + (1/n )log M



What if there is no genie?

Wyzer-Ziv

Decoder

Wyner-Ziv

Encoder

X X

 Can decoding  work without a genie?
 Yes

 Can we match the performance of predictive coding?
 Yes (when DFD statistics are Gaussian)

Ishwar, Prabhakaran, and KR, ICIP ’03.

. . .
Y1 YM

Wyner-Ziv

coset-index
R(D) + (1/n )log M



Theorem

 Source Encoding with side-information under Ambiguous 

State Of Nature (SEASON)

 The encoder does not have Y1, …, YM

 Neither the decoder nor the encoder knows T

 The MSE is still the same as for the MCPC codec

 Theorem: SEASON codecs have the same rate-distortion 

performance as the MCPC codec for Gaussian DFD, i.e.

R(D) = ½ log(Z
2/D)

Season

Decoder

Season

Encoder

X X

. . .
Y1 YM

Wyner-Ziv

coset-index
R(D) + (1/n )log M



Theorem (cont’d)

 Source Encoding with side-information under Ambiguous 

State Of Nature (SEASON)

 Theorem: SEASON codecs have the same rate-distortion 

performance as the genie-aided codecs.

This performance is (in general)

R(D) = min I(U;X) – I(U;YT)
U

subj.  X YT  U is Markov,

and f(·, ·) such that E[(X-f(YT, U))2 ] = D

Season

Decoder

Season

Encoder

X X

. . .
Y1 YM

Wyner-Ziv

coset-index
R(D) + (1/n )log M



Practical implementation

 Low-complexity motion-

free encoder

 Can be realized through 

decoder motion search
 Need mechanism to detect 

decoding failure

 In theory: joint typicality 

(statistical consistency)

 In practice: Use CRC

X
Encoder

. . .
Y1 YM

Decoder
X

. . .
Y1 YM

^

Bin index

(Syndrome)

Wyner-Ziv

Decoder

Y1

Wyner-Ziv

Decoder

YT

Wyner-Ziv

Decoder

YM

Decoding failure

Decoding 

failure

X̂



Noisy channel: drift analysis

X

. . .
Y1 YM

MCPC

Encoder

MV bits

DFD

. . .
Y1’ YM’

MCPC

Decoder
X

Y1’

MCPC: Channel errors lead to prediction mismatch and drift.

X PRISM

Encoder

Wyner-Ziv

coset-index

. . .

PRISM

Decoder

X

YM’

PRISM: Drift stopped if syndrome code is “strong enough”

 All that matters:

Targeted syndrome code noise 

Video innovation + Effect of Channel + Quantization Noise



Results

 Qualcomm‟s channel simulator for 

CDMA 2000 1X wireless networks

 Stefan 
(SIF, 2.2 Mbps, 5% error)

PRISM
vs.

H.263+ FEC

PRISM 
vs. 

H.263+



 PRISM:

 Superior performance over lossy channels.

 But compression efficiency inferior to predictive codecs.

 Challenge: correlation estimation, i.e. finding H(X|Y) = H(N)

 N = Video innovation + Effect of channel  + Quantization noise

 Without accurate estimate of the total noise statistics, need to over-
design → compression inefficiency.

 What if complexity were less of a constraint and we allow motion 
search at the encoder?

Challenges: correlation estimation

Hard to model without motion search

+Y X

N
DecoderEncoder

X

Y

X
^

Recall



What if complexity were less of a constraint?

 Allow motion search at encoder → can model video innovation

 Distributed Video Coding can approach the performance of 

predictive  coders when it estimates the correlation structure 

accurately

 How to enhance robustness by considering effect of channel?



Modeling effect of channel at enc.: finding H(X|Y’)

 Efficient strategy to exploit natural diversity in video data

 Encoder has access to both Y and Z

 Fact: there is natural diversity in video data

 An intact second best predictor (P2) is typically a better predictor 

than a corrupted best predictor (P1) 

 Can be viewed as motion search with two candidates.

 The decoder knows to use the better of P1 or P2 as SI.

 We have control over uncertainty set at decoder

J. Wang, V. Prabhakaran & KR: ICIP‟06

mv1

Frame t-1 Frame t

XY
mv2

Frame t-2

Z



 If we have some knowledge about the channel:

Y if Y is intact with probability (1-p)
Y‟ = 

Z if Y is corrupted with probability p

 We obtain 
H(X|Y’, decoder state) = (1-p)*H(X|Y) + p*H(X|Z)

Finding H(X|Y’)

mv1

Frame t-1 Frame t

XY
mv2

Frame t-2

Z



Video innovationEffect of channel

Another way to think about it

mv1

Frame t-1 Frame t

XY
mv2

Frame t-2

Z

 H(X|Y’, decoder state) = (1-p)*H(X|Y) + p*H(X|Z)

= p*[H(X|Z) – H(X|Y)] + H(X|Y)



Yet another way to think about it

mv1

Frame t-1 Frame t

XY
mv2

Frame t-2

Z

Bare minimum syndrome 

(bin index) needed when 

channel is clean

Additional syndrome 

(sub-bin index) for 

drift correction

Can be achieved by 

applying channel code 

to sub-bin indices

 H(X|Y’, decoder state) = (1-p)*H(X|Y) + p*H(X|Z)

= p*[H(X|Z) – H(X|Y)] + H(X|Y)



Robustness result
Setup:

 Channel:

 Simulated Gilbert-Elliot channel with pg = 0.03 and pb = 0.3



Robustness result
Setup:

 Channel:

 Simulated CDMA 2000 1x channel

Stefan (SIF) sequence

1 GOP = 20 frames

1 mbps baseline, 1.3 mbps total (15 fps)

7.1% average packet drop rate

Football (SIF) sequence

1 GOP = 20 frames

900 kbps baseline, 1.12 mbps total (15 fps)

7.4% average packet drop rate



Videos

 Garden

352x240, 1.4 mbps, 15 fps, gop size 15, 4% error
(Gilbert Elliot channel with 3% error rate in good state and 30% in bad state)

 Football

352x240, 1.12 mbps, 15 fps, gop 15, simulated CDMA channel with 5% error

DSC
vs.

H.263+ FEC

DSC
vs.

H.263+ FEC



DSC for multi-camera video 

transmission



Distributed multi-view coding

X1

Encoder 1

X2

Encoder 2

X3

Encoder 3

…

Joint

Decoder

X1
^

X2

^

X3
^

…

Video encoders 

operate independently

Video decoder 

operates jointly

Channel

…

Channel

Channel

Feedback 

possibly 

present



Active area of research

 Distributed multi-view image compression
 Down-sample + Super-resolution [Wagner, Nowak & Baraniuk, ICIP 2003]

 Geometry estimation + rendering [Zhu, Aaron & Girod, SSP 2003]

 Direct coding of scene structure [Gehrig & Dragotti, ICIP 2005] [Tosic & 
Frossard, ICIP 2007]

 Unsupervised learning of geometry [Varodayan, Lin, Mavlankar, Flierl & 
Girod, PCS 2007]

 …

 Distributed multi-view video compression
 Geometric constraints on motion vectors in multiple views [Song, 

Bursalioglu, Roy-Chowdhury & Tuncel, ICASSP 2006] [Yang, Stankovic, 
Zhao & Xiong, ICIP 2007]

 Fusion of temporal and inter-view side-information [Ouaret, Dufaux & 
Ebrahimi, VSSN 2006] [Guo, Lu, Wu, Gao & Li, VCIP 2006]

 MCTF followed by disparity compensation [Flierl & Girod, ICIP 2006]

 …

 Robust distributed multi-view video compression
 Disparity search / View synthesis search [Yeo, Wang & Ramchandran, ICIP 

2007]



Robust distributed multi-view video transmission

X1

Encoder 1

X2

Encoder 2

X3

Encoder 3

…

Joint

Decoder

X1
^

X2

^

X3
^

…Video encoders 

operate independently

and under complexity 

and latency constraint.

Video decoder 

operates jointly to 

recover video streams

Channel

…

Channel

Channel

Noisy and bandwidth 

constrained channels

Packet Erasure

Packet Erasure
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Side information from other camera views

Ideal

Encoder

X = Frame t

Ideal

Decoder

f(X)

 How should we look in other camera views?

 Naïve approach of looking everywhere can be extremely rate-inefficient 

 Possible approaches

 View synthesis search

 Disparity search

Y’ = corrupted Frame t-1Y’’ = neighboring Frame t

X = reconstructed Frame t
^



Epipolar geometry

C C’

e e’

x

x1’

X1

X2

X3

x2’

x3’ l’

Camera 1 Camera 2

 Given an image point 

in one view, 

corresponding point 

in the second view is 

on the epipolar line

 Upshot: Disparity 

search is reduced to 

a 1-D search



Decoder disparity search

Camera 1

Camera 2

Frame tFrame t-1

Disparity

Vector

X

YDS
X = YDS + NDS

 Extension of decoder motion search using epipolar geometry

[Yeo & Ramchandran, VCIP 2007]

(1) Search along

epipolar line

Temporal – Poor reference

Spatial – Good reference



PRISM-DS vs MPEG with FEC

Original MPEG+FEC PRISM-DS

 “Ballroom” sequence (from MERL)
 320x240, 960 Kbps, 30fps, GOP size 25, 8% average packet loss

 Drift is reduced in PRISM-DS

[Yeo & Ramchandran, VCIP 2007] 


