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Abstract

In this paper we consider a graph-based framework for transmission of correlated sources over multiple
access channels. We show that a graph can be used as a discrete interface between the source coding and the
channel coding for this multiterminal information transmission problem. We adopt a separation-based modular
approach to this problem, involving a source coding module and a channel coding module. In the former module,
the correlated sources are encoded distributively into correlated messages which can be associated with a graph
(called message-graph), and these correlated messages are then encoded by using correlated codewords and are
reliably transmitted over the multiple access channel in the latter module. This leads to performance gains
in terms of enlarging the class of correlated sources that can be reliably transmitted over a multiple access
channel. We provide the rate of growth of the exponent (as a function of the number of channel uses) of the
size of the message-graphs whose edges can be reliably transmitted over a multiple access channel. A similar
characterization of message-graphs that can reliably represent a pair of correlated sources is also provided.

1 Introduction

Consider a set of transmitters wishing to reliably and simultaneously communicate with a single receiver using a

multiple access channel [1, 2, 3, 4, 5]. The transmitters do not communicate among themselves. Each transmitter

in the set has some independent information, and together they wish to communicate their information to a joint

receiver. This channel was first studied by Ahlswede in [1] and by Liao in [2], where they obtained the capacity

region.

At around the same time, another multiterminal communication problem involving separate (distributed) en-

coding of correlated information sources was formulated, and the corresponding optimal encoding rate region was

obtained by Slepian and Wolf in [6] (also see [7]). In this problem, the goal is to represent two (or more) distributed

correlated sources using a pair of indexes to be transmitted to a joint receiver in order to losslessly reproduce these

sources. Conventionally, this system is referred to as Slepian-Wolf source coding. The seminal result obtained in

[6] says that a no-communication constraint on the encoders leads to no loss of performance, i.e., these sources can

be represented using pairs of indexes whose total rate can approach the joint entropy of the sources [8] asymptoti-

cally. One can deduce from this that since the goal of the encoders is to produce a nonredundant representation of

the sources, the indexes (messages) transmitted by the encoders will be asymptotically independent in an optimal

system.

∗This work was supported by NSF grant CCF-0448115. This work was presented in part at the IEEE International symposium on
information theory (ISIT), Chicago, IL, June/July 2004.
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Now that we have a characterization of the performance limits of a pair of multiterminal source coding and

channel coding problems, we can naturally extend Shannon’s point-to-point communication paradigm involving

transmission of a source over a channel to multiple terminals in the following way. Consider a pair of correlated

sources which are observed by a pair of distributed encoder terminals. The encoder terminals wish to simultaneously

transmit the corresponding sources over a multiple access channel to a joint decoder. In such a case, there are

generally two ways of sending these sources over the given channel. One is separate source coding and channel

coding, where one first applies the Slepian-Wolf source coding to the correlated sources in order to minimize the

redundancy in the messages representing the sources, thus producing nearly independent messages, and then applies

the multiple access channel coding on these nearly independent messages. The other is joint source-channel coding

which may reduce both delay and complexity, where the sources are directly mapped into the channel inputs. But

designing such a joint-source-channel coding scheme is generally a more difficult optimization problem. In the latter

case, what one can generally say is whether a given set of sources can be reliably transmitted over a given multiple

access channel or not.

Although the separation approach is conveniently modular, it was recognized early on [9, 10], that this approach

will not be optimal in contrast to the point-to-point case. In other words, this separation approach is in general

strictly suboptimal. Understandably the latter approach became the center of attention, and was first studied by

Slepian and Wolf in [9], where they considered a special class of such problems where there are two transmitter

terminals sharing three independent information sources. The first transmitter has access to the first and the second

source, and the second transmitter has access to the second and the third source. In other words, the sources of

information accessed by these terminals have a so-called “common part” [11, 12, 13]. In [9], a characterization of

the set of such information sources that can be transmitted reliably over a given multiple access channel was given

with direct and converse parts. In 1980, a joint source-channel coding theorem to this problem was given in [10] for

a more general case, where a single-letter characterization of the set of sources that can be reliably transmitted over

a given multiple access channel was obtained. Now, n (say) samples of the sources are distributively mapped into

n samples of the channel inputs, and the joint decoder simultaneously recovers n samples of the correlated sources

by observing n samples of the channel output. This includes the results of [1], [2], [6] and [9] as special cases. The

authors in [10] also provided an interesting example (to be illustrated here in the next section) that shows that

separate source and channel coding [14] is not optimal for multiple access channels with correlated sources. Later,

Dueck [15] showed, by an example that the approach of [10] gives only sufficient conditions for the transmissibility of

correlated sources over a given multiple access channel, but not necessary conditions. Further work related to joint

source-channel coding in this multiterminal setting can be found in [16, 17, 18, 19]. In summary, the performance of

joint-source-channel coding is strictly superior to that of separate source coding and channel coding in this setting.

To better understand why the separation approach is not optimal in this multiterminal setting, let us revisit

the point-to-point case and see fundamentally why it works here. The essence of Shannon’s separation approach in

the point-to-point case is an efficient architecture for transmission problems through a discrete interface (a finite

set) for representing information sources. Many sources can be mapped into indexes in this finite set, and these
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indexes can be communicated over many channels. The fundamental concept which facilitates this is the notion of

typicality. It should be noted that although there are uncountably many finite alphabet sources whose entropy [8]

is less than or equal to some positive number, say H , when grouped into sufficiently large blocks (say blocklength

n), they exhibit a certain determinism (from the law of large numbers). So for a given source X , most of the time,

only those sequences, called typical, that come from a set of size nearly 2nH(X) are observed, and the probability

of observing any sequence from this set is nearly the same, where H(X) denotes the entropy of X [8]. For all these

sequences, the empirical histogram is close to the probability distribution of X . So loosely speaking, all the details

of the probability distribution of a source can be dispensed with, and one needs to worry only about the cardinality

of this sequence set.

Using this observation, one can see that the straightforward extension of this approach to the multiterminal

case uses a product of finite sets as a discrete interface between Slepian-Wolf source coding and multiple access

channel coding with independent messages. As mentioned above, although this representation of correlated sources

is efficient in terms of the total rate of the index pairs coming from the product of finite sets being equal to the

joint entropy of the correlated sources, this interface falls short of the expectation in terms of achieving optimal

performance for the task of transmission of these sources over multiple access channels. This is mainly because,

in the process of producing a non-redundant representation of the sources by the encoders in the source coding

module, all the correlation in the sources is destroyed. If the encoders could produce an efficient representation

of the sources which still retains some of the correlation of the sources, then it could be potentially used by the

channel coding module that follows to combat channel interference and noise in a more effective way, as the final

goal of the system is to transmit the sources over the channel. Hence the question that we would like to ask is

whether it is possible to obtain a structured and efficient representation of the sources that preserves a judiciously

prescribed amount of source correlation in it so that the end-to-end performance is not compromised, and thus

retain in the overall system the modularity, i.e., source coding and channel coding modules which are the hallmark

of the separation theorem in the point-to-point case? In short, do there exist discrete objects other than products

of finite sets which can be used as efficient representations of correlated sources?

A key insight into this problem may lie in the following observation. Of course, the notion of typicality can

be extended to two sources, say X and Y , which says that only those sequence-pairs (called jointly typical) that

come from a set of size nearly 2nH(X,Y ) will be observed most of the time, where H(X,Y ) denotes the joint entropy

[8]. Although, there are roughly 2n(H(X)+H(Y )) sequence pairs which are individually typical, not all of them are

jointly typical because the joint entropy is in general smaller than the sum of the individual entropies. Further,

using these ideas, it can be shown that for every typical sequence of X (respectively Y ) , there exist roughly

2nH(Y |X) (respectively 2nH(X|Y )) typical Y (respectively X) sequences that are jointly typical, where H(Y |X) is

the conditional entropy [8] of Y given X . This leads us naturally to consider a bipartite undirected graph on the sets

of individually typical sequences induced from the property of joint typicality. That is, the vertexes of this graph

denote the individually typical sequences, and the jointly typical sequences are connected through an edge. We

refer to this graph as the typicality-graph of two correlated sources. Loosely speaking, for large blocks, the sources
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exhibit a certain determinism, where all the sequence pairs that really matter can be associated with a bipartite

graph. These graphs capture all the correlation structure of the sources. In summary, there are roughly 2nH(X,Y )

edges in this graph, and the probability of observing any edge in this graph is roughly the same, and hence this is an

equally efficient representation of the sources. Note that the bipartite graphs which have the special structure–the

number of edges connected to every vertex of a set is the same–are referred to as semi-regular graphs [20, 21]. Now

if we associate an index with each individually typical sequence, then joint typicality induces a bipartite graph on

this pair of index sets. If we consider a separate message for each vertex in the graph, this implies that only certain

pairs of messages can occur (denoted by edges in the graph) most of the time. We refer to such correlated message

sets as message-graphs. Thus, we have obtained a nearly semi-regular graph, induced from the typicality graph, as

an efficient representation of a pair of correlated sources.

Inductively, the Slepian-Wolf source coding result can also be interpreted in this framework: since the messages

produced by an optimum Slepian-Wolf source coder are nearly independent and the total rate of the message sets is

nearly equal to H(X,Y ), the message sets thus produced can be thought of as a nearly fully connected semi-regular

message-graph. This leads to the following question. Are there other nearly semi-regular graphs that are efficient

representations of these sources?

The typicality graph can be thought of as being situated at one end of the spectrum. At the other end of the

spectrum is the nearly fully connected graph associated with the product of index sets used in the Slepian-Wolf

coding of these correlated sources. A slew of graphs which lie in between, and that are efficient representations

of these sources can be obtained if we leave some redundancy in the Slepian-Wolf source coding. As the residual

redundancy goes from the minimum to the maximum level, we will approach the representation involving the

typicality graph from the representation involving a fully connected graph obtained in the optimum Slepian-Wolf

source coding.

This leads to the possibility of a semi-regular graph being used as a discrete interface for the multiterminal

information transmission problem. We have seen how source encoders can represent the pair of sources using nearly

semi-regular graphs. Three examples are illustrated in Figure 1, each with two users having three messages. As

the number of edges in the graph reduces, the correlation increases. The first message-graph depicts completely

independent messages and the third message-graph depicts completely correlated messages. All the edges in a given

graph are assumed to be equally likely.
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Figure 1: “Independent” and “correlated” messages: As the number of edges in the graph decreases, the correlation between
the two message sets increases.
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Now for the channel coding component, the encoders have to work with these correlated message sets and have

to reliably transmit over the channel the edges of the message-graph produced by the source encoders. The channel

encoders will now be operating on correlated messages (with the correlation structure of the graph) rather than

independent ones. Thus, for a multiple access channel, at one end of the spectrum we have independent message sets

(standard multiple access channel) as in Figure 1(a), and at the other end we have perfectly correlated messages,

i.e., both users having the same information to send as in Figure 1(c), and in the middle there is a slew of nearly

semi-regular graphs, whose edges can be reliably communicated over the channel.

Hence the act of encoding these sources into channel inputs can be divided into two operations, where the two

sources are first mapped into an appropriate bipartite message-graph (in the source coding component), and the

edges of this graph are reliably communicated to the receiver (in the channel coding component). The correlation

of the information sources is retained by these message-graphs, and this can be directly translated to the codewords

transmitted over the channel. This correlation in the channel inputs can now be exploited to combat interference

and degradation introduced by the channel. Without “smearing” these two components into a joint source-channel

coding block, in the proposed approach, we enhance them to work with correlated messages or graphs, thus retaining

the Shannon-style modular approach to this multiuser communication system.

To see a concise summary of the results presented in this paper toward the above mentioned goal, let is consider

the following definition. A nearly semi-regular bipartite graph is said to have parameters (θ1, θ2, θ
′
1, θ

′
2), if the

number of vertexes of the ith set is close to θi for i = 1, 2, and the degree of every vertex in first set is close to

θ′2, and vice versa. In this paper, we first address the channel coding part, and then discuss the source coding

part in the later section. In the channel coding part, we would like to know the rates of growth of the exponents,

as functions of the number of uses of the channel, of the sizes and the associated degrees of the vertexes of all

nearly semi-regular graphs whose edges can be reliably transmitted over a multiple access channel. In other words,

our goal is to find the set of quadruples (R1, R2, R
′
1, R

′
2), called the achievable rate region such that edges coming

from every nearly semi-regular graph with parameters (2nR1 , 2nR2 , 2nR1 , 2nR
′

2) can be reliably transmitted over a

multiple access channel by using the channel n times. Similarly, in the source coding part, the goal is to find the set

of quadruples (R1, R2, R
′
1, R

′
2) such that every nearly semi-regular graph with parameters (2nR1 , 2nR2 , 2nR1 , 2nR

′

2)

can be used to represent efficiently n realizations of the correlated sources. If we are successful in this task, then

a pair of correlated sources can be reliably transmitted over a multiple access channel if there is a non-empty

intersection of their achievable rate regions.

To see why we have emphasized the word ‘every’ in the above paragraph, consider the set of all graphs with a

fixed quadruple of parameters (θ1, θ2, θ
′
1, θ

′
2). Of course, there is more than one graph in this set, and the structure

of the graphs in this collection could be disparate. Although we will revisit this issue formally in Section 3, at this

point, it suffices to mention that these graphs can be partitioned into equivalence classes, where the graphs in an

equivalence class have the same structure. This essentially means that a single codebook can be designed that works

well for all graphs that belong to an equivalence class. Thus, we need one codebook for each equivalence class of

graphs with a given set of parameters in both the source coding and the channel coding components.
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In this paper we provide partial answers to the questions raised above using single letter information quantities.

In particular, we relax the definition of the achievable rate region by replacing the word ‘every’ to ‘at least one’ in

the above definition. Our main results are stated in Theorem 1, 2 and 3. As an example, we consider an achievable

rate region for the Gaussian multiple access channel with jointly Gaussian channel input. We also compare our

new coding scheme with the separate source and channel coding scheme which involves conventional multiple access

channel coding preceded by Slepian-Wolf source coding ([6], [7]) of correlated messages. As expected, the result

says that we can send the same amount of information over the multiple access channel with less power by adopting

correlated codewords. Further, it is shown that the coding scheme of Cover, El Gamal, and Salehi [10] can be

interpreted as a match between the typicality-graph of the pair of sources and a subgraph of the typicality-graph

of some channel input distribution.

The work of Slepian and Wolf [9] is along this direction, where, as mentioned above, they considered two

correlated messages with a common part [12] as inputs to the two encoders to be transmitted over a multiple

access channel. However, it was shown by Gács and Körner [11] and Witsenhausen [12] that the common part

of two dependent random variables is zero in most cases. Rather, in this work, we consider a more general class

of correlated messages where they need not have a common part. Ahlswede and Han considered in [22] a related

approach to the source-channel matching problem in multiuser communication. In [22], the authors considered the

problem of representing correlated sources using bipartite graphs, and transmitting the edges of these graphs over

multiple access channels without putting any structure on the graphs in terms of the distribution of the degrees

of the vertexes. In contrast, in the present work, inspired from the asymptotic equipartition property, we deal

with nearly semi-regular graphs, where the degrees of the vertexes are asymptotically the same. By restricting our

attention to this set of “symmetric” objects, we are able to provide more concrete statements on the size of such

graphs and the degrees of every vertex in those graphs such as those provided in Theorem 1, 2 and 3.

Before closing this discussion, we note that we are nowhere near achieving the ambitious goal that we began

to march with. But the set of results given in this paper is possibly the first step that one needs to take to move

toward this goal. For a skeptic who may not subscribe to this vision of connecting these two information-theoretic

results toward a separation principle for transmission of correlated sources over a multiple access channel, we still

believe that these two results would be of independent interest even when viewed separately. In other words, as an

analogy, the conventional Shannon’s channel coding theorem can be interpreted as finding the maximum number of

codewords (colors, if each codeword has a different color) that are distinguishable at the noisy channel output. In

conventional multiple access channels, the goal is to distinguish among pairs of colors at the noisy channel output,

where the first color can come from one set and the second color can come from another set, and all possible

combination of pairs in the two sets are allowed. A natural question to ask is: if only a fraction of all possible

combination of pairs of colors is permitted, what is the maximum size of the sets of these colors for which reliable

distinguishability can be guaranteed at the receiver. A similar question can be asked for the source coding problem.

The outline of the remaining part of this paper is as follows. In Section 2, we provide a brief review of the capacity

of multiple access channels with independent messages and the performance limits of the Slepian-Wolf source coding.

6



Then, in Section 3, we consider certain properties of bipartite graphs that are relevant to the discussion of later

sections. Thereafter, we will discuss the channel coding part of the problem in Section 4, resulting in an achievable

rate region for the multiple access channel with correlated messages, which is one of the main results of this paper.

Then, the complementary source coding part, the representation of correlated sources into message-graphs, will be

described in Section 5. After that, some examples and interpretations are provided in Section 6. Section 7 provides

some concluding remarks.

2 Preliminaries

In this section, we briefly overview the results available in the literature on the multiple access channel coding and

Slepian-Wolf source coding. We also recall an interesting example given in [10], showing that the separate source

and channel coding is not optimal, since it is closely related to our discussion.

2.1 Multiple Access Channel Capacity with Independent Messages

We summarize the well-known results [8] of the multiple access channel capacity in this section. We are given a

multiple access channel characterized by a conditional distribution p(y|x1, x2) for a two-transmitter problem, with

finite input alphabets X1, X2 respectively and a finite output alphabet Y . The channel is assumed to be memoryless

and stationary. In other words, a multiple access channel is an ordered tuple (X1,X2,Y , p(y|x1, x2)).

Definition 1 A transmission system with parameters (n,∆1,∆2, τ) for a multiple access channel (X1,X2,Y , p(y|x1, x2))

would involve

• a set of mappings {f1, f2, g} where:

fi : {1, 2, . . . ,∆i} → Xn
i (1)

g : Yn → {1, 2, . . . ,∆1} × {1, 2, . . . ,∆2} (2)

• a performance measure, given by the average probability of error:

τ =

∆1∑

i=1

∆2∑

j=1

1

∆1∆2
Pr [g(Y n) 6= (i, j)|Xn

1 = f1(i), X
n
2 = f2(j)] . (3)

Definition 2 A rate pair (R1, R2) is said to be achievable for the given multiple access channel if ∀ε > 0, and

for all sufficiently large n, there exists a transmission system as defined above with parameters (n,∆1,∆2, τ) with

1
n

log ∆i > Ri − ε for i = 1, 2 and a corresponding decoder with the average probability of error τ < ε.

The capacity region of the multiple access channel, denoted by RMA, is the set of all achievable rate pairs

(R1, R2). This is given [1, 2] by the following information-theoretic characterization: RMA is equal to the convex

closure of the set of all (R1, R2), such that there exists a product distribution on the input p1(x1)p2(x2), and

R1 ≤ I(X1;Y |X2), (4)
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R2 ≤ I(X2;Y |X1), (5)

R1 +R2 ≤ I(X1, X2;Y ), (6)

where I(·; ·) denote the mutual information [8].

2.2 Noiseless Encoding of Correlated Sources

We are given a pair of correlated sources (for a two-source problem), with a joint distribution p(s, t) with finite

alphabets S and T . The sources are assumed to be memoryless and stationary. In other words, a pair of correlated

sources is an ordered tuple (S, T , p(s, t)).

Definition 3 A transmission system with parameters (n,∆1,∆2, τ) for representing a pair of correlated sources (S,

T , p(s, t)) would involve

• a set of mappings {f1, f2, g} where

f1 : Sn → {1, 2, . . . ,∆1}, f2 : T n → {1, 2, . . . ,∆2} (7)

g : {1, 2, . . . ,∆1} × {1, 2, . . . ,∆2} → Sn × T n (8)

• a performance measure given by the probability of error

τ = Pr [(Sn, Tn) 6= g(f1(S
n), f2(T

n))] . (9)

Definition 4 A rate pair (R1, R2) is said to be achievable for the given correlated sources if ∀ε > 0 and for

all sufficiently large n, there exists a transmission system as defined above with parameters (n,∆1,∆2, τ) with

1
n

log ∆i < Ri + ε for i = 1, 2 and the probability of error τ < ε.

The achievable rate region RSW , is the set of achievable rate pairs (R1, R2). This is given by [6] the following

information theoretic characterization: RSW is equal to the set of all (R1, R2) such that

R1 ≥ H(S|T ), (10)

R2 ≥ H(T |S), (11)

R1 +R2 ≥ H(S, T ). (12)

2.3 Joint source-channel coding

Consider the joint source-channel coding scheme studied in [10]. We are given a pair of correlated sources (without

a common part) and a multiple access channel.

Definition 5 A transmission system with parameters (n, τ) for transmission of a pair of correlated sources (S, T , p(s, t))
over a multiple access channel (X1,X2,Y , p(y|x1, x2)) would involve
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• a set of mappings {f1, f2, g} where

f1 : Sn → Xn
1 , f2 : T n → Xn

2 , (13)

g : Yn → Sn × T n (14)

• a performance measure given by the probability of error

τ = Pr[(Sn, Tn) 6= g(Y n)] (15)

Definition 6 A pair of correlated sources is said to be transmissible over a multiple access channel if ∀ε > 0, and

for all sufficiently large n, there exists a transmission system as defined above with parameters (n, τ) such that τ < ε.

Following [10], a pair of correlated sources is transmissible over a multiple access channel if,

H(S|T ) < I(X1;Y |X2, T ), (16)

H(T |S) < I(X2;Y |X1, S), (17)

H(S, T ) < I(X1, X2;Y ), (18)

for some p1(x1|s) and p2(x2|t), where the joint distribution is obtained as p(s, t, x1, x2, y) = p(s, t) p1(x1|s) p2(x2|t)
p(y|x1, x2).

2.4 An Example of Correlated Sources over the Multiple Access Channel

Let us consider an interesting example given in [10], which shows the advantage of encoders that directly map

sources into channel inputs (joint-source-channel coding). Consider the transmission of a set of correlated sources

(S, T ), with the joint distribution p(s, t) given by p(s = 0, t = 0) = p(s = 0, t = 1) = p(s = 1, t = 1) = 1/3, over a

multiple access channel defined by X1 = X2 = {0, 1}, Y = {0, 1, 2}, Y = X1 +X2. Here H(S, T ) = log 3 =1.58 bits.

On the other hand,

max
p(x1)p(x2)

I(X1, X2 ;Y ) = 1.5 bits.

Thus H(S, T ) > I(X1, X2 ;Y ) for all p1(x1)p2(x2). Consequently, it appears that there is no way, even with the

use of Slepian-Wolf source coding of S and T , to use the multiple access channel to send S and T reliably. However,

it is easy to see that with the choice X1 ≡ S and X2 ≡ T , error-free transmission of the sources over the channel is

possible. This example shows that separate source and channel coding described above is not optimal — the partial

information that each of the random variables S and T contains about the other is destroyed in this separation.

In the proposed approach (to be discussed next), we allow our codes to depend statistically on the source outputs.

This induces some dependence between the codewords, which will help combat the adversities of the channel more

effectively.
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3 Graphs as discrete interface

In this section, we present the problem statement, and, to better understand the significance and the limitations

of the results presented in the next section, consider some structural properties of graphs. The problem we are

addressing is the simultaneous transmission of two discrete memoryless stationary correlated sources S and T over

a discrete memoryless stationary multiple access channel as shown in Figure 2. The encoders are given by mappings

f1 : Sn → Xn
1 and f2 : T n → Xn

2 . The decoder is given by a mapping g : Yn → Sn×T n. The performance measure

associated with this transmission system is the probability of decoding error:

Pr[(Sn, Tn) 6= g(Y n)]. (19)

MACEncoder 1

Encoder 2

Decoder

Figure 2: Transmission of correlated sources over a multiple access channel.

3.1 Basic concepts

Consider the following approach to this problem as shown in Figure 3. The system has two modules: the source

coding module and the channel coding module. The sources are first represented efficiently using nearly semi-regular

graphs in the source coding module. The edges coming from these nearly semi-regular graphs are reliably transmitted

over the multiple access channel. The assumption is that the source coding module is going to produce message pairs

MAC
Channel

Encoder 1

Channel
Encoder 2

Channel
Decoder

Source
Encoder 1

Source
Encoder 2

Source
Decoder

Figure 3: The sources are first mapped into edges in a nearly semi-regular graph, and the edges coming from this graph are
reliably transmitted over a multiple access channel.

which have some relation between them. In other words, from the perspective of the channel coding module, the

two senders have some integer message sets W1 = {1, 2, . . . , |W1|} and W2 = {1, 2, . . . , |W2|} respectively. Further,

there is some correlation between the two messages, i.e., messages from each sender cannot be chosen independently.

If the messages of the senders can be chosen independently, then all possible pairs (W1,W2) in the set W1 ×W2 can

occur jointly. On the other hand, if they are correlated, only some pairs (W1,W2) ∈ A occur, and the other pairs

(W1,W2) /∈ A do not, where A ⊂ W1 ×W2. In more detail, we can think of these messages as follows.
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• If the messages of the senders are independent, the message pairs (W1,W2) are equally likely with probability

1
|W1×W2|

.

• If the messages of senders are correlated, the message pairs (W1,W2) ∈ A are equally likely with probability

1
|A| , and the message pairs (W1,W2) /∈ A have probability zero.

As an example, let us consider the simple case as shown in Figure 1. In this case, two senders have W1 = W2 =

{1, 2, 3}. The vertexes in the bipartite graph denote messages in the message sets, and an edge between two vertexes

imply that the message pairs can occur jointly. The complete bipartite graph of Figure 1(a) corresponds to the

case for which two messages from each sender can be chosen independently, so all the possible pairs can occur with

equal probability 1
9 . Figure 1(b) and Figure 1(c) show the case for which two messages are correlated. In the case

of Figure 1(b), each message pair (1, 1), (1, 2), (2, 2), (2, 3), (3, 3), and (3, 1) can occur with probability 1
6 , but (1,

3), (2, 1) and (3, 2) cannot occur. Similarly, only three message pairs (1, 1), (2, 2) and (3, 3) can occur with the

same probability 1
3 in case of Figure 1(c), which means that they are perfectly correlated. The messages of Figure

1(c) have higher correlation than those of Figure 1(b).

Before we discuss the main problem, let us first define a bipartite graph and related mathematical terms.

Although our main results deal with nearly semi-regular graphs, for the purpose of illustration, we consider semi-

regular graphs for this section alone.

Definition 7 • A bipartite graph G is defined as an ordered tuple G = (A1, A2, B) where A1 and A2 are two

non-empty sets of vertexes, and B is a set of edges where every edge of B joins a vertex in A1 to a vertex in

A2, i.e., B ⊆ A1 ×A2.

• If G is a bipartite graph, let V1(G) and V2(G) denote the first and the second vertex sets of G, respectively,

and E(G) denote the edge set of G.

• If (i, j) ∈ E(G), then i and j are adjacent, or neighboring vertexes of G, and the vertexes i and j are incident

to the edge (i, j).

• If each vertex in one set is adjacent to every vertex in the other set, then G is said to be a complete bipartite

graph. In this case, E(G) = V1(G) × V2(G).

• The degree, or valency, degG,i(v) of a vertex v ∈ Vi(G) in a graph G is the number of edges incident to v for

i = 1, 2.

• A subgraph of a graph G is a graph whose vertex and edge sets are subsets of those of G.

Since we consider a specific type of bipartite graphs in our discussion, let us define those bipartite graphs.

Definition 8 • A bipartite graph G is said to have parameters (θ1, θ2, θ
′
1, θ

′
2) if it satisfies:

– |Vi(G)| = θi for i=1, 2,

11



– ∀u ∈ V1(G), degG,1(u) = θ′2,

– ∀v ∈ V2(G), degG,2(v) = θ′1.

• For two bipartite graphs G1 and G2, G2 is said to cover G1 if E(G1) ⊆ E(G2).

Definition 9 With a bipartite graph G with parameters (θ1, θ2, θ
′
1, θ

′
2), one can associate a pair of correlated mes-

sages with message sets W1 and W2, referred to as a message-graph, where V1(G) = W1, V2(G) = W2, and every

edge in E(G) denotes a message pair (W1,W2) ∈ W1 ×W2 which occurs with nonzero equal probability.

1

2

3

4

1

2

3

4

Sender 1
Messages

Sender 2
Messages

1

2

3

4

1

2

3

4

Sender 1
Messages

Sender 2
Messages

Figure 4: Examples of bipartite graphs G(4, 4, 2, 2): the message-graph characterized by the graph on the right side can be
decomposed into three independent messages, with both encoders sharing a common message. This can be seen by renaming
1, 2, 3 and 4 as 11, 21, 12 and 22 respectively.

Figure 4 illustrates two examples of bipartite message-graphs G(4, 4, 2, 2). An example of the transmission

system considered by [9], where the messages of the two users have a “common part” can be represented by the

graph on the right side which can be divided into two complete bipartite graphs. In other words, the graph on the

right side can be represented as a set of three independent messages, each of length 1, with the first user having the

first and the second message sets, and the second user having the the first and the third message sets. This can be

seen by renaming 1, 2, 3 and 4 as 11, 21, 12 and 22 respectively. Now each message of each user has two labels. As

can be seen from the graph, for any valid message pair of the two users, the corresponding first labels are the same.

Now if we consider each label as a message, then the first label of both users corresponds to the common message.

Such graphs form a subset of all incomplete graphs as given in the above definition.

3.2 Equivalence classes of graphs

As shown in the previous example in Section 2.4, if we can design special codes which can translate the existing

correlation between messages of two senders into the channel inputs, we might achieve higher transmission rates

than those bounded by the conventional codes where all possible message pairs are assumed to jointly occur. To

facilitate such an efficient discrete interface, one needs to answer the following question. For fixed θ1, θ2, θ
′
1, θ

′
2, and

n, since there are more than one bipartite graph which have the same above parameters, do we need to design

a specific channel codes of block-length n for each graph having the parameters (θ1, θ2, θ
′
1, θ

′
2) or it is possible to

design a single channel code for all of these graphs?

12



To answer this question, let us consider the following example. Suppose we are given two message-graphs, given

by A and B as shown in Figure 5. Suppose there exists a channel code for a multiple access channel with n = 1

which can reliably transmit the message pairs coming from A. In the first glance, it appears that this code cannot

reliably transmit the message pairs coming from B as B 6= A. However, it turns out that one can indeed do so. This
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Figure 5: Example of permutation and relabeling.

is due to an interesting relation that exists between the two graphs. Note that if we permute the right vertexes of

A, (1, 2, 3), into (2′, 3′, 1′), relabel (2′, 3′, 1′) as (2, 3, 1), and then move right vertexes together with their connected

edges in natural order (1, 2, 3), then we get graph B. This implies that we can use the given code to send the message

pairs coming from B after simple permutation and relabeling. This procedure is illustrated in Figure 5. Clearly, we

can also get graph A from graph B similarly. This motivates us to define equivalence classes of graphs having the

same set of parameters.

Let us consider a set bipartite graphs having parameters (n, n, a, a) and denoted by Kn,a, n ∈ Z+ where Z+ is

the set of positive integers, and a ∈ {1, 2, . . . , n}. For example, Figure 6 illustrates all the elements of K3,2. So there

are totally six distinct bipartite graphs in the set K3,2. Now consider the generation of different bipartite graphs in
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A          B         C            D            E        F

Figure 6: All the possible bipartite graphs in the set K3,2: any graph can be obtained from any other by permutation and
relabeling.

Kn,a by permutation and relabeling of any one of them. Let K3,2={A, B, C, D, E, F}, where A, B, C, D, E, and

F are the bipartite graphs shown in Figure 6. In this case, all the elements in K3,2 can be generated from any one

element in the set by permutation and relabeling.

However, in the case of n = 4, a = 2, we cannot get all graphs in K4,2 by just permutation and relabeling of

any one graph in the set. There are a total of 90 distinct bipartite graphs in K4,2, i.e., |K4,2| = 90. These 90

graphs can be divided into two mutually exclusive subsets, denoted by S1 and S2 where |S1| = 72 and |S2| = 18.

Figure 7 shows one graph from each subset. It can be verified that all the graphs in the subset Si (for i = 1, 2)

can be obtained from any graph in that set by permutation and relabeling of the vertexes. However, no graph in

the subset S1 can be obtained by permutation and relabeling of a graph in S2 and vice versa. This is explained
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Figure 7: Graphs in the subsets of K4,2

in detail in Appendix A. In other words, the set K4,2 can be partitioned into two equivalence classes where the

cardinalities of these classes are 72 and 18 respectively, and the equivalence relation is characterized by the feasibility

of obtaining one element in the class by permutation and relabeling of the vertexes of the other. It can be shown

that a message-graph characterized by every graph in the set S2 has a common part. This means that each graph

in the set S2 can be divided into two complete bipartite graphs. Similarly, one can partition the set of all bipartite

graphs with a given set of parameters into equivalence classes. At this point, a precise characterization of the

number of equivalence classes even in Kn,a is an open question in combinatorics. However, it should be noted that

some of the issues regarding the combinatorics of such graphs has been studied in the recent mathematics literature

[23, 24]. Further, the complexity of the algorithms required for testing whether two graphs belong to an equivalence

class are addressed in the computer science literature [25, 26, 27].

Remark 1 We summarize the conclusions of this discussion:

• All graphs having the same set of parameters can be partitioned into equivalence classes, where one element

in a class can be obtained from the other in the same class by permutation and relabeling. Thus if we have a

channel code which can reliably transmit message pairs coming from a graph (say G1), then it can be easily

used to reliably transmit message pairs coming from any graph that belongs to the equivalence class of G1.

• The graphs having the same set of parameters but belonging to different equivalence classes may have different

correlation structures.

4 Multiple Access Channel with Correlated Messages

In this section we give a characterization of the transmissibility of certain message-graphs over a multiple access

channel.

4.1 Summary of Results

We are given a stationary discrete memoryless multiple access channel with conditional distribution p(y|x1, x2), with

input alphabets given by finite sets X1 and X2, and a finite output alphabet Y . Although, ideally, we would want

to use semi-regular graphs for source representation and communication of information, for the sake of analytical

tractability, as is typical in Shannon theory, we will allow some slack with regard to the degrees of the vertexes of
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these graphs, and consider the asymptotic case when this slack is reduced to an arbitrarily small value. In other

words, we consider bipartite graphs which are nearly semi-regular in our discussion.

Definition 10 A bipartite graph G is said to have parameters (∆1,∆2,∆
′
1,∆

′
2, µ) if it satisfies:

• Vi(G) = {1, 2, . . . ,∆i} for i = 1, 2,

• ∀u ∈ V1(G), ∆′
2µ

−1 ≤ degG,1(u) ≤ ∆′
2µ,

• ∀v ∈ V2(G), ∆′
1µ

−1 ≤ degG,2(v) ≤ ∆′
1µ.

Note that µ > 1 is a slack parameter.

Definition 11 An (n, τ)-transmission system for a bipartite graph G with parameters (∆1,∆2,∆
′
1,∆

′
2, µ) and a

multiple access channel (X1,X2,Y , p(y|x1, x2)) with correlated messages would involve:

1. encoding mappings {f1, f2} and a decoding mapping g where:

fi : Vi(G) → Xn
i for i = 1, 2, (20)

g : Yn → E(G), (21)

2. a performance measure given by the following average probability of error criterion:

τ =
1

|E(G)|
∑

(i,j)∈E(G)

Pr [g(Y n)6=(i, j)|Xn
1 = f1(i), X

n
2 = f2(j)] . (22)

Definition 12 A tuple of rates (R1, R2, R
′
1, R

′
2) is said to be achievable for a given multiple access channel with

correlated message sets, if for any ε > 0, and for all sufficiently large n, there exists a bipartite graph G with

parameters (∆1,∆2,∆
′
1,∆

′
2, µ) and an associated (n, τ)-transmission system as defined above satisfying: Ri − ε <

1
n

log ∆i, R
′
i − ε < 1

n
log ∆′

i for i = 1, 2, 1
n

logµ < ε and the corresponding average probability of error τ < ε.

Note that in the above definition, we have taken an optimistic point of view. As long as one can find a sequence

of nearly semi-regular graphs where the number of vertexes and the degrees are increasing exponentially with given

rates, such that the edges from these graphs are reliably transmitted over the given multiple access channel, we allow

the corresponding rate tuples to belong to the achievable rate region. The goal is to find the achievable rate region R
which is the set of all achievable tuple of rates (R1, R2, R

′
1, R

′
2). In the following we provide an information-theoretic

characterization of an achievable rate region.

Theorem 1 For an input probability distribution p(x1, x2) defined on X1 ×X2, if a tuple (R1, R2, R
′
1, R

′
2) satisfies

the following conditions,

R1 < I(X1;Y |X2) + I(X1;X2) = I(X1;Y,X2), (23)

R2 < I(X2;Y |X1) + I(X1;X2) = I(X2;Y,X1), (24)
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R1 +R2 < I(X1, X2;Y ) + I(X1;X2) (25)

R′
i < Ri − I(X1;X2), for i=1, 2, (26)

then it belongs to the achievable rate region for the multiple access channel with correlated messages.

First, note that I(X1;X2) is the bonus in sumrate we get by exploiting the correlation in the messages. Second,

in this characterization, there is a constraint on the input distribution that one can choose for determining the

rate region. For any p(x1, x2), for a fixed sumrate of I(X1, X2;Y ) + I(X1;X2), the minimum value that R1 can

take is I(X1;Y ), and the minimum value that R2 can take is I(X2;Y ). Hence the constraint on p(x1, x2) is that

min{I(X1;Y ), I(X2;Y )} > I(X1;X2). Further, for the case of independent message sets, R′
i = Ri for i = 1, 2, and

the rate region reduces to that of the standard multiple access channels with I(X1;X2) = 0.

Theorem 2 Any sequence (indexed by n) of (n, τ(n))-transmission systems for a sequence of bipartite graphs Gn,

respectively, with parameters (2nR1 , 2nR2 , 2nR
′

1 , 2nR
′

2 , µ(n)) and a multiple access channel (X1,X2,Y , p(y|x1, x2))

with correlated messages such that τ(n) → 0 and 1
n

logµ(n) → 0 as n→ ∞ must satisfy:

R1 +R′
2 ≤ I(X1, X2;Y ), (27)

R′
1 +R2 ≤ I(X1, X2;Y ). (28)

for some input distribution p(x1, x2) on X1 ×X2.

Remark 2 The limitations of this theorem are illustrated in the following. Note that this theorem gives only a

partial characterization of the set of all nearly semi-regular graphs whose edges can be reliably transmitted over

a multiple access channel. In the formulation of the achievable rate region, we have the freedom of choosing a

particular message-graph for every block-length n. The theorem characterizes the exponent of the rate of growth

(as a function of the number of channel uses) of the size of certain nearly semi-regular graphs, such that edges

coming from any such graph can be reliably transmitted over the multiple access channel. This obviously also

means that it is possible to transmit edges coming from a graph belonging to the equivalence class of any of these

graphs. However, the fact that edges coming from a graph (with certain parameters) are reliably transmitted does

not mean that the edges coming from any graph with those parameters can be reliably transmitted.

4.2 Proof of Theorem 1 and 2

In this section, we present the proof of Theorem 1 and 2. We use random coding, and the notion of jointly typical

sequences as given in [8].

Given the multiple access channel with distribution p(y|x1, x2), consider a fixed joint distribution p(x1, x2) on

X1 ×X2. Also fix ε > 0 and positive real numbers R1, R2. Without loss of generality, let us assume Ri > I(X1;X2)

for i = 1, 2. Let R′
i = Ri − I(X1;X2) for i = 1, 2.

Codebook generation: Draw 2nR1 codewords Xn
1 (i), i ∈ {1, 2, . . . , 2nR1}, of length n, independently from the
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strongly ε-typical set A
(n)
ε (X1). That is, P{Xn

1 (i) = xn1} = 1

|A
(n)
ε (X1)|

if xn1 ∈ A
(n)
ε (X1), and P{Xn

1 (i) = xn1 } = 0 if

xn1 /∈ A
(n)
ε (X1). Let us denote this codebook C1. Similarly, the second codebook C2 can be generated by choosing

2nR2 codewords Xn
2 (i), i ∈ {1, 2, . . . , 2nR2} according to a uniform distribution over A

(n)
ε (X2).

Graph generation: As shown in Figure 8, with C1 and C2, let us associate a graph G such that (i) Vi(G) = Ci

for i = 1, 2, (ii) ∀(xn1 , x
n
2 ) ∈ C1 × C2, we have (xn1 , x

n
2 ) ∈ E(G) if (xn1 , x

n
2 ) is strongly jointly ε-typical, i.e.,

(xn1 , x
n
2 ) ∈ A

(n)
ε (X1, X2). Then, there exists a set of |E(G)| strongly jointly ε-typical sequence pairs in C1 ×C2. We

label them by k, k ∈ {1, 2, . . . , |E(G)|}. For each k, let (Xn
1 (ik), X

n
2 (jk)) denote the corresponding strongly jointly

ε-typical sequence pair where ik ∈ {1, 2, . . . , 2nR1} and jk ∈ {1, 2, . . . , 2nR2}.

graph
generation
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4
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1
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Codewords
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Codewords

n n
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Figure 8: “Correlated” random codebook: The relation of joint typicality between two codewords, one from each codebook,
induces a graph.

Encoder error events: Before we proceed to the encoding and decoding procedure, we need to make sure that

the generated codebooks satisfy certain properties. If the normalized exponent of |E(G)| of the generated graph G

is greater than I(X1, X2;Y ), then every codeword pair (xn1 , x
n
2 ) ∈ E(G) cannot be reliably transmitted, resulting

in errors. Moreover, if vertexes of G do not satisfy the degree conditions, the message pairs cannot be transmitted

with arbitrary small probability of error. So, an encoding error will be declared if either one of the following events

occurs. For this we need some properties [8] of strongly ε-typical sets.

• For a particular xn1 ∈ A
(n)
ε (X1), the probability that (xn1 , X

n
2 ) ∈ A

(n)
ε (X1, X2) is bounded by

2−n(I(X1;X2)+δ(ε)) ≤ P{(xn1 , Xn
2 ) ∈ A(n)

ε } ≤ 2−n(I(X1;X2)−δ(ε)) (29)

where Xn
2 is obtained by using the uniform distribution on A

(n)
ε (X2), and δ(ε) → 0 as ε→ 0,
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• The probability that (Xn
1 , X

n
2 ) ∈ A

(n)
ε (X1, X2) is bounded by

2−n(I(X1;X2)+δ1(ε)) ≤ P{(Xn
1 , X

n
2 ) ∈ A(n)

ε } ≤ 2−n(I(X1;X2)−δ1(ε)) (30)

where for i = 1, 2, Xn
i is obtained by using the uniform distribution on A

(n)
ε (Xi), and δ1(ε) → 0 as ε→ 0.

The error events are given by

• E0: |E(G)| > 2n(I(X1,X2;Y )−δ(ε)−ε),

• E1: ∃Xn
1 ∈ C1 such that

∣
∣ 1
n

log degG,1(X
n
1 ) −R′

2

∣
∣ > δ(ε) + ε,

• E2: ∃Xn
2 ∈ C2 such that

∣
∣ 1
n

log degG,2(X
n
2 ) −R′

1

∣
∣ > δ(ε) + ε.

In the following we show that the probability of these error events can be made small under certain conditions.

Lemma 1 For any ε > 0, and sufficiently large n,

P (E0) <
ε

7
(31)

provided R1 +R2 < I(X1, X2;Y ) + I(X1;X2) − δ(ε) − δ1(ε) − ε.

Proof: Refer to Appendix B.

Lemma 2 Let us define two events E0,1 and E0,2 as follows. E0,1 : ∃Xn
1 (i) ∈ C1 such that degG,1(X

n
1 (i)) <

2n(R2−I(X1;X2)−δ(ε)−ε) and E0,2 : ∃Xn
2 (i) ∈ C2 such that degG,2(X

n
2 (i)) < 2n(R1−I(X1;X2)−δ(ε)−ε). Then for any

ε > 0, and sufficiently large n:

P{E0,i} <
ε

14
, for i = 1, 2 (32)

Proof: Refer to Appendix C.

Lemma 3 Let us define two events E∗
0,1 and E∗

0,2 as follows. E∗
0,1 : ∃Xn

1 (i) ∈ C1 such that degG,1(X
n
1 (i)) >

2n(R2−I(X1;X2)+δ(ε)+ε) and E∗
0,2 : ∃Xn

2 (i) ∈ C2 such that degG,2(X
n
2 (i)) > 2n(R1−I(X1;X2)+δ(ε)+ε). Then for any

ε > 0, and sufficiently large n:

P{E∗
0,i} <

ε

14
, for i = 1, 2 (33)

Proof: Refer to Appendix D.

Note that E1 = E0,1 ∪ E∗
0,1 and E2 = E0,2 ∪ E∗

0,2. So, following the above three lemmas, with high probability

we can obtain a graph G where each vertex in V1(G) has degree nearly equal to 2n(R2−I(X1;X2)) and each vertex in

V2(G) has degree nearly equal to 2n(R1−I(X1;X2)), and the total number of edges is nearly equal to 2nI(X1,X2;Y ) if

the product of the vertexes of the corresponding two sets is nearly equal to 2n(I(X1,X2;Y )+I(X1;X2)).

Choosing message-graphs If any one of the above three events occurs, then choose any graph with parameters
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(2nR1 , 2nR2 , 2nR
′

1 , 2nR
′

2 , 2n(δ(ε)+ε)) as the message-graph, and no guarantee will be given regarding the probability

of decoding error. If none of these error events occurs, choose G as the message-graph, where (a) G has parameters

(2nR1 , 2nR2 , 2nR
′

1 , 2nR
′

2 , 2n(δ(ε)+ε)), and (b) an integer pair (i, j) ∈ E(G) if and only if (Xn
1 (i), Xn

2 (j)) ∈ E(G).

Encoding: Sender 1 transmits the codeword Xn
1 (i) to send message index i; similarly, Sender 2 sends Xn

2 (j) to

send message index j.

Decoding: At the receiver, the index pair (i, j) is chosen as the transmitted message pair only if there exists

a unique pair (i, j) such that (Xn
1 (i), Xn

2 (j), Y n) is strongly jointly ε-typical in the sense of p(x1, x2)p(y|x1, x2).

Otherwise, an error is declared.

Probability of Error Analysis: The probability of error P (E) can be given by

P (E) = P (E0 ∪ E1 ∪ E2)P (E|E0 ∪ E1 ∪E2) + P (E ∩ Ec0 ∩Ec1 ∩Ec2) (34)

≤ P (E0 ∪ E1 ∪ E2) + P (E ∩ Ec0 ∩ Ec1 ∩ Ec2) (35)

The second probability in the above equation can be bounded as given in the following lemma.

Lemma 4 For any ε > 0, and sufficiently large n,

P (E ∩Ec0 ∩ Ec1 ∩ Ec2) <
4ε

7
(36)

provided

R1 < I(X1;Y,X2) − 7ε1, (37)

R2 < I(X2;Y,X1) − 7ε1, (38)

R1 +R2 < I(X1, X2;Y ) + I(X1;X2) − 7ε1, (39)

where ε1(ε) → 0 as ε→ 0, and ε1(ε) is a continuous function associated with certain strongly typical set.

Proof: Refer to Appendix E.

Therefore,

P (E) ≤ P (E0) + P (E1) + P (E2) + P (E ∩ Ec0 ∩ Ec1 ∩ Ec2) < ε. (40)

Since in every realization of random codebooks, we have chosen a message-graph with parameters (2nR1 , 2nR2 , 2nR
′

1 ,

2nR
′

2 , 2n(δ(ε)+ε)), and averaged over the ensemble of random codebooks, the average probability of error is smaller

than ε, there must exist a message-graph with parameters (2nR1 , 2nR2 , 2nR
′

1 , 2nR
′

2 , 2n(δ(ε)+ε)) and a codebook pair

such that the average probability of error is smaller than ε. This is true only under the condition given by the

statement of the theorem. Hence, the proof of Theorem 1 has been completed. �
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We have so far proved the achievability part of the capacity region. The proof of the converse part (Theorem 2)

is very similar to that of conventional multiple access channel (with independent messages) [8]. So, we have used

almost exactly the same technique except for the fact that message pairs are equally likely only if they belong to

the edge set of the message-graph. Refer to Appendix F for details.

5 Representation of Correlated Sources into Message-graphs

In the previous section, we discussed the transmission of correlated messages over multiple access channels. In this

section we consider the dual representation of correlated sources using nearly semi-regular bipartite graphs.

5.1 Summary of Results

We are given two correlated sources S and T with a joint probability distribution p(s, t) with alphabets given by

finite sets S and T .

Definition 13 An (n, τ)-transmission system for a bipartite graph G with parameters (∆1,∆2,∆
′
1,∆

′
2, µ) and a

pair of correlated sources (S, T ) would involve:

1. Encoder mappings f1 and f2:

f1 : Sn → V1(G), (41)

f2 : T n → V2(G), (42)

2. A decoder mapping:

g : E(G) → Sn × T n, (43)

3. A performance measure given by the probability of error:

τ = Pr
[
{g(f1(Sn), f2(Tn)) 6=(Sn, Tn)} ∩ {(f1(Sn), f2(Tn))∈E(G)}

]
+ Pr

[
(f1(S

n), f2(T
n)) /∈E(G)

]
. (44)

Note that the rationale for choosing the above performance measure is the following. Since a channel coder for a

multiple access channel with correlated messages provides guarantees on the probability of error only if the message

pair belongs to a graph of certain parameters and no guarantees will be given otherwise, the source coder has to

take this event into account while calculating the probability that the reconstruction source vectors are not equal

to the vectors observed by the encoders.

Definition 14 A tuple of rates (R1, R2, R
′
1, R

′
2) is said to be achievable for a distributed source coding problem

with correlated sources (S, T ), if for any ε > 0, and for all sufficiently large n, there exists a bipartite graph

G with parameters (∆1,∆2,∆
′
1,∆

′
2, µ) and an associated (n, τ)-transmission system as defined above satisfying:

1
n

log ∆i < Ri + ε, 1
n

log ∆′
i < R′

i + ε for i = 1, 2, 1
n

logµ < ε and the corresponding average probability of error

τ < ε.
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The goal is to find the achievable rate region RDS which is the set of all achievable tuple of rates (R1, R2, R
′
1, R

′
2).

An achievable rate region RDS is given by the following theorem, which is the main result.

Theorem 3 The achievable rate region for a distributed source coding problem with correlated sources (S, T ) is

given by the set of all (R1, R2, R
′
1, R

′
2) such that

R1 ≥ H(S|T ), (45)

R2 ≥ H(T |S), (46)

R1 +R2 ≥ H(S, T ), (47)

R1 +R′
2 = R′

1 +R2 ≥ H(S, T ). (48)

Remark 3 In Theorem 3, as in Theorems 1 and 2, there are limitations. The theorem gives only a partial char-

acterization of the set of all nearly semi-regular bipartite graphs that can be used to represent the given pair of

correlated sources. As in channel coding, in the above formulation of the achievable rate region, we have the freedom

to select the message-graph for every block-length n.

5.2 Proof of Theorem 3

In this section, we present the proof of the main result. We use the random binning technique used by Berger [28],

and the notion of strongly jointly typical sequences. First, we will prove the direct coding theorem. Let us consider

a fixed joint distribution p(s, t) on S × T . Also fix ε > 0 and real numbers R1, R2. Without loss of generality, let

us assume that Ri < H(S, T ) for i = 1, 2. Let R′
1 = H(S, T ) −R2 and R′

2 = H(S, T ) −R1.

Bin generation: Let us define α = 2n(H(S)−R1+γ) and β = 2n(H(T )−R2+γ) where γ will be specified shortly1. Draw

α sequences Sn of length n independently and uniformly with replacement from the strongly ε-typical set A
(n)
ε (S).

Then, put the all selected α sequences into a bin named B1. Repeat the same procedure 2nR1 times independently,

resulting in 2nR1 bins denoted by Bi for i ∈ {1, 2, . . . , 2nR1}. Similarly, generate 2nR2 bins denoted by Cj for

j ∈ {1, 2, . . . , 2nR2}, where each bin contains β sequences T n, from the strongly ε-typical set A
(n)
ε (T ).

Graph generation: As shown in Figure 9, we can associate a bipartite graph G with the bin indexes i and j of the

generated bins Bi and Cj where (i) Vi(G) = {1, 2, . . . , 2nRi} for i = 1, 2, (ii) ∀(i, j) ∈ V1(G) × V2(G), (i, j) ∈ E(G)

if there exists a strongly jointly ε-typical sequence pair (Sn, Tn) ∈ Bi × Cj .

Encoding error events: As done in the previous section regarding channel coding for the multiple access channel,

before we proceed further, let us make sure the generated codebooks satisfy certain properties. If the vertexes of G

do not satisfy certain degree requirements, we may not be able to reliably represent the sources using this graph.

So, an encoding error will be declared if either one of the following events occurs. For this, let us define a continuous

function ε1(ε) [8] as follows: ε1(ε) → 0 as ε→ 0 and

1Note that this is a standard technique which uses a slack parameter to construct random bins from typical sets [28].
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Figure 9: A bin-index graph (message-graph) generation from the pair of correlated sources (S, T ).

• 2n(H(S)−ε1(ε)) ≤ |A(n)
ε (S)| ≤ 2n(H(S)+ε1(ε))

• 2n(H(T )−ε1(ε)) ≤ |A(n)
ε (T )| ≤ 2n(H(T )+ε1(ε)).

Choose γ > ε1(ε), and ε′ such that ε′ > 2γ + 3ε1(ε). The error events are defined as:

• E1: ∃i ∈ V1(G) such that
∣
∣ 1
n

log degG,1(i) −R′
2

∣
∣ > ε′,

• E2: ∃j ∈ V2(G) such that
∣
∣ 1
n

log degG,2(j) −R′
1

∣
∣ > ε′,

We now show that the probability of these events can be made arbitrarily small for sufficiently large n. To

bound these probabilities we first need the following lemma about a technical result.

Lemma 5 Suppose U and V are two correlated finite-alphabet random variables with joint distribution p(u, v). For

any ε > 0 and any positive real numbers R1 and R2 such that R1 +R2 > I(U ;V ), if two collections of sequences CU
and CV are generated with uniform distribution (with replacement) on the typical sets A

(n)
ε (U) and A

(n)
ε (V ) of size

2nR1 and 2nR2 , respectively, then the probability Pε(n) of not finding any jointly strongly ε-typical pair from these

collections satisfies the following relation:

lim
n→∞

− 1

n
logPε(n) = ∞. (49)

Proof: The proof of Lemma 5 is long and technical in nature, hence omitted.

Lemma 6 Let us define two events E0,1 and E0,2 as follows: E0,1 : ∃i ∈ V1(G) such that degG,1(i) < 2n(H(S,T )−R1−ε
′)

and E0,2 : ∃j ∈ V2(G) such that degG,2(j) < 2n(H(S,T )−R2−ε
′). Then for any ε > 0, and sufficiently large n:

P{E0,i} <
ε

12
, for i = 1, 2 (50)

Proof: Refer to Appendix G.
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Lemma 7 Let us define two events E∗
0,1 and E∗

0,2 as follows: E∗
0,1 : ∃i ∈ V1(G) such that degG,1(i) > 2n(H(S,T )−R1+ε

′),

and E∗
0,2 : ∃j ∈ V2(G) such that degG,2(i) > 2n(H(S,T )−R2+ε

′). Then for any ε > 0, and sufficiently large n:

P{E∗
0,i} <

ε

12
, for i = 1, 2 (51)

Proof: Refer to Appendix H.

So, by Lemma 6 and Lemma 7, with high probability we can obtain a bipartite message-graph G where each

vertex in V1(G) has degree nearly equal to 2n(H(S,T )−R1) and each vertex in V2(G) has degree nearly equal to

2n(H(S,T )−R2).

Choosing message-graphs: If any of E1 or E2 occurs, then choose any graph with parameters (2nR1 , 2nR2 ,

2nR
′

1 , 2nR
′

2 , 2nε
′

) as the message-graph GM , and no guarantees will be given regarding the probability of error. If

none of these events occur, then choose G as the message graph GM .

Encoding: Define an encoding function f1(S
n) as follows. If a source sequence Sn belongs to at least one of the

bins (Bi’s), then f1(S
n) is the smallest index i such that Sn ∈ Bi; otherwise f1(S

n) = 0. For the other source

sequence T n, f2(T
n) can be similarly defined, i.e., f2(T

n) is the smallest index j such that T n ∈ Cj ; otherwise

f2(T
n) = 0.

Decoding: Given the received index pair (i0, j0), declare the reconstruction pair g(i0, j0) as (ŝn, t̂n) if there exists

a unique pair of sequences (ŝn, t̂n) such that (ŝn, t̂n) ∈ Bi0 × Cj0 and strongly jointly ε-typical. Otherwise, declare

an error.

Probability of error analysis: Let E denote the event

({g(f1(Sn), f2(T
n)) 6= (Sn, Tn)} ∩ {(f1(Sn), f2(Tn)) ∈ E(GM )}) ∪ {(f1(Sn), f2(Tn)) 6∈ E(GM )}, (52)

that the index pair transmitted by the encoders do not belong to E(GM ), or that the reconstruction vector pair is

not equal to the source vector pair with the transmitted index pair belonging to E(GM ). The probability of error

P (E) can be given by

P (E) = P (E1 ∪ E2)P (E|E1 ∪ E2) + P (E ∩Ec1 ∩ Ec2) (53)

≤ P (E1 ∪ E2) + P (E ∩ Ec1 ∩ Ec2) (54)

The second probability in the above equation can be bounded as given in the following lemma.

Lemma 8 For any ε > 0, and sufficiently large n,

P (E ∩Ec1 ∩ Ec2) ≤
2ε

3
(55)
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provided

R1 > H(S|T ) + 2γ + 2ε1, (56)

R2 > H(T |S) + 2γ + 2ε1, (57)

R1 +R2 > H(S, T ) + 2γ + 2ε1, (58)

Proof: Refer to Appendix I.

Therefore P (E) < ε for sufficiently large n and under the conditions given by the theorem. As in the previous

section, in every realization of random codebooks, we have obtained a message-graph GM with the same constraint

on its parameters, and averaged over this ensemble, we have made sure that the probability of error is within the

tolerance level of ε. Hence the proof of the direct coding theorem is completed.

The converse part of Theorem 3 can be obtained using techniques that are similar to those used in the Slepian-

Wolf source coding theorem [8]. The only difference is that the messages are correlated. The proof is given in

Appendix J.

5.3 Different Message-Graphs for a pair of Correlated Sources (S, T )

To shed more light on the representation of sources into nearly semi-regular graphs, let us consider the following

illustration shown in Figure 10. Consider three important points A, B, and C in the shaded area in Figure 10. We

Figure 10: Achievable rate region where each point (R1, R2) can be associated with a different message-graph that represents
the pair of correlated sources (S, T ) for transmission over multiple access channels.

can make the following observations.

• Point A: In this case, the the achievable rate tuple is (H(S), H(T ), H(S|T ), H(T |S)). Roughly speaking, this

corresponds to the typicality-graph of (S, T ). In other words, this is an efficient representation of the source

that has maximum redundancy in the conventional sense. For this point, in the direct coding theorem, the

bin size that is used is roughly unity.

• Point B: In this case, the achievable rate tuple is (H(S), H(T |S), H(S), H(T |S)). Roughly speaking, this is

an efficient representation of the source that has least redundancy in the conventional sense. For this point,
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in the direct coding theorem, the bin sizes that are used are roughly unity and 2nI(S;T ), respectively. In this

case we get a nearly complete graph.

Hence Point A can be thought of as situated at one end of the spectrum, and points on the line BC as situated on

the other end of the spectrum. For every point in the triangle ABC, we get an equally efficient representation of

the sources into a nearly semi-regular graph.

6 Examples and Interpretations

6.1 End-to-End Performance

In the previous sections, we have considered a discrete interface to transmit correlated sources over multiple access

channels. The main idea is that we can send these source more reliably and efficiently by exploiting the correlation

structure in the given sources without merging the source coding and the channel coding blocks. We use a nearly

semi-regular bipartite graph as an interface between source coding and channel coding to capture and translate

the correlation from the sources to the channel inputs. Now if one considers the overall end-to-end performance,

the performance bound given by the theorems of the previous sections is that H(S, T ) < I(X1, X2;Y ). Using the

max-flow-min-cut theorems [8], clearly one can see that this the best that one can hope for.

6.2 Gaussian Multiple Access Channel

The coding theorem given in the previous section can be extended to continuous-alphabet sources using the standard

techniques [29, 30]. Consider the Gaussian multiple access channel with the channel input distribution being jointly

Gaussian. There are two senders and one receiver. Each of the inputs has a power constraint, given by E[X 2
i ] ≤ Pi

for i = 1, 2. The received signal Y is given by

Y = X1 +X2 + Z (59)

where Z is zero mean Gaussian random variable with variance N , denoted by Z ∼ N (0, N), and X1 and X2 are

zero mean jointly Gaussian random variables with covariance matrix K given by

K =

[
P1 ρ

√
P1P2

ρ
√
P1P2 P2

]

(60)

where ρ is the correlation coefficient. By evaluating the information quantities, we can obtain the following achievable

rate region

R1 ≤ I(X1;Y,X2) =
1

2
log

(
1

1 − ρ2
+
P1

N

)

(61)

R2 ≤ I(X2;Y,X1) =
1

2
log

(
1

1 − ρ2
+
P2

N

)

(62)

R1 +R2 ≤ I(X1, X2;Y ) + I(X1;X2) =
1

2
log

[
1

1 − ρ2

(

1 +
P1 + P2 + 2ρ

√
P1P2

N

)]

(63)

R′
i ≤ Ri − I(X1;X2) = Ri −

1

2
log

1

(1 − ρ2)
, (64)
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where 0 ≤ ρ ≤ ρmax, and ρmax is the maximum value of ρ within the interval [0, 1] such that

(
P1 + P2 + 2ρ

√
P1P2 +N

)
(1 − ρ2)

(1 − ρ2) (max{P1, P2}) +N
≥ 1. (65)

The variation of the information quantities and the pair (R1, R2) as functions of the correlation coefficient ρ are
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Figure 11: Variation of information quantities and the corresponding rates associated with the Gaussian multiple access
channel as functions of the correlation coefficient ρ, for P1 = P2 = 10 and N = 1. ρmax = 0.9877.

plotted in Figure 11 and 12 for a particular choice of P1 = P2 = 10 and N = 1. Note that as ρ varies from zero to

one, mutual information I(X1;X2) increases from zero to ∞.

If X1 and X2 are independent, i.e., ρ = 0, this gives the well known capacity region of Gaussian multiple access

channel with independent messages, which is the set of rate (R1, R2) pairs satisfying

R1 <
1

2
log

(

1 +
P1

N

)

, R2 <
1

2
log

(

1 +
P2

N

)

, R1 +R2 <
1

2
log

(

1 +
P1 + P2

N

)

. (66)

When ρ is less than about 0.9, as ρ become larger, R1 increases very slowly, but R2 increases rapidly. So the corner

point B in Figure 12 moves almost upward in the (R1, R2) plane. When the roles of sender 1 and sender 2 are

exchanged, the corner point C in Figure 12 moves almost rightwards. When ρ ≈ 0.9, R1 and R2 have almost the

same value, so the capacity region has a square shape. After that point both R1 and R2 increase very fast for

ρ > 0.9, but R1 become larger than R2 again.

To get a picture of the variation of the entire rate region as a function of the correlation coefficient ρ, let us

consider a special case where P1 = P2 = P , R1 = R2 = R and R′
1 = R′

2 = R′ for the same Gaussian multiple access

channel with jointly Gaussian channel input. In this case, an achievable rate region is the set of rate pairs (R,R′)
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satisfying

R ≤ 1

4
log

[
1

1 − ρ2

(

1 +
2P + 2ρP

N

)]

, (67)

R′ ≤ R− 1

2
log

(
1

1 − ρ2

)

. (68)

The boundary of the achievable rate region is thus given by

(R,R′) =

(
1

4
log

[
1

1 − ρ2

(

1 +
2P + 2ρP

N

)]

,
1

4
log

[

(1 − ρ2)

(

1 +
2P + 2ρP

N

)])

. (69)

Note that for this case, ρmax is a monotone increasing function of P/N , approaching 1 as P/N → ∞.

If X1 and X2 are independent, i.e., ρ = 0, this gives the well known capacity region of the Gaussian multiple

access channel with independent messages, which is the set of rate pairs (R,R′) satisfying

R ≤ 1

4
log

(

1 +
2P

N

)

, R′ = R. (70)

The achievable rate region is illustrated in Figure 13 as a function of the correlation coefficient. Using the boundary

values for R and R′ as given by (69), we get the bound for R+R′, which is given by

R+R′ <
1

2
log

(

1 +
2P (1 + ρ)

N

)

. (71)

We can use separate source and channel coding in order to send the same correlated messages over the Gaussian

multiple access channel. In this case, we apply Slepian-Wolf source coding on the given correlated messages to
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Figure 13: Variation of R and R′ versus correlation coefficient ρ, for different signal to noise ratios.

transform them into new independent messages. This is followed by conventional multiple access channel coding,

working on these new and transformed independent messages. For the same Gaussian multiple access channel, we

consider the case where P ′ is the power constraint on the inputs, and the rates of the two encoders are the same.

According to the Slepian-Wolf theorem (see Section 2.2), we can encode the given correlated message-graph into

two messages of length nR and nR′. Using time-sharing, we can now assume that each encoder of the channel

coding module has access to an independent message of length (nR + nR′)/2. If we now use the given multiple

access channel n times, and use conventional multiple access channel coding, the transmission power required to

sustain reliable communication is given by

P ′ =
N

2

[

22(R+R′) − 1
]

. (72)

Now if we substitute for R and R′, the values on the boundary of achievable rate region given by Theorem 1, then

we get

P ′ = P (1 + ρ). (73)

Now we can compare the two different schemes for sending correlated messages over the Gaussian multiple access

channel. One is a coding scheme with correlated codewords which exploits the existing message correlation, the

other is separate source and channel coding, working with independent codewords after applying Slepian-Wolf source

coding. In order to have the same achievable rates in both schemes, we have the condition that P ′ = (1 + ρ)P > P

if we choose a positive correlation coefficient. This means that if the given messages are not correlated, i.e., ρ = 0,

then the required power in both schemes are exactly the same, but if the messages are correlated with ρ > 0, as
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expected, we can send the same amount of information with less power by encoding with correlated codewords.

6.3 Example of Binary-Input Multiple Access Channel of Section 2.4

Let us revisit the example considered in Section 2.4 that shows that error-free transmission of the given correlated

sources over the given binary-input multiple access channel is possible with the special code X1 ≡ S and X2 ≡ T .

This can be considered as a match between the typicality-graph of the source and that of the channel input, i.e.,

a match between message-graph and the graph associated with the channel code. So by applying the theorem, we

can calculate the achievable rate region for this case.

I(X1;X2) = log 3 − 4

3
' 0.2516. (74)

I(X1, X2;Y ) = log 3 ' 1.5850 (75)

Since the system is symmetric with respect to the two encoders, the achievable rate region (for the symmetric

case) is given by

R ≤ 1

2
[I(X1, X2;Y ) + I(X1;X2)] ' 0.9183, (76)

R′ ≤ R− 0.2516. (77)

Clearly R = 0.9183 and R′ = 0.6667 is on the boundary of the given achievable rate region. It can be easily seen

that H(S) = H(T ) = 0.9183 and H(S|T ) = H(T |S) = 0.6667. Thus, while Sender 1 sends at a rate R1 = 0.9183,

Sender 2 also can send at a rate R2 = 0.9183, along as their messages are correlated. This means that all the

typical sequences of S and T can be sent over the channel without any error. In other words, the channel code

is the jointly strongly ε-typical set of (X1, X2) (with distribution as given above), and the message-graph is just

a relabeled version of the typicality graph of the source (S, T ). Hence there is a match between the two. Here

H(S, T ) = I(X1, X2;Y ).

6.4 An Interpretation of Cover, El Gamal and Salehi’s Coding [10] with Graphs

For multiple access channels with correlated sources, Cover, El Gamal and Salehi [10] gave a coding theorem, by

considering direct mapping of source symbols into channel input symbols. In this section, we interpret their coding

scheme (denoted by CES coding) by using bipartite graphs. We show that CES coding can be interpreted as

instances where typicality graph of the given correlated sources is a subset of the typicality graph of some channel

input distribution. In other words matching of the message-graph with the graph associated with the channel code.

Following Section 2.3, first note that the channel input distribution must obey the Markov chain X1 → S → T →
X2 for successful transmission. In CES coding, for a given source sequence pair (sn, tn), channel inputs xn1 and xn2 are

generated from
∏n
i=1 p1(x1i|si) and

∏n
i=1 p2(x2i|ti), respectively. So, for each jointly typical sequence pair (sn, tn),

a corresponding channel input pair (xn1 , x
n
2 ) can be generated. In particular, this pair (xn1 , x

n
2 ) ∈ A

(n)
ε (X1, X2) with

high probability by the Markov Lemma [8, 28].
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Roughly speaking, for every sequence sn ∈ A
(n)
ε (S), one can obtain a sequence xn1 (sn) ∈ A

(n)
ε (X1). Similarly for

every sequence vn ∈ A
(n)
ε (T ), one can obtain xn2 (tn) ∈ A

(n)
ε (X2). Further, for nearly every pair (sn, tn) ∈ A

(n)
ε (S, T ),

the corresponding pair (xn1 (sn), xn2 (tn)) ∈ A
(n)
ε (X1, X2). Hence the typicality graph of (X1, X2) nearly covers the

typicality graph of (S, T ). One can now imagine a discrete interface with a message-graph which is essentially a

relabeled version of the typicality graph of (S, T ). Now the sources can be distributively mapped to the edges in this

graph. Nearly every edge in this graph can be reliably communicated to the joint receiver by transmitting channel

input sequence pair that is jointly strongly ε-typical.

7 Conclusion

We have considered a multiterminal communication system with correlated information sources being transmitted

reliably over a multiple access channel. We have considered bipartite undirected nearly semi-regular graphs as

digital interfaces that can capture the correlation between sources. This leads to a modular architecture involving

two components: a channel coding component and a source coding component. Correlated sources are first mapped

into such graphs, and the edges coming from these graphs are reliably transmitted over a multiple access channel.

We have given a partial characterization of the set of all graphs that can be used to represent a given pair of

correlated sources, and similarly given a partial characterization of the set of all graphs such that edges coming

those graphs are reliably transmitted over a given multiple access channel. We have applied our analysis to two

examples, one involving the Gaussian multiple access channel and the other involving binary-input multiple access

channel to corroborate the claims made.

Appendix

A Detailed Explanation of Graphs in K4,2

Let us consider a graph in the subset S1 as shown in Figure 7. If we permute and relabel the left vertexes of the

graph in the same way as explained previously, then we get 4! = 24 distinct graphs belonging to a set A such that

A ⊂ S1. Now let us do this operation on the right vertexes. By changing the right vertexes 1 and 2 in the graph, we

can get a graph in the subset B such that A and B are disjoint and B ⊂ S1. Similarly by permuting and relabeling

the left vertexes again, we can obtain all the distinct graphs in B. By changing the right vertexes 2 and 3 in the

graph, we can get another graph in the subset C such that A,B and C are disjoint and C ⊂ S1 . So, we can obtain

all the graphs in S1 in this way.

Up to now, we could generate a total of 72 distinct graphs in the set K4,2. Note that even after we permute

the right and the left vertexes of the original graph in S1, we can not get the graph for which the edges belong

to the set given by {(1, 3), (2, 4), (1, 3), (2, 4)}. This means that there are some graphs in K4,2 which can not be

obtained from a graph in the subset S1 by just permutation and relabeling. Now consider the graph shown in the

right side of Figure 7. This is one of the graph in the subset S2, for which the edges belong to the set given by

{(1, 3), (2, 4), (1, 3), (2, 4)}. If we permute and relabel the left vertexes, then we can obtain 4!
2!2! = 6 distinct graphs.
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Similarly, we can obtain all the remaining distinct 18 graphs in K4,2 by changing the right vertexes of the graph.

Hence we can obtain all the remaining 18 graphs in the subset S2 as well.

B Proof of Lemma 1

Let Z = {(i, j) : (Xn
1 (i), Xn

2 (j)) ∈ A
(n)
ε (X1, X2)}. Then,

|Z| =

2nR1
∑

i=1

2nR2
∑

j=1

ψ(i, j) (78)

where ψ(i, j) =

{

1, if (Xn
1 (i), Xn

2 (j)) ∈ A
(n)
ε (X1, X2),

0, otherwise.
(79)

From the property of strongly jointly typical sequences given in (30),

E|Z| =

2nR1
∑

i=1

2nR2
∑

j=1

P{(Xn
1 (i), Xn

2 (j)) ∈ A(n)
ε } (80)

≤ 2nR12nR22−n(I(X1;X2)−δ1(ε)), (81)

where P{(Xn
1 (i), Xn

2 (j)) ∈ A
(n)
ε } ≤ 2−n(I(X1;X2)−δ1(ε)), and δ1(ε) → 0 as ε → 0. So, by applying the Markov’s

inequality,

P{|Z| > 2n(I(X1,X2;Y )−δ(ε)−ε)} ≤ E|Z|
2n(I(X1,X2;Y )−δ(ε)−ε)

(82)

≤ 2n(R1+R2−I(X1,X2;Y )−I(X1;X2)+δ(ε)+δ1(ε)+ε) (83)

Thus, for sufficiently large n,

P (E0) = P{|Z| > 2n(I(X1,X2;Y )−δ(ε)−ε)} < ε

7
(84)

provided R1 +R2 < I(X1, X2;Y ) + I(X1;X2) − δ(ε) − δ1(ε) − ε. �

C Proof of Lemma 2

Partition the codebook C2 uniformly into bins B2(i), i = 1, 2, . . . , 2n(R2−I(X1;X2)−δ(ε)−ε) with the same size

2n(I(X1;X2)+δ(ε)+ε). Similarly, Partition the codebook C1 uniformly into binsB1(j), j = 1, 2, . . . , 2n(R1−I(X1;X2)−δ(ε)−ε)

with the same size 2n(I(X1;X2)+δ(ε)+ε).

The event E0,1 can be considered as

E0,1 =

2nR1
⋃

i=1

E0,1(i) (85)

where E0,1(i) is the event that for a particular (random) Xn
1 (i) ∈ C1, degG,1(X

n
1 (i)) < 2n(R2−I(X1;X2)−δ(ε)−ε). The

event E0,1(i) can be expressed as

E0,1(i) ⊂
2n(R2−I(X1;X2)−δ(ε)−ε)

⋃

j=1

E0,1(i, j) (86)
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where E0,1(i, j) is the event that for a particular (random) Xn
1 (i) ∈ C1 and ∀Xn

2 ∈ B2(j), (Xn
1 (i), Xn

2 ) /∈
A

(n)
ε (X1, X2). So, by using the union bound, the probability of this event P (E0,1(i)) can be bounded as:

P (E0,1(i)) ≤ P





2n(R2−I(X1;X2)−δ(ε)−ε)
⋃

j=1

E0,1(i, j)



 (87)

≤
2n(R2−I(X1;X2)−δ(ε)−ε)

∑

j=1

P (E0,1(i, j)) (88)

(a)

≤ 2n(R2−I(X1;X2)−δ(ε)−ε)
[

1 − 2−n(I(X1,X2)+δ(ε))
]2n(I(X1;X2)+δ(ε)+ε)

(89)

(b)

≤ 2n(R2−I(X1;X2)−δ(ε)−ε)2−2nε

(90)

where

(a) is from the property of strongly jointly ε-typical sequences [8],

(b) follows from Lemma 13.5.3 in [8]: for 0 ≤ x, y ≤ 1, n > 0, (1 − xy)n ≤ 1− x+ 2−yn.

Therefore, for sufficiently large n, the probability of the event E0,1 can be bounded by applying the union bound:

P (E0,1) ≤
2nR1
∑

i=1

P (E0,1(i)) (91)

≤ 2nR12n(R2−I(X1;X2)−δ(ε)−ε)2−2nε

(92)

= 2n(R1+R2−I(X1;X2)−δ(ε)−ε)−2nε

(93)

(c)

≤ ε

14
(94)

where (c) is from the fact that n(R1 +R2 − I(X1;X2)− δ(ε)− ε) is polynomially increasing but 2nε is exponentially

increasing as n increases.

In a similar way, we can also show that P (E0,2) <
ε
14 for sufficiently large n. �

D Proof of Lemma 3

The event E∗
0,1 can be expressed as

E∗
0,1 =

2nR1
⋃

i=1

E∗
0,1(i) (95)

where E∗
0,1(i) is the event that for a particular (random) Xn

1 (i) ∈ C1, degG,1(X
n
1 (i)) > 2n(R2−I(X1;X2)+δ(ε)+ε).

For a particular (random) Xn
1 (i) ∈ C1, let the random set S = {Xn

2 ∈ C2 : (Xn
1 (i), Xn

2 ) ∈ A
(n)
ε (X1, X2)}. Then,

|S| =

2nR2
∑

j=1

ψ(j), where ψ(j) =

{

1, if (Xn
1 (i), Xn

2 (j)) ∈ A
(n)
ε (X1, X2),

0, otherwise.
(96)

Then,

P{E∗
0,1(i)} = P{|S| > 2n(R2−I(X1;X2)+δ(ε)+ε)

︸ ︷︷ ︸

,a

} (97)
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(a)
< e−atE{et|S|} (98)

for any t > 0 where (a) follows from the Chernoff bound [8]. Now we calculate an upper bound for P{E∗
0,1(i)}. Let

xn1 [l] be the l-th sequence (using some ordering) in A
(n)
ε (X1).

E{et|S|} = E

{

exp
(

t

2nR2
∑

j=1

ψ(j)
)}

(99)

= E

{ 2nR2
∏

j=1

etψ(j)

}

(100)

=

|A(n)
ε (X1)|
∑

l=1

Pr{Xn
1 (i) = xn1 [l]}E

{ 2nR2
∏

j=1

etψ(j)

∣
∣
∣
∣
Xn

1 (i) = xn1 [l]

}

(101)

(∗)
=

|A(n)
ε (X1)|∑

l=1

1

|A(n)
ε (X1)|

2nR2
∏

j=1

E

{

etψ(j)

∣
∣
∣
∣
Xn

1 (i) = xn1 [l]

}

(102)

where (∗) is from the fact that ψ(j)’s are independent when the outcome of Xn
1 (i) is fixed.

Let us denote pj = P{ψ(j) = 1|Xn
1 (i) = xn1 [l]}. Then,

E{etψ(j)|Xn
1 (i) = xn1 [l]} = etpj + 1 · (1 − pj) (103)

= 1 − pj(1 − et) (104)

≤ e−pj(1−e
t) since 1 − x ≤ e−x. (105)

So,

2nR2
∏

j=1

E{etψ(j)|Xn
1 (i) = xn1 [l]} ≤

2nR2
∏

j=1

epj(e
t−1) (106)

= exp

{

(et − 1)

2nR2
∑

j=1

pj

}

(107)

= exp

{

(et − 1)E
{
|S|

∣
∣Xn

1 (i) = xn1 [l]
}

}

(108)

Then,

E{et|S|} ≤
|A(n)

ε (X1)|
∑

l=1

1

|A(n)
ε (X1)|

exp

{

(et − 1)E
{
|S|

∣
∣Xn

1 (i) = xn1 [l]
}

}

(109)

(a)

≤ exp

{

(et − 1)2n(R2−I(X1;X2)+δ(ε))

}

(110)

where (a) follows from the following inequality:

E
{
|S|

∣
∣Xn

1 (i) = xn1 [l]
}

=

2nR2
∑

j=1

P{ψ(j) = 1|Xn
1 (i) = xn1 [l]} ≤ 2nR22−n(I(X1;X2)−δ(ε)) ≤ 2n(R2−I(X1;X2)+δ(ε)). (111)

Therefore, for t > 0,

P{E∗
0,1(i)} ≤ e−atexp

{

(et − 1)2n(R2−I(X1;X2)+δ(ε))

}

(112)
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= exp

{

− at+ (et − 1) 2n(R2−I(X1;X2)+δ(ε))
︸ ︷︷ ︸

, b

}

(113)

To get a tighter upper bound, let us denote f(t) = −at + b(et − 1), for t > 0. Then, f ′(t) = −a + bet and

f ′′(t) = bet > 0. So, f(t) has the minimum value when t = ln
(
a
b

)
.

Thus, P{E∗
0,1(i)} is bounded as

P{E∗
0,1(i)} ≤ exp

{

− a ln
(a

b

)

+ a− b

}

. (114)

Note that a = 2n(R2−I(X1;X2)+δ(ε)+ε) and b = 2n(R2−I(X1;X2)+δ(ε)).

So,

P{E∗
0,1(i)} ≤ exp

{

− 2n(R2−I(X1;X2)+δ(ε)) [2nε ln(2nε) − 2nε + 1]

}

(115)

= exp

{

− 2n(R2−I(X1;X2)+δ(ε))η

}

(116)

where η = 2nε ln(2nε) − 2nε + 1. Here, η > 0 since f(x) = x ln(x) − x + 1 is increasing function of x and f(x) > 0

for x > 1.

Therefore, for sufficiently large n, by applying the union bound,

P{E∗
0,1} = P

{ 2nR1
⋃

i=1

E∗
0,1(i)

}

(117)

≤
2nR1
∑

i=1

P{E∗
0,1(i)} (118)

≤ 2nR1exp
{
− 2n(R2−I(X1;X2)+δ(ε))η

}
(119)

= exp
{
nR1 ln 2 − 2n(R2−I(X1;X2)+δ(ε))η

}
(120)

(a)
<

ε

14
(121)

provided R2 > I(X1;X2)−δ(ε), where (a) is from the fact that nR1 ln 2 is linearly increasing but 2n(R2−I(X1;X2)+δ(ε))

is exponentially increasing as n increases.

In a similar way, we can also show that P{E∗
0,2} < ε

14 for sufficiently large n. �

E Proof of Lemma 4

Now let us calculate the probability P (E∩Ec0∩Ec1∩Ec2). Without loss of generality, let us select an edge, k ∈ E(G),

assuming that the corresponding message pair is transmitted. In other words, a codeword pair (Xn
1 (ik), X

n
2 (jk)) is

transmitted. For a fixed k, consider the following error events;

E3 : (Xn
1 (ik), X

n
2 (jk), Y

n) /∈ A
(n)
ε (X1, X2, Y ),

E4 : ∃j′ 6= jk such that (Xn
1 (ik), X

n
2 (j′), Y n) ∈ A

(n)
ε (X1, X2, Y ),

E5 : ∃i′ 6= ik such that (Xn
1 (i′), Xn

2 (jk), Y
n) ∈ A

(n)
ε (X1, X2, Y ),
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E6 : ∃i′ 6= ik, j
′ 6= jk such that (Xn

1 (i′), Xn
2 (j′), Y n) ∈ A

(n)
ε (X1, X2, Y ).

P (E ∩Ec0 ∩ Ec1 ∩ Ec2) = P
(
∪6
i=3Ei ∩Ec0 ∩ Ec1 ∩ Ec2

)
(122)

≤
6∑

i=3

P (Ei ∩Ec0 ∩ Ec1 ∩ Ec2) (123)

By the property of jointly typical sequences [8], P (E3 ∩ Ec0 ∩ Ec1 ∩ Ec2) <
ε
7 for sufficiently large n. For any

xn1 ∈ A
(n)
ε (X1), let A

(n)
ε (X2|xn1 ) denote the set of sequences in X n

2 that are jointly ε-typical with xn1 . Now

P (E4 ∩ Ec0 ∩ Ec1 ∩ Ec2) ≤
∑

j′ 6=jk

P ((Xn
1 (ik), X

n
2 (j′), Y n) ∈ A(n)

ε ) (124)

=
∑

j′ 6=jk

∑

(xn
1 ,x

n
2 ,y

n)∈A
(n)
ε (X1,X2,Y )

|A(n)
ε (X2)|−1|A(n)

ε (X1)|−1Pr(yn|xn1 ) (125)

=
∑

j′ 6=jk

∑

(xn
1 ,x

n
2 ,y

n)∈A
(n)
ε (X1,X2,Y )

|A(n)
ε (X2)|−1|A(n)

ε (X1)|−1

|A(n)
ε (X2|xn1 )|

∑

xn
2 ∈A

(n)
ε (X2|xn

1 )

pnY |X1,X2
(yn|xn1 , xn2 )

(126)

≤
∑

j′ 6=jk

∑

(xn
1 ,x

n
2 ,y

n)∈A
(n)
ε (X1,X2,Y )

|A(n)
ε (X2)|−1|A(n)

ε (X1)|−1
∑

xn
2 ∈A

(n)
ε (X2|xn

1 )

22nε1pnY,X2|X1
(yn, xn2 |xn1 )

(127)

≤
∑

j′ 6=jk

∑

(xn
1 ,x

n
2 ,y

n)∈A
(n)
ε (X1,X2,Y )

|A(n)
ε (X2)|−1|A(n)

ε (X1)|−1pnY |X1
(yn|xn1 )22nε1 (128)

≤ 2nR2 |A(n)
ε (X1, X2, Y )|2−n(H(X2)−ε1)2−n(H(X1)−ε1)2−n(H(Y |X1)−2ε1)22nε1 (129)

≤ 2nR22−n(H(X2)+H(X1 ,Y )−H(X1,X2,Y )−7ε1) (130)

= 2n(R2−I(X2;X1,Y )+7ε1) (131)

where we have used the fact that ∀xn2 ∈ A
(n)
ε (X2|xn1 ), we have

|A(n)
ε (X2|xn1 )|−1 ≤ 22nε1pnX2|X1

(xn2 |xn1 ), (132)

and ε1(ε) → 0 as ε→ 0. Similarly,

P (E5 ∩Ec0 ∩ Ec1 ∩ Ec2) ≤ 2n(R1−I(X1;X2,Y )+7ε1), (133)

P (E6 ∩ Ec0 ∩ Ec1 ∩ Ec2) =
∑

i′ 6=ik

∑

j′ 6=jk

P ((Xn
1 (i′), Xn

2 (j′), Y n) ∈ A(n)
ε ) (134)

≤ 2nR12nR2 |A(n)
ε |2−n(H(X1)−ε1)2−n(H(X2)−ε1)2−n(H(Y )−3ε1) (135)

≤ 2n(R1+R2)2−n(H(X1)+H(X2)+H(Y )−H(X1,X2,Y )−6ε1) (136)

= 2n(R1+R2−I(X1,X2;Y )−I(X1;X2)+6ε1) (137)

So,

P (E4 ∩ Ec0 ∩ Ec1 ∩ Ec2) ≤ 2n(R2−I(X1,Y ;X2)+7ε1) <
ε

7
, (138)
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P (E5 ∩ Ec0 ∩ Ec1 ∩ Ec2) ≤ 2n(R1−I(X2,Y ;X1)+7ε1) <
ε

7
, (139)

P (E6 ∩ Ec0 ∩ Ec1 ∩ Ec2) ≤ 2n(R1+R2−I(X1,X2;Y )−I(X1;X2)+7ε1) <
ε

7
, (140)

for sufficiently large n, if R1 and R2 satisfies the conditions given in (37), (38) and (39). Hence, the proof of Lemma

4 has been completed. �

F Proof of Theorem 2

Since the message pairs are equally likely, and because of the conditions imposed on the degrees of the vertexes of

the message-graph, we have,

n(R1 +R′
2) ≤ H(W1,W2) + logµ (141)

= I(W1,W2;Y
n) +H(W1,W2|Y n) + logµ (142)

(a)

≤ I(W1,W2;Y
n) + nεn + log µ (143)

(b)

≤ I(Xn
1 (W1), X

n
2 (W2);Y

n) + nεn + logµ (144)

= H(Y n) −H(Y n|Xn
1 (W1), X

n
2 (W2)) + nεn + logµ (145)

(c)
= H(Y n) −

n∑

i=1

H(Yi|Y i−1, Xn
1 (W1), X

n
2 (W2)) + nεn + logµ (146)

(d)
= H(Y n) −

n∑

i=1

H(Yi|X1i, X2i) + nεn + logµ (147)

(e)

≤
n∑

i=1

H(Yi) −
n∑

i=1

H(Yi|X1i, X2i) + nεn + logµ (148)

=

n∑

i=1

I(X1i, X2i;Yi) + nεn + logµ, (149)

where

(a) follows from Fano’s inequality,

(b) from the data processing inequality,

(c) from the chain rule,

(d) from the fact that Yi depends only on X1i and X2i and is conditionally independent of everything else, and

(e) is obtained from the chain rule and removing conditioning.

Hence we have

R1 +R′
2 ≤ 1

n

n∑

i=1

I(X1i, X2i;Yi) + εn +
1

n
logµ (150)

=
1

n

n∑

q=1

I(X1q , X2q;Yq |Q = q) + εn +
1

n
logµ (151)

= I(X1Q, X2Q;YQ) + εn +
1

n
logµ (152)

= I(X1, X2;Y ) + εn +
1

n
logµ, (153)
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where Q = i ∈ {1, 2, . . . , n} with probability 1
n
, and X1 , X1Q, X2 , X2Q, Y , Y1Q are new random variables

whose distribution depend on Q.

So, for sufficiently large n,

R1 +R′
2 ≤ I(X1, X2;Y ) (154)

for some distribution p(q)p(x1, x2|q)p(y|x1, x2). Similarly, we can prove

R′
1 +R2 ≤ I(X1, X2;Y ) (155)

for some distribution p(q)p(x1, x2|q)p(y|x1, x2). �

G Proof of Lemma 6

The event E0,1 can be considered as

E0,1 =

2nR1
⋃

i=1

E0,1(i) (156)

where E0,1(i) is the event that for a particular i ∈ V1(G), degG,1(i) < 2n(H(S,T )−R1−ε
′).

Let us define super-bins B̃p and C̃q for p = {1, 2, . . . , 2n(H(S,T )−R2−ε
′)} and q = {1, 2, . . . , 2n(H(S,T )−R1−ε

′)},
which is a union of 2n(R2+R1−H(S,T )+ε′) consecutive Bi and Cj bins, respectively. The size of each super-bin B̃p

and C̃q is 2n(R2−H(T |S)+γ+ε′) and 2n(R1−H(S|T )+γ+ε′), respectively.

Then, the event E0,1(i) can be expressed as

E0,1(i) ⊂
2n(H(S,T )−R1−ε′)

⋃

q=1

E0,1(i, q) (157)

where E0,1(i, q) is the event that ∀Sn ∈ Bi and ∀Tn ∈ C̃q , (Sn, Tn) /∈ A
(n)
ε (S, T ). So, by using the union bound the

probability of this event P (E0,1(i)) can be bounded as:

P (E0,1(i)) ≤ P





2n(H(S,T )−R1−ε′)
⋃

q=1

E0,1(i, q)



 (158)

≤
2n(H(S,T )−R1−ε′)

∑

q=1

P (E0,1(i, q)) (159)

(a)

≤ 2n(H(S,T )−R1−ε
′)2−nM (160)

(a) is from the Lemma 5, and from the fact M > 0 is a sufficiently large number satisfying M > H(S, T )− ε′. This

is true because 1
n

log |Bi||C̃q | = I(S;T ) + 2γ + ε′.

Therefore, for sufficiently large n, the probability of the event E0,1 can be bounded by applying the union bound:

P (E0,1) ≤
2nR1
∑

i=1

P (E0,1(i)) (161)

≤ 2nR12n(H(S,T )−R1−ε
′)2−nM (162)
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= 2n(H(S,T )−ε′−M) (163)

(b)

≤ ε

12
. (164)

In a similar way, we can also show that P (E0,2) <
ε
12 for sufficiently large n. �

H Proof of Lemma 7

The event E∗
0,1 can be expressed as

E∗
0,1 =

2nR1
⋃

i=1

E∗
0,1(i) (165)

where E∗
0,1(i) is the event that for a particular i ∈ V1(G), degG,1(i) > 2n(H(S,T )−R1+ε

′).

For a particular random bin Bi, let the random set D = {j : ∃(Sn, Tn) ∈ A
(n)
ε (S, T ) ∩ (Bi × Cj)}. Then,

|D| =

2nR2
∑

j=1

ψ(j), where ψ(j) =

{

1, if ∃(Sn, Tn) ∈ A
(n)
ε (S, T ) ∩ (Bi × Cj),

0, otherwise.
(166)

In particular,

P{ψ(j) = 1} = P{ |{(Sn, Tn) : (Sn, Tn) ∈ A(n)
ε (S, T ) ∩ (Bi × Cj)}| 6= 0} (167)

(c)

≤ 2n(H(S)−R1+γ)2n(H(T )−R2+γ)2−n(I(S;T )−3ε1) (168)

≤ 2n(H(S,T )−R1−R2+2γ+3ε1) (169)

where (c) is obtained by applying the union bound, and from the property of strongly jointly ε-typical sequences [8]:

for a randomly and independently chosen Sn ∈ A
(n)
ε (S) and Tn ∈ A

(n)
ε (T ), for sufficiently large n, the probability

that (Sn, Tn) ∈ A
(n)
ε (S, T ) is bounded by

2−n(I(S;T )+3ε1) ≤ P{(Sn, Tn) ∈ A(n)
ε } ≤ 2−n(I(S;T )−3ε1) (170)

where ε1 → 0 as ε → 0, since 2n(H(S,T )−ε1) ≤ |A(n)
ε (S, T )| ≤ 2n(H(S,T )+ε1), 2n(H(S)−ε1) ≤ |A(n)

ε (S)| ≤ 2n(H(S)+ε1),

and 2n(H(T )−ε1) ≤ |A(n)
ε (T )| ≤ 2n(H(T )+ε1).

So, the expectation of |D| can be bounded as follows.

E|D| =

2nR2
∑

j=1

P{ψ(j) = 1} (171)

≤ 2nR22n(H(S,T )−R1−R2+2γ+3ε1) (172)

≤ 2n(H(S,T )−R1+2γ+3ε1) (173)

Now,

P{E∗
0,1(i)} = P{|D| > 2n(H(S,T )−R1+ε

′)
︸ ︷︷ ︸

,a

} (174)

(a)
< e−atE{et|D|} (175)
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for any t > 0 where (a) follows from the Chernoff bound [8].

Now we calculate an upper bound of P{E∗
0,1(i)}. Since |Bi| = α, let us denote the sequences in Bi by Sn(i1),

Sn(i2), . . . , S
n(iα). Also, let sn[l] be the l-th sequence (using some ordering) in A

(n)
ε (S).

E{et|D|} = E

{

exp
(

t

2nR2
∑

j=1

ψ(j)
)}

(176)

= E

{ 2nR2
∏

j=1

etψ(j)

}

(177)

=

|A(n)
ε (S)|
∑

l1=1

p{Sn(i1) = sn[l1]}
|A(n)

ε (S)|
∑

l2=1

p{Sn(i2) = sn[l2]} . . .
|A(n)

ε (S)|
∑

lα=1

p{Sn(iα) = sn[lα]}

E

{ 2nR2
∏

j=1

etψ(j)

∣
∣
∣
∣
Sn(iθ) = sn[lθ], for θ = 1, 2, . . . , α

}

(178)

=

|A(n)
ε (S)|
∑

l1=1

|A(n)
ε (S)|
∑

l2=1

. . .

|A(n)
ε (S)|
∑

lα=1

1

|A(n)
ε (S)|α

E

{ 2nR2
∏

j=1

etψ(j)

∣
∣
∣
∣
Sn(iθ) = sn[lθ], for θ = 1, 2, . . . , α

}

(179)

(∗)
=

|A(n)
ε (S)|
∑

l1=1

|A(n)
ε (S)|
∑

l2=1

. . .

|A(n)
ε (S)|
∑

lα=1

1

|A(n)
ε (S)|α

2nR2
∏

j=1

E

{

etψ(j)

∣
∣
∣
∣
Sn(iθ) = sn[lθ], for θ = 1, 2, . . . , α

}

(180)

where (∗) is from the fact that ψ(j)’s are independent when the outcomes of Sn(i1), S
n(i2), . . . , S

n(iα) are fixed.

Let us denote pj = P{ψ(j) = 1
∣
∣ Sn(iθ) = sn[lθ], for θ = 1, 2, . . . , α }.

Then,

E{etψ(j)
∣
∣ Sn(iθ) = sn[lθ], for θ = 1, 2, . . . , α } = etpj + 1 · (1 − pj) (181)

= 1 − pj(1 − et) (182)

≤ e−pj(1−e
t) since 1 − x ≤ e−x. (183)

So,

2nR2
∏

j=1

E{etψ(j)| Sn(iθ) = sn[lθ], for θ = 1, 2, . . . , α } ≤
2nR2
∏

j=1

epj(e
t−1) (184)

= exp

{

(et − 1)

2nR2
∑

j=1

pj

}

(185)

= exp

{

(et − 1)E
{
|D|

∣
∣ Sn(iθ) = sn[lθ], for θ = 1, 2, . . . , α

}
}

(186)
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Then,

E{et|D|} ≤
|A(n)

ε (S)|
∑

l1=1

. . .

|A(n)
ε (S)|
∑

lα=1

1

|A(n)
ε (S)|α

exp

{

(et − 1)E
{
|D|

∣
∣Sn(iθ) = sn[lθ], for θ = 1, 2, . . . , α

}
}

(187)

(a)

≤ exp

{

(et − 1)2n(H(S,T )−R1+2γ+3ε1)

}

(188)

where (a) is obtained because E
{
|D|

∣
∣ Sn(iθ) = sn[lθ], for θ = 1, 2, . . . , α

}
is bounded by the inequality (173) re-

gardless of the particular sequences sn[l1], s
n[l2], . . . , s

n[lα].

Therefore, for t > 0,

P{E∗
0,1(i)} ≤ e−atexp

{

(et − 1)2n(H(S,T )−R1+2γ+3ε1)

}

(189)

= exp

{

− at+ (et − 1) 2n(H(S,T )−R1+2γ+3ε1)
︸ ︷︷ ︸

, b

}

(190)

To get a tighter upper bound, let us denote f(t) = −at + b(et − 1), for t > 0. As mentioned in the proof of

Lemma 3, f(t) has the minimum value when t = ln
(
a
b

)
.

Thus, P{E∗
0,1(i)} is bounded as

P{E∗
0,1(i)} ≤ exp

{

− a ln
(a

b

)

+ a− b

}

(191)

where a = 2n(H(S,T )−R1+ε
′) and b = 2n(H(S,T )−R1+2γ+3ε1).

So,

P{E∗
0,1(i)} ≤ exp

{

−2n(H(S,T )−R1+2γ+3ε1)[2n(ε′−2γ−3ε1) ln(2n(ε′−2γ−3ε1)) − 2n(ε′−2γ−3ε1) + 1]
}

(192)

= exp
{
− 2n(H(S,T )−R1+2γ+3ε1)η

}
(193)

where η = 2n(ε′−2γ−3ε1) ln(2n(ε′−2γ−3ε1)) − 2n(ε′−2γ−3ε1) + 1. As before, η > 0 since ε′ > 2γ + 3ε1 and f(x) =

x ln(x) − x+ 1 is increasing function of x and f(x) > 0 for x > 1.

Therefore, for sufficiently large n, by applying the union bound,

P{E∗
0,1} = P

{ 2nR1
⋃

i=1

E∗
0,1(i)

}

(194)

≤
2nR1
∑

i=1

P{E∗
0,1(i)} (195)

≤ 2nR1exp
{
− 2n(H(S,T )−R1+2γ+3ε1)η

}
(196)

= exp
{
nR1 ln 2 − 2n(H(S,T )−R1+2γ+3ε1)η

}
(197)

(a)
<

ε

12
(198)

providedR1 < H(S, T )+2γ+3ε1, where (a) is from the fact that nR1 ln 2 is linearly increasing but 2n(H(S,T )−R1+2γ+3ε1)

is exponentially increasing as n increases.

In a similar way, we can also show that P{E∗
0,2} < ε

12 for sufficiently large n. �
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I Proof of Lemma 8

Now let us calculate the probability P (E ∩ Ec1 ∩ Ec2). If previous error events do not occur, we define other error

events as follows.

E3 : (Sn, Tn) /∈ A
(n)
ε ,

E4 : ∃Sn ∈ A
(n)
ε (S) such that f1(S

n) = 0,

E5 : ∃Tn ∈ A
(n)
ε (T ) such that f2(T

n) = 0,

E6 : ∃(S̄n, T̄n) ∈ A
(n)
ε (S, T ) ∩ (Bf1(Sn) × Cf2(Tn)) such that (S̄n, T̄n) 6= (Sn, Tn).

Then,

P (E ∩ Ec1 ∩ Ec2) = P
(
∪6
i=3Ei ∩Ec1 ∩ Ec2

)
(199)

≤
6∑

i=3

P (Ei ∩Ec1 ∩ Ec2) (200)

By the property of jointly typical sequences [8], P (E3 ∩ Ec1 ∩ Ec2) < ε
6 for sufficiently large n.

Following [28], for sufficiently large n

P (E4 ∩ Ec1 ∩ Ec2) <
ε

6
(201)

P (E5 ∩ Ec1 ∩ Ec2) <
ε

6
(202)

if γ > ε1.

Also, for sufficiently large n, by following [28] it can be shown that

P (E6 ∩ Ec1 ∩ Ec2) <
ε

6
(203)

provided R1 +R2 > H(S, T ) + 2γ + 3ε1.

Therefore,

P (E) ≤ P (E1) + P (E2) + P (E ∩ Ec0 ∩ Ec1 ∩Ec2) < ε. (204)

In addition, by combining the conditions α ≥ 1, β ≥ 1, and R1 + R2 > H(S, T ), it is easy to show that the

following inequalities need to hold.

H(S|T ) ≤ R1, and H(T |S) ≤ R2. (205)

�
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J Proof of converse part of Theorem 3

Let f1, f2, g be fixed. Also, let f1(S
n) = W1, f2(T

n) = W2. Then, from the Fano’s inequality, we can have

H(Sn, Tn|W1,W2) ≤ Pen(log |S||T |) + 1 ≤ nεn, (206)

H(Sn|Tn,W1,W2) ≤ H(Sn, Tn|W1,W2) ≤ nεn, (207)

H(Tn|Sn,W1,W2) ≤ H(Sn, Tn|W1,W2) ≤ nεn (208)

where εn → 0 as n→ ∞. Using the constraints on the degrees of the vertexes in the message-graph, we have

n(R1 +R′
2)

(a)

≥ H(W1,W2) − log µ (209)

= I(Sn;Tn|W1,W2) +H(W1,W2|Sn, Tn) − logµ (210)

(b)
= I(Sn;Tn|W1,W2) − logµ (211)

= H(Sn, Tn) −H(Sn, Tn|W1,W2) − logµ (212)

(c)

≥ H(Sn, Tn) − nεn − logµ (213)

(d)
= nH(S, T ) − nεn − logµ, (214)

where

(a) is from the fact that (W1,W2) ∈ E(G) with |E(G)| ≤ µ2n(R1+R
′

2),

(b) is obtained since W1 and W2 is a function of Sn and Tn, respectively,

(c) follows from Fano’s inequality (206), and

(d) is obtained by using the chain rule and the fact that (Si, Ti) are i.i.d.

Similarly, we can prove

n(R′
1 +R2) ≥ nH(S, T ) − nεn − logµ. (215)

Also, by using (207), we can have

nR1

(a)

≥ H(W1) (216)

≥ H(W1|Tn) (217)

= I(Sn;W1|Tn) +H(W1|Sn, Tn) (218)

(b)
= I(Sn;W1|Tn) (219)

(c)
= H(Sn|Tn) −H(Sn|Tn,W1,W2) (220)

(d)

≥ H(Sn|Tn) − nεn (221)

(e)
= nH(S|T )− nεn, (222)

where

(a) is from the fact that W1 ∈ {1, 2, . . . , 2nR1},
(b) is obtained since W1 = f1(S

n),
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(c) follows from H(Sn|Tn,W1) = H(Sn|Tn,W1,W2)+ I(Sn;W2|Tn,W1)
︸ ︷︷ ︸

=0

due to the Markov chain Sn → Tn →W2,

(d) follows from Fano’s inequality (207), and

(e) is obtained by using the chain rule and the fact that (Si, Ti) are i.i.d.

Similarly, by using (208), we also can obtain

nR2 ≥ nH(T |S) − nεn. (223)

Therefore, we can have the converse proof by dividing the three inequalities (215), (222), and (223) by n, and

taking the limit as n→ ∞. �
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