

Storm @Twitter

Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M. Patel*, Sanjeev Kulkarni,
Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham, Nikunj Bhagat, Sailesh Mittal, Dmitriy Ryaboy

@ankitoshniwal, @staneja, @amits, @karthikz, @pateljm, @sanjeevrk,
@jason_j, @krishnagade, @Louis_Fumaosong, @jakedonham, @challenger_nik, @saileshmittal, @squarecog

Twitter, Inc., *University of Wisconsin – Madison

ABSTRACT
This paper describes the use of Storm at Twitter. Storm is a real-
time fault-tolerant and distributed stream data processing system.
Storm is currently being used to run various critical computations
in Twitter at scale, and in real-time. This paper describes the
architecture of Storm and its methods for distributed scale-out and
fault-tolerance. This paper also describes how queries (aka.
topologies) are executed in Storm, and presents some operational
stories based on running Storm at Twitter. We also present results
from an empirical evaluation demonstrating the resilience of
Storm in dealing with machine failures. Storm is under active
development at Twitter and we also present some potential
directions for future work.

1. INTRODUCTION
Many modern data processing environments require processing
complex computation on streaming data in real-time. This is
particularly true at Twitter where each interaction with a user
requires making a number of complex decisions, often based on
data that has just been created.

Storm is a real-time distributed stream data processing engine at
Twitter that powers the real-time stream data management tasks
that are crucial to provide Twitter services. Storm is designed to
be:

1. Scalable: The operations team needs to easily add or remove

nodes from the Storm cluster without disrupting existing data
flows through Storm topologies (aka. standing queries).

2. Resilient: Fault-tolerance is crucial to Storm as it is often
deployed on large clusters, and hardware components can fail.
The Storm cluster must continue processing existing topologies
with a minimal performance impact.

3. Extensible: Storm topologies may call arbitrary external
functions (e.g. looking up a MySQL service for the social
graph), and thus needs a framework that allows extensibility.

4. Efficient: Since Storm is used in real-time applications; it must
have good performance characteristics. Storm uses a number of
techniques, including keeping all its storage and computational
data structures in memory.

5. Easy to Administer: Since Storm is at that heart of user
interactions on Twitter, end-users immediately notice if there
are (failure or performance) issues associated with Storm. The
operational team needs early warning tools and must be able to
quickly point out the source of problems as they arise. Thus,
easy-to-use administration tools are not a “nice to have
feature,” but a critical part of the requirement.

We note that Storm traces its lineage to the rich body of work on
stream data processing (e.g. [1, 2, 3, 4]), and borrows heavily
from that line of thinking. However a key difference is in bringing
all the aspects listed above together in a single system. We also
note that while Storm was one of the early stream processing
systems, there have been other notable systems including S4 [5],
and more recent systems such as MillWheel [6], Samza [7], Spark
Streaming [8], and Photon [19]. Stream data processing
technology has also been integrated as part of traditional database
product pipelines (e.g. [9, 10, 11]).

Many earlier stream data processing systems have led the way in
terms of introducing various concepts (e.g. extensibility,
scalability, resilience), and we do not claim that these concepts
were invented in Storm, but rather recognize that stream
processing is quickly becoming a crucial component of a
comprehensive data processing solution for enterprises, and Storm

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

SIGMOD’14, June 22–27, 2014, Snowbird, Utah, USA.
Copyright © 2014 ACM 978-1-4503-2376-5/14/06…$15.00.
http://dx.doi.org/10.1145/2588555.2595641

147

represents one of the early open-source and popular stream
processing systems that is in use today.
Storm was initially created by Nathan Marz at BackType, and
BackType was acquired by Twitter in 2011. At Twitter, Storm has
been improved in several ways, including scaling to a large
number of nodes, and reducing the dependency of Storm on
Zookeeper. Twitter open-sourced Storm in 2012, and Storm was
then picked up by various other organizations. More than 60
companies are either using Storm or experimenting with Storm.
Some of the organizations that currently use Storm are: Yahoo!,
Groupon, The Weather Channel, Alibaba, Baidu, and Rocket
Fuel.

We note that stream processing systems that are in use today are
still evolving (including Storm), and will continue to draw from
the rich body of research in stream processing; for example, many
of these “modern” systems do not support a declarative query
language, such as the one proposed in [12]. Thus, the area of
stream processing is an active and fast evolving space for research
and advanced development.

We also note that there are number of online tutorials for Storm
[20, 21] that continue to be valuable resources for the Storm user
community.

The move to YARN [23] has also kindled interest in integrating
Storm with the Hadoop ecosystem, and a number of resources
related to using Storm with Hadoop are now also available (e.g.
[21, 22]).

The remainder of this paper is organized as follows: The
following section, Section 2, describes the Storm data model and
architecture. Section 3 describes how Storm is used at Twitter.
Section 3 contains some empirical results and discusses some
operational aspects that we have encountered while running Storm
at Twitter. Finally, Section 4 contains our conclusions, and points
to a few directions for future work.

2. Data Model and Execution Architecture
The basic Storm data processing architecture consists of streams
of tuples flowing through topologies. A topology is a directed
graph where the vertices represent computation and the edges
represent the data flow between the computation components.
Vertices are further divided into two disjoint sets – spouts and
bolts. Spouts are tuple sources for the topology. Typical spouts
pull data from queues, such as Kafka [13] or Kestrel [14]. On the
other hand, bolts process the incoming tuples and pass them to the
next set of bolts downstream. Note that a Storm topology can have
cycles. From the database systems perspective, one can think of a
topology as a directed graph of operators.
Figure 1 shows a simple topology that counts the words occurring
in a stream of Tweets and produces these counts every 5 minutes.
This topology has one spout (TweetSpout) and two bolts
(ParseTweetBolt and WordCountBolt). The TweetSpout may pull
tuples from Twitter’s Firehose API, and inject new Tweets

continuously into the topology. The ParseTweetBolt breaks the
Tweets into words and emits 2-ary tuples (word, count), one for
each word. The WordCountBolt receives these 2-ary tuples and
aggregates the counts for each word, and outputs the counts every
5 minutes. After outputting the word counts, it clears the internal
counters.

2.1 Storm Overview
Storm runs on a distributed cluster, and at Twitter often on
another abstraction such as Mesos [15]. Clients submit topologies
to a master node, which is called the Nimbus. Nimbus is
responsible for distributing and coordinating the execution of the
topology. The actual work is done on worker nodes. Each worker
node runs one or more worker processes. At any point in time a
single machine may have more than one worker processes, but
each worker process is mapped to a single topology. Note more
than one worker process on the same machine may be executing
different part of the same topology. The high level architecture of
Storm is shown in Figure 2.

Each worker process runs a JVM, in which it runs one or more
executors. Executors are made of one or more tasks. The actual
work for a bolt or a spout is done in the task.

Thus, tasks provide intra-bolt/intra-spout parallelism, and the
executors provide intra-topology parallelism. Worker processes
serve as containers on the host machines to run Storm topologies.

Note that associated with each spout or bolt is a set of tasks
running in a set of executors across machines in a cluster. Data is
shuffled from a producer spout/bolt to a consumer bolt (both
producer and consumer may have multiple tasks). This shuffling
is like the exchange operator in parallel databases [16].
Storm supports the following types of partitioning strategies:

1. Shuffle grouping, which randomly partitions the tuples.

2. Fields grouping, which hashes on a subset of the tuple
attributes/fields.

3. All grouping, which replicates the entire stream to all the
consumer tasks.

4. Global grouping, which sends the entire stream to a single bolt.

Figure 2: High Level Architecture of Storm

Figure 1: Tweet word count topology

148

5. Local grouping, which sends tuples to the consumer bolts in the
same executor.

The partitioning strategy is extensible and a topology can define
and use its own partitioning strategy.

Each worker node runs a Supervisor that communicates with
Nimbus. The cluster state is maintained in Zookeeper [17], and
Nimbus is responsible for scheduling the topologies on the worker
nodes and monitoring the progress of the tuples flowing through
the topology. More details about Nimbus is presented below in
Section 2.2.1.
Loosely, a topology can be considered as a logical query plan
from a database systems perspective. As a part of the topology,
the programmer specifies how many instances of each spout and
bolt must be spawned. Storm creates these instances and also
creates the interconnections for the data flow. For example, the
physical execution plan for the Tweet word count topology is
shown in Figure 3.

We note that currently, the programmer has to specify the number
of instances for each spout and bolt. Part of future work is to
automatically pick and dynamically changes this number based on
some higher-level objective, such as a target performance
objective.

2.2 Storm Internals
In this section, we describe the key components of Storm (shown
in Figure 2), and how these components interact with each other.

2.2.1 Nimbus and Zookeeper
Nimbus plays a similar role as the “JobTracker” in Hadoop, and is
the touchpoint between the user and the Storm system.

Nimbus is an Apache Thrift service and Storm topology

definitions are Thrift objects. To submit a job to the Storm cluster
(i.e. to Nimbus), the user describes the topology as a Thrift object
and sends that object to Nimbus. With this design, any
programming language can be used to create a Storm topology.

A popular method for generating Storm topologies at Twitter is by
using Summingbird [18]. Summingbird is a general stream
processing abstraction, which provides a separate logical planner
that can map to a variety of stream processing and batch
processing systems. Summingbird provides a powerful Scala-
idiomatic way for programmers to express their computation and
constraints. Since Summingbird understands types and
relationships between data processing functions (such as
associativity), it can perform a number of optimizations. Queries
expressed in Summingbird can be automatically translated into
Storm topologies. An interesting aspect of Summingbird is that it
can also generate a MapReduce job to run on Hadoop. A common
use case at Twitter is to use the Storm topology to compute
approximate answers in real-time, which are later reconciled with
accurate results from the MapReduce execution.

As part of submitting the topology, the user also uploads the user
code as a JAR file to Nimbus. Nimbus uses a combination of the
local disk(s) and Zookeeper to store state about the topology.
Currently the user code is stored on the local disk(s) of the
Nimbus machine, and the topology Thrift objects are stored in
Zookeeper.

The Supervisors contact Nimbus with a periodic heartbeat
protocol, advertising the topologies that they are currently
running, and any vacancies that are available to run more
topologies. Nimbus keeps track of the topologies that need
assignment, and does the match-making between the pending
topologies and the Supervisors.
All coordination between Nimbus and the Supervisors is done
using Zookeeper. Furthermore, Nimbus and the Supervisor
daemons are fail-fast and stateless, and all their state is kept in
Zookeeper or on the local disk(s). This design is the key to
Storm’s resilience. If the Nimbus service fails, then the workers
still continue to make forward progress. In addition, the
Supervisors restart the workers if they fail.

However, if Nimbus is down, then users cannot submit new
topologies. Also, if running topologies experience machine
failures, then they cannot be reassigned to different machines until
Nimbus is revived. An interesting direction for future work is to
address these limitations to make Storm even more resilient and
reactive to failures.

Figure 3: Physical Execution of the Tweet word count topology

Figure 4: Supervisor architecture Figure 5. Message flow inside a worker

149

2.2.2 Supervisor
The supervisor runs on each Storm node. It receives assignments
from Nimbus and spawns workers based on the assignment. It
also monitors the health of the workers and respawns them if
necessary. A high level architecture of the Supervisor is shown in
Figure 4. As shown in the figure, the Supervisor spawns three
threads. The main thread reads the Storm configuration, initializes
the Supervisor’s global map, creates a persistent local state in the
file system, and schedules recurring timer events. There are three
types of events, which are:

1. The heartbeat event, which is scheduled to run every 15
seconds, and is runs in the context of the main thread. It reports
to Nimbus that the supervisor is alive.

2. The synchronize supervisor event, which is executed every 10
seconds in the event manager thread. This thread is responsible
for managing the changes in the existing assignments. If the
changes include addition of new topologies, it downloads the
necessary JAR files and libraries, and immediately schedules a
synchronize process event.

3. The synchronize process event, which runs every 3 seconds
under the context of the process event manager thread. This
thread is responsible for managing worker processes that run a
fragment of the topology on the same node as the supervisor. It
reads worker heartbeats from the local state and classifies those
workers as either valid, timed out, not started, or disallowed. A
“timed out” worker implies that the worker did not provide a
heartbeat in the specified time frame, and is now assumed to be
dead. A “not started” worker indicates that it is yet to be started
because it belongs to a newly submitted topology, or an
existing topology whose worker is being moved to this
supervisor. Finally, a “disallowed” worker means that the
worker should not be running either because its topology has
been killed, or the worker of the topology has been moved to
another node.

2.2.3 Workers and Executors
Recall that each worker process runs several executors inside a
JVM. These executors are threads within the worker process.
Each executor can run several tasks. A task is an instance of a
spout or a bolt. A task is strictly bound to an executor because that
assignment is currently static. An interesting direction for future
work is to allow dynamic reassignment to optimize for some
higher-level goal such as load balancing or meeting a Service
Level Objective (SLO).

To route incoming and outgoing tuples, each worker process has
two dedicated threads – a worker receive thread and a worker
send thread. The worker receive thread listens on a TCP/IP port,
and serves as a de-multiplexing point for all the incoming tuples.
It examines the tuple destination task identifier and accordingly
queues the incoming tuple to the appropriate in queue associated
with its executor.

Each executor consists of two threads namely the user logic
thread and the executor send thread. The user logic thread takes
incoming tuples from the in queue, examines the destination task
identifier, and then runs the actual task (a spout or bolt instance)
for the tuple, and generates output tuple(s). These outgoing tuples
are then placed in an out queue that is associated with this
executor. Next, the executor send thread takes these tuples from
the out queue and puts them in a global transfer queue. The global
transfer queue contains all the outgoing tuples from several
executors.

The worker send thread examines each tuple in the global transfer
queue and based on its task destination identifier, it sends it to the
next worker downstream. For outgoing tuples that are destined for
a different task on the same worker, the executor send thread
writes the tuple directly into the in queue of the destination task.
The message flow inside workers is shown in Figure 5.

2.3 Processing Semantics
One of the key characteristics of Storm is its ability to provide
guarantees about the data that it processes. It provides two types
of semantic guarantees – “at least once,” and “at most once”
semantics.

At least once semantics guarantees that each tuple that is input to
the topology will be processed at least once.

With at most once semantics, each tuple is either processed once,
or dropped in the case of a failure.

To provide “at least once” semantics, the topology is augmented
with an “acker” bolt that tracks the directed acyclic graph of
tuples for every tuple that is emitted by a spout. For example, the
augmented Tweet word count topology is shown in Figure 6.

Storm attaches a randomly generated 64-bit “message id” to each
new tuple that flows through the system. This id is attached to the
tuple in the spout that first pulls the tuple from some input source.
New tuples can be produced when processing a tuple; e.g. a tuple
that contains an entire Tweet is split by a bolt into a set of
trending topics, producing one tuple per topic for the input tuple.
Such new tuples are assigned a new random 64-bit id, and the list
of the tuple ids is also retained in a provenance tree that is
associated with the output tuple. When a tuple finally leaves the
topology, a backflow mechanism is used to acknowledge the tasks
that contributed to that output tuple. This backflow mechanism
eventually reaches the spout that started the tuple processing in
the first place, at which point it can retire the tuple.
A naïve implementation of this mechanism requires keeping track
of the lineage for each tuple. This means that for each tuple, its
source tuple ids must be retained till the end of the processing for
that tuple. Such an implementation can lead to a large memory
usage (for the provenance tracking), especially for complex
topologies.

To avoid this problem, Storm uses a novel implementation using
bitwise XORs. As discussed earlier, when a tuple enters the spout,
it is given a 64-bit message id. After the spout processes this
tuple, it might emit one or more tuples. These emitted tuples are
assigned new message ids. These message ids are XORed and

Figure 6. Augmented word count topology

150

sent to the acker bolt along with the original tuple message id and
a timeout parameter. Thus, the acker bolt keeps track of all the
tuples. When the processing of a tuple is completed or acked, its
message id as well as its original tuple message id is sent to the
acker bolt. The acker bolt locates the original tuple and its XOR
checksum. This XOR checksum is again XORed with the acked
tuple id. When the XOR checksum goes to zero, the acker bolt
sends the final ack to the spout that admitted the tuple. The spout
now knows that this tuple has been fully processed.

It is possible that due to failure, some of the XOR checksum will
never go to zero. To handle such cases, the spout initially assigns
a timeout parameter that is described above. The acker bolt keeps
track of this timeout parameter, and if the XOR checksum does
not become zero before the timeout, the tuple is considered to
have failed.

Note that communication in Storm happens over TCP/IP, which
has reliable message delivery, so no tuple is delivered more than
once. Consequently, the XORing mechanism works even though
XOR is not idempotent.

For at least once semantics, the data source must “hold” a tuple.
For the tuple, if the spout received a positive ack then it can tell
the data source to remove the tuple. If an ack or fail message does
not arrive within a specified time, then the data source will expire
the “hold” on the tuple and replay it back in the subsequent
iteration. Kestrel queues provide such a behavior. On the other
hand, for Kafka queues, the processed tuples (or message offsets)
are check pointed in Zookeeper for every spout instance. When a
spout instance fails and restarts, it starts processing tuples from
the last “checkpoint” state that is recorded in Zookeeper.

At most once semantics implies that the tuples entering the system
are either processed at least once, or not at all. Storm achieves at
most once semantics when the acking mechanism is disabled for
the topology. When acks are disabled, there is no guarantee that a
tuple is successfully processed or failed in each stage of the
topology, and the processing continues to move forward.

3. Storm in use @ Twitter
In this section, we describe how Storm is used at Twitter. We also
present three examples of how we dealt with some operational and
deployment issues. Finally, we also present results from an
empirical evaluation.

3.1 Operational overview
Storm currently runs on hundreds of servers (spread across
multiple datacenters) at Twitter. Several hundreds of topologies
run on these clusters some of which run on more than a few
hundred nodes. Many terabytes of data flows through the Storm
clusters every day, generating several billions of output tuples.

Storm topologies are used by a number of groups inside Twitter,
including revenue, user services, search, and content discovery.
These topologies are used to do simple things like filtering and
aggregating the content of various streams at Twitter (e.g.
computing counts), and also for more complex things like running
simple machine learning algorithms (e.g. clustering) on stream
data.

The topologies range in their complexity and a large number of
topologies have fewer than three stages (i.e. the depth of the
topology graph is less than three), but one topology has eight

Figure 7: Storm Visualizations

151

stages. Currently, topologies are isolated on their own machines,
and we hope to work on removing this limitation in the future.

Storm is resilient to failures, and continues to work even when
Nimbus is down (the workers continue making forward progress).
Moreover, if we have to take a machine down for maintenance,
then we can do that without affecting the topology. Our p99
latency (i.e. the latency of the 99th percentile response time) for
processing a tuple is close to 1ms, and cluster availability is
99.9% over the last 6 months.

3.2 Storm Visualization Operations
A critical part about using Storm in practice is visualizing the
Storm operations. Logs from Storm are continuously displayed
using a rich visualization developed in-house, some of which are
shown in Figure 7. To collect logs, each topology is augmented
with a metrics bolt. All the metrics collected at each spout or bolt
are sent to this bolt. This bolt in turn writes the metrics to Scribe,
which routes the data to a persistent key value store. For each
topology, a dashboard is created using this data for visualizing
how this topology is behaving.

The rich visualization is critical in assisting with identifying and
resolving issues that have caused alarms to be triggered.

The metrics can be broadly classified into system metrics and
topology metrics. System metrics shows average CPU utilization,
network utilization, per minute garbage collection counts, time
spent in garbage collection per minute, and memory usage for the
heap. Topology metrics are reported for every bolt and every
spout. Spout metrics include the number of tuples emitted per
minute, the number of tuple acks, the number of fail messages per
minute, and the latency for processing an entire tuple in the
topology. The bolt metrics include the number of tuples executed,
the acks per minute, the average tuple processing latency, and the
average latency to ack a specific tuple.

3.3 Operational Stories
In this section we present three Storm-related operational
scenarios/stories.

3.3.1 Overloaded Zookeeper
As discussed above, Storm uses Zookeeper to keep track of state
information. A recurring issue is how to set up and use Zookeeper
in Storm, especially when Zookeeper is also used for other
systems at Twitter. We have gone through various considerations
about how to use and configure Zookeeper with Storm.

The first configuration that we tried is to use an existing
Zookeeper cluster at Twitter that was also being used by many
other systems inside Twitter. We quickly exceeded the amount of
clients that this Zookeeper cluster could support, which in turn
impacted the uptime of other systems that were sharing the same
Zookeeper cluster.
Our second configuration of a Storm cluster was identical to the
first one, except with dedicated hardware for the Zookeeper
cluster. While this significantly improved the number of workers
processes and topologies that we could run in our Storm cluster,
we quickly hit a limit at around 300 workers per cluster. If we
exceeding this number of workers, then we began to witness
worker processes being killed and relaunched by the scheduler.
This is because for every worker process there is a corresponding
zknode (Zookeeper node) which must be written to every 15
seconds, otherwise Nimbus deems that the worker is not alive and
reschedules that worker onto a new machine.

In our third configuration of a Storm cluster, we changed the
Zookeeper hardware and configuration again: We used database
class hardware with 6x 500GB SATA Spindles in RAID1+0 on
which we stored the Zookeeper transaction log, and a 1x 500GB
spindle (no RAID) on which we stored the snapshots. Separating
the transaction logs and the snapshots to different disks is strongly
recommended in the Zookeeper documentation, and if this
recommendation is not followed, the Zookeeper cluster may
become unstable. This third configuration scaled to approximately
1200 workers. If we exceeded this number of workers, once again
we started to see workers being killed and restarted (as in our
second configuration).

We then analyzed the Zookeeper write traffic by parsing the
tcpdump log from one of the Zookeeper nodes. We discovered
that 67% of the writes per second to the Zookeeper quorum was
being performed not by the Storm core runtime, but by the Storm
library called KafkaSpout. KafkaSpout uses Zookeeper to store a
small amount of state regarding how much data has been
consumed from a Kafka queue. The default configuration of
KafkaSpout writes to Zookeeper every 2 seconds per partition, per
Storm topology. The partition count of our topics in Kafka ranged
between 15 and 150, and we had around 20 topologies in the
cluster at that time. (Kafka is a general publisher-subscriber
system and has a notion of topics. Producers can write about a
topic, and consumers can consume data on topics of interest. So,
for the purpose of this discussion, a topic is like a queue.)
In our tcpdump sample, we saw 19956 writes in a 60 second
window to zknodes that were owned by the KafkaSpout code.
Furthermore, we found that 33% of writes to Zookeeper was
being performed by the Storm code. Of that fraction, 96% of the
traffic was coming from the Storm core that ships with worker
processes that write heartbeats to the Zookeeper every 3 seconds
by default.

Since we had achieved as much write performance from our
Zookeeper cluster as we thought was possible with our current
hardware, we decided to significantly reduce the number of writes
that we perform to Zookeeper. Thus, for our fourth and the current
production configuration of Storm clusters at Twitter, we changed
the KafkaSpout code to write its state to a key-value store. We
also changed the Storm core to write its heartbeat state to a
custom storage system (called “heartbeat daemons”) designed
specifically for the purpose of storing the Storm heartbeat data.
The heartbeat daemon cluster is designed to trade off read
consistency in favor of high availability and high write
performance. They are horizontally scalable to match the load that
is placed on them by the workers running in the Storm core,
which now write their heartbeats to the heartbeat daemon cluster.

3.3.2 Storm Overheads
At one point there was some concern that Storm topologies that
consumed data from a Kafka queue (i.e. used Kafka in the spouts)
were underperforming relative to hand-written Java code that
directly used the Kafka client. The concern began when a Storm
topology that was consuming from a Kafka queue needed 10
machines in order in order to successfully process the input that
was arriving onto the queue at a rate of 300K msgs/sec.

If fewer than 10 machines were used, then the consumption rate of
the topology would become lower than the production rate into
the queue that the topology consumed. At that point, the topology
would no longer be real-time. For this topology, the notion of
real-time was that the latency between the initial events
represented in an input tuple to the time when the computation

152

was actually performed on the tuple should be less than five
seconds. The specification of the machines used in this case was
2x Intel E5645@2.4Ghz CPUs, 12-physical cores with hyper-
threading, 24-hardware threads, 24GB of RAM, and a 500GB
SATA disk.

In our first experiment we wrote a Java program that did not use
Storm, or any of Storm’s streaming computational framework.
This program would use the Kafka Java client to consume from
the same Kafka cluster and topic as the Storm topology, using just
a “for loop” to read messages as fast as possible, and then
deserialize the messages. After deserialization, if no other
processing was done in this program, then the item would then be
garbage collected.

Since this program did not use Storm it didn’t support reliable
message processing, recovery from machine failure, and it didn’t
do any repartition of the stream. This program was able to
consume input at a rate of 300K msgs/sec, and process data in
real-time while running on a single machine with CPU utilization
averaging around 700% as reported by the top Unix command line
tool (with 12-physical cores, the upper bound for the CPU
utilization is 1200%).

The second experiment was to write a Storm topology that had a
similar amount of logic/functionality as the Java program. We
built a simple Storm topology much like the Java program in that
all it did was deserialize the input data. We also disabled message
reliability support in this experiment. All the JVM processes that
executed this Storm topology were co-located on the same
machine using Storm’s Isolation Scheduler, mimicking the same
setup as the Java program. This topology had 10 processes, and 38
threads per process. This topology was also able to consume at the
rate of 300K msgs/sec, and process the data in real-time while
running on a single machine (i.e. it has the same specifications as
above) with a CPU utilization averaging around 660% as reported
by top. This CPU utilization is marginally lower than the first
experiment that did not use Storm.

For the third experiment we took the same topology from
experiment two, but now enabled message reliability. This
topology needs at least 3 machines in order to consume input at
the rate of 300K msgs/sec. Additionally it was configured with 30
JVM processes (10 per machine), and 5 threads per process. The
average CPU utilization was 924% as reported by top. These
experiments give a rough indication of the CPU costs of enabling
message reliability relative to the CPU costs associated with
deserializing messages (about 3X).

These experiments mitigated the concerns regarding Storm adding
significant overhead compared to vanilla Java code that did the
same computation, since when both applications provided the
same message reliability guarantees, they had roughly the same
CPU utilization.

These experiments did bring to light that the Storm CPU costs
related to the message reliability mechanism in Storm are non-
trivial, and on the same order as the message deserialization costs.
We were unable to reproduce the original Storm topology that
required 10 machines in a Java program that did not use Storm, as
this would involve significant work since this topology had 3
layers of bolts and spouts and repartitioned the stream twice.
Reimplementing all this functionality without Storm would
require too much time. The extra machines needed could be
explained by the overhead of the business logic within this
topology, and/or the deserialization and the serialization costs that
are incurred when a tuple is sent over the network because the
stream needed to be repartitioned.

3.3.3 Max Spout Tuning
Storm topologies have a max spout pending parameter. The max
spout pending value for a topology can be configured via the
“topology.max.spout.pending” setting in the topology
configuration yaml file. This value puts a limit on how many
tuples can be in flight, i.e. have not yet been acked or failed, in a
Storm topology at any point of time. The need for this parameter
comes from the fact that Storm uses ZeroMQ [25] to dispatch
tuples from one task to another task. If the consumer side of
ZeroMQ is unable to keep up with the tuple rate, then the
ZeroMQ queue starts to build up. Eventually tuples timeout at the
spout and get replayed to the topology thus adding more pressure
on the queues. To avoid this pathological failure case, Storm
allows the user to put a limit on the number of tuples that are in
flight in the topology. This limit takes effect on a per spout task
basis and not on a topology level. For cases when the spouts are
unreliable, i.e. they don’t emit a message id in their tuples, this
value has no effect.
One of the problems that Storm users continually face is in
coming up with the right value for this max spout pending
parameter. A very small value can easily starve the topology and
a sufficiently large value can overload the topology with a huge
number of tuples to the extent of causing failures and replays.
Users have to go through several iterations of topology
deployments with different max spout pending values to find the
value that works best for them.

To alleviate this problem, at Twitter we have implemented an
auto-tuning algorithm for the max spout pending value which
adjusts the value periodically to achieve maximum throughput in
the topology. The throughput in this case is measured by how
much we can advance the progress of the spout and not
necessarily by how many more tuples we can push into or through
the topology. The algorithm works for the Kafka and Kestrel
spouts, which have been augmented to track and report the
progress they make over time.
The algorithm works as follows:

a) The spout tasks keep track of a metric called “progress.” This
metric is an indicator of how much data has been
successfully processed for this spout task. For the Kafka
spout, this metric is measured by looking at the offset in the
Kafka log that is deemed as “committed,” i.e. the offset
before which all the data has been successfully processed and
will never be replayed back. For the Kestrel spout, this
metric is measured by counting the number of acks that have
been received from the Storm topology. Note that we cannot
use the number of acks received as the progress metric for
the Kafka Spout because in its implementation, tuples that
have been acked but not yet committed could still be
replayed.

b) We have a pluggable implementation of the max spout
parameter “tuner” class that does auto-tuning of the max
spout pending values. The two APIs that the default
implementation support are:

• void autoTune(long deltaProgress), which tunes the max
spout pending value using the progress made between the
last call to autoTune()

• long get(), which returns the tuned max spout pending
value.

153

c) Every “t” seconds (in our case the default value for t is 120
seconds), the spout calls autoTune and provides it the
progress that the spout has made in the last t seconds.

d) The tuner class records the last “action” that it took, and
given the current progress value what actions it could take
next. The action value affects the max spout pending value,
and the possible values are: Increase, Decrease, or No
Change. The action tagged as Increase moves the max spout
pending value up by 25%. A Decrease action reduces the
max spout pending value by Max (25%, (last delta progress -
current delta progress)/last delta progress * 100)%. A No
Change action indicates that the max spout pending
parameter should remain the same as the current value.
The autoTune function has a state machine to determine the
next transition that is should make. This state machine
transition is described next:

• If the last action is equal to No Change, then
(i) If this is the first time that auto tuning has been

invoked, then set action to Increase, and increase the
max spout pending value.

(ii) If the last delta progress was higher than the current
delta progress, then set action to Decrease and
decrease max spout pending.

(iii) If the last delta progress is lower than the current
delta progress, then set action to Increase and
increase max spout pending.

(iv) If the last delta progress is similar to the current delta
progress, then set action to No Change and increment
a counter by 1, which states how many consecutive
turns we have spent in this No Change state. If that
counter is equal to 5 then set action to Increase, and
increase the max spout pending value.

• If the last action is equal to Increase, then
(i) If the last delta progress was higher than the current

delta progress, then set the action to Decrease, and
decrease the max spout pending value.

(ii) If the last delta progress is lower than the current
delta progress, then set the action to Increase, and
increase the max spout pending value.

(iii) If the last delta progress is similar to the current delta
progress, then set the action to No Change, and
restore the max spout pending value to the value that
it had before the last increase was made.

• If the last action is equal to Decrease, then

(i) If the last delta progress is lower than the current
delta progress, then set the action to Increase, and
increase the max spout pending value.

(ii) For any other case, set the action to No Change.

3.4 Empirical Evaluation
In this section we present results from an empirical evaluation that
was conducted for this paper. The goal of this empirical
evaluation is to examine the resiliency of Storm and efficiency
when faced with machine failures.

For this experiment, we created the sample topology that is shown
below, and ran it with “at least once” semantics (see Section 2.3).
This topology was constructed primarily for this empirical
evaluation, and should not be construed as being the
representative topology for Twitter Storm workloads.
For simplicity, in Figure 8, we do not show the acker bolt.

As can be seen in Figure 8, this topology has one spout. This
spout is a Kafka spout for a “client_event” feed. Tuples from the
spout are shuffle grouped to a Distributor bolt, which partitions
the data on an attribute/field called “user_id.” The UserCount bolt
computes the number of unique users for various events, such as
“following,” “unfollowing,” “viewing a tweet,” and other events
from mobile and web clients. These counts are computed every
second (i.e. a 1 Hertz rate). These counts are partitioned on the
timestamp attribute/field and sent to the next (Aggregator) bolt.
The aggregator bolt aggregates all the counts that it has received.

3.4.1 Setup
For this experiment, we provisioned 16 physical machines. The
initial number of tasks for each component in the topology is
listed below:

Component # tasks

Spout 200
DistributorBolt 200
UserCountBold 300
AggregatorBolt 20

The total number of workers was set to 50 and remained at 50
throughout the experiment. We started the topology on 16
machines. Then, we waited for about 15 minutes and
removed/killed three machines, and repeated this step three more
times. This experimental setup is summarized below:

Time (relative
to the start of
the experiment)

machines

workers

Approximate
#workers/machine

0 minutes 16 50 3
+15 minutes 13 50 4
+30 minutes 10 50 5
+45 minutes 7 50 7
+60 minutes 4 50 12

Figure 8: Sample topology used in the experiments

154

We continually monitored the throughput (# tuples processed by
the topology/minute), and the average end-to-end latency (per
minute) to process a tuple in the topology. The throughput is
measured as the number of tuples acked per minute (in the acker
bolt). These results are reported below.

3.4.2 Results
We first report the stable average throughput and latencies below.

Time Window
(relative to the
start of the
experiment)

machines

Average
throughput/
minute
(millions)

Average
latency/minute
(milliseconds)

0-15 minutes 16 6.8 7.8
15-30 minutes 13 5.8 12
30-45 minutes 10 5.2 17
45-60 minutes 7 4.5 25
60-75 minutes 4 2.2 45

The throughput and latency graphs for this experiment, as seen
from the visualizer (see Section 3.2), are shown in Figures 9 and
10 respectively.

As can be seen in Figure 9, there is a temporary spike whenever
we remove a group of machines, but the system recovers quickly.
Also, notice how the throughput drops every 15 minutes, which is
expected as the same topology is running on fewer machines. As
can be seen in the figure, the throughput stabilizes fairly quickly
in each 15 minute window.

Figure 10 shows the latency graph for this experiment, and as
expected the latency increases every time a group of machines is
removed. Notice how in the first few 15 minute periods, the
spikes in the latency graph are small, but in the last two windows
(when the resources are much tighter) the spikes are higher; but,
as can be seen, the system stabilizes fairly quickly in all cases.

Overall, as can be seen in this experiment, Storm is resilient to
machine failures, and efficient in stabilizing the performance
following a machine failure event.

4. Conclusions and Future Work
Storm is a critical infrastructure at Twitter that powers many of
the real-time data-driven decisions that are made at Twitter. The
use of Storm at Twitter is expanding rapidly, and raises a number
of potentially interesting directions for future work. These include
automatically optimizing the topology (intra-bolt parallelism and
the packaging of tasks in executors) statically, and re-optimizing
dynamically at runtime. We also want to explore adding exact-
once semantics (similar to Trident [24]), without incurring a big
performance impact. In addition, we want to improve the
visualization tools, improve the reliability of certain parts (e.g.
move the state stored in local disk on Nimbus to a more fault-
tolerant system like HDFS), provide a better integration of Storm
with Hadoop, and potentially use Storm to monitor, react, and
adapt itself to improve the configuration of running topologies.
Another interesting direction for future work is to support a
declarative query paradigm for Storm that still allows easy
extensibility.

5. Acknowledgements
The Storm project was started at BackType by Nathan Marz and
contributed to, maintained, run, and debugged by countless other
members of the data infrastructure team at Twitter. We thank all
of these contributors, as this paper would not be possible without
their help and cooperation.

6. REFERENCES
[1] Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar,

Keith Ito, Rajeev Motwani, Itaru Nishizawa, Utkarsh
Srivastava, Dilys Thomas, Rohit Varma, Jennifer Widom:
STREAM: The Stanford Stream Data Manager. IEEE Data
Eng. Bull. 26(1): 19-26 (2003)

Figure 9: Throughput Measurements

155

[2] Hari Balakrishnan, Magdalena Balazinska, Donald Carney,
Ugur Çetintemel, Mitch Cherniack, Christian Convey,
Eduardo F. Galvez, Jon Salz, Michael Stonebraker, Nesime
Tatbul, Richard Tibbetts, Stanley B. Zdonik: Retrospective
on Aurora. VLDB J. 13(4): 370-383 (2004)

[3] Minos N. Garofalakis, Johannes Gehrke: Querying and
Mining Data Streams: You Only Get One Look. VLDB 2002

[4] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur
Çetintemel, Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang
Lindner, Anurag Maskey, Alex Rasin, Esther Ryvkina,
Nesime Tatbul, Ying Xing, Stanley B. Zdonik: The Design
of the Borealis Stream Processing Engine. CIDR 2005: 277-
289

[5] S4 Distributed stream computing platform.
http://incubator.apache.org/s4/

[6] Tyler Akidau, Alex Balikov, Kaya Bekiroglu, Slava
Chernyak, Josh Haberman, Reuven Lax, Sam McVeety,
Daniel Mills, Paul Nordstrom, Sam Whittle: MillWheel:
Fault-Tolerant Stream Processing at Internet Scale. PVLDB
6(11): 1033-1044 (2013)

[7] Apache Samza. http://samza.incubator.apache.org

[8] Spark Streaming.
http://spark.incubator.apache.org/docs/latest/streaming-
programming-guide.html

[9] Mohamed H. Ali, Badrish Chandramouli, Jonathan
Goldstein, Roman Schindlauer: The extensibility framework
in Microsoft StreamInsight. ICDE 2011: 1242-1253

[10] Sankar Subramanian, Srikanth Bellamkonda, Hua-Gang Li,
Vince Liang, Lei Sheng, Wayne Smith, James Terry, Tsae-
Feng Yu, Andrew Witkowski: Continuous Queries in Oracle.
VLDB 2007: 1173-1184

[11] IBM Infosphere Streams. http://www-
03.ibm.com/software/products/en/infosphere-streams/

[12] Namit Jain, Shailendra Mishra, Anand Srinivasan, Johannes
Gehrke, Jennifer Widom, Hari Balakrishnan, Ugur
Çetintemel, Mitch Cherniack, Richard Tibbetts, Stanley B.
Zdonik: Towards a streaming SQL standard. PVLDB 1(2):
1379-1390 (2008)

[13] Jay Kreps, Neha Narkhede, and Jun Rao. Kafka: a distributed
messaging system for log processing. SIGMOD Workshop
on Networking Meets Databases, 2011.

[14] Kestrel: A simple, distributed message queue system.
http://robey.github.com/kestrel

[15] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali
Ghodsi, Anthony D. Joseph, Randy Katz, Scott Shenker, and
Ion Stoica. 2011. Mesos: a platform for fine-grained resource
sharing in the data center. In NSDI, 2011.

[16] Goetz Graefe: Encapsulation of Parallelism in the Volcano
Query Processing System. SIGMOD Conference 1990: 102-
111

[17] Apache Zookeeper. http://zookeeper.apache.org/

[18] Summingbird. https://github.com/Twitter/summingbird

[19] Rajagopal Ananthanarayanan, Venkatesh Basker, Sumit Das,
Ashish Gupta, Haifeng Jiang, Tianhao Qiu, Alexey
Reznichenko, Deomid Ryabkov, Manpreet Singh,
Shivakumar Venkataraman: Photon: fault-tolerant and
scalable joining of continuous data streams. SIGMOD
Conference 2013: 577-588

[20] Nathan Marz: (Storm) Tutorial.
https://github.com/nathanmarz/storm/wiki/Tutorial

[21] Storm, Stream Data Processing:
http://hortonworks.com/labs/storm/

[22] Apache Storm: http://hortonworks.com/hadoop/storm/

[23] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas,
Sharad Agarwal, Mahadev Konar, Robert Evans, Thomas
Graves, Jason Lowe, Hitesh Shah, Siddharth Seth, Bikas
Saha, Carlo Curino, Owen O'Malley, Sanjay Radia,
Benjamin Reed, Eric Baldeschwieler: Apache Hadoop
YARN: yet another resource negotiator. SoCC 2013: 5

[24] Nathan Marz: Trident API Overview.
https://github.com/nathanmarz/storm/wiki/Trident-API-
Overview

[25] ZeroMQ: http://zeromq.org/

Figure 10: Latency Measurements

156

