
Bluetooth: With Low Energy comes Low Security

Mike Ryan
iSEC Partners

Abstract
We discuss our tools and techniques to monitor and inject
packets in Bluetooth Low Energy. Also known as BTLE
or Bluetooth Smart, it is found in recent high-end smart-
phones, sports devices, sensors, and will soon appear in
many medical devices. We show that we can effectively
render useless the encryption of any Bluetooth Low En-
ergy link.

1 Introduction

Bluetooth Low Energy, also known as BTLE or Blue-
tooth Smart, is a new modulation mode and link layer
packet format targeting low power embedded devices. It
is typically found in recent high-end smartphones, sports
devices, various sensors, and will soon appear in many
medical devices. Given that the target devices for BTLE
are expected to have low computation capabilities, com-
promises were made to simplify the protocol. Unfortu-
nately, these decisions also undermine the privacy of the
data transmitted over BTLE.

After giving a brief overview of BTLE and the Uber-
tooth platform, we will demonstrate how to perform
eavesdropping on a BTLE device. Following that we
cover packet injection and breaking the encryption of
Bluetooth Low Energy.

Along with this whitepaper, we release open source
tools to perform all the demonstrated attacks. Although
commercial tools exist for following BTLE connections
as they are established, they are designed to be used as
a debugging aid and only print data values exchanged
during this period. Our open source tools exceed these
capabilities significantly. In addition to following new
connections, we can also follow pre-existing connections
by recovering connection parameters through novel tech-
niques. We have also successfully demonstrated packet
injection.

We implement a BTLE monitor on the Ubertooth plat-

form. Leveraging the power of the platform we are
able to obtain the parameters required to recover encryp-
tion keys by using brute force search over a very small
keyspace.

2 Bluetooth Low Energy

Bluetooth is a short range connectivity protocol used in 9
billion devices. The number of devices integrating BTLE
is expected to grow by 2.9 billion devices per year by
2016 [2].

Bluetooth Low Energy, defined in the Bluetooth Core
Spec 4.0 [4], is a wireless protocol operating in the un-
licensed 2.4 GHz band. While it operates in the same
frequency range as other Bluetooth technologies, its op-
eration at the PHY and link layers is incompatible. At the
PHY layer BTLE uses Gaussian Frequency Shift Keying
(GFSK) with a 250 kHz offset. It transmits on one of 40
channels at 1 Mbit/sec.

BTLE splits the 2.4 GHz spectrum into 40 channels
spaced 2 MHz apart. 37 of the channels (data chan-
nels) are used during connections to transmit data and
the remaining 3 (advertising channels) are used by un-
connected masters and slaves to broadcast device infor-
mation and establish connections.

Every packet begins with an 8 bit preamble, an alter-
nating binary sequence. This is followed by a 32 bit ac-
cess address (AA) which can be thought of as a unique
identifier which defines a particular connection. When a
device (master or slave) transmits on an advertising chan-
nel it uses a fixed value of 0x8e89bed6 as the access
address. The value used on data channels is communi-
cated by the master to the slave during connection setup.
Following the 32 bit access address is a variable length
Protocol Data Unit (PDU) which contains the message
payload. Finally all packets end with a 24 bit CRC.

BTLE is aimed at lower-capability devices with lim-
ited power requirements such as embedded sensors. The
timing parameters, specifically channel hopping rate, are



Figure 1: Bluetooth Low Energy packet format

less aggressive than other Bluetooth technologies. Other
aspects of the protocol, such as whitening seed, are also
simplified. These design simplifications ease the task of
creating an eavesdropping tool. In addition, significant
compromises were made in the key exchange protocol
to account for the limited input and computing capabil-
ities of low-power devices. While understandable in the
context of the devices’ constraints, these compromises
undermine the privacy of the system.

3 Eavesdropping

We have implemented a sniffer capable of following
BTLE connections as they hop across channels. Like
commercial devices on the market [1], we are able to
do so if we witness the initiation of a connection. Our
major contribution is the ability to derive the parameters
needed to follow a connection that has previously been
established, for which we have not witnessed a connec-
tion setup.

Several major technical hurdles prevent the simplistic
eavesdropping common to 802.11. First, as noted, BTLE
devices hop across many channels in the 2.4 GHz spec-
trum, only staying on a particular channel long enough to
transmit and receive a single packet. The time spent on
each channel and the channel hop sequence varies from
connection to connection. In addition, we rely on the 32
bit access address to determine when a packet has been
transmitted, a value which also varies from connection
to connection. Finally, in order to filter out false-positive
packets we must verify the CRC on candidate packets,
a calculation which depends on a 24 bit value known as
CrcInit, which again is connection-specific.

In summary, to sniff a connection we need to know
four values unique to that connection:

1. Hop interval (also referred to as dwell time)

2. Hop increment

3. Access address

4. CRC init

It is also worth noting that all data transmitted is
whitened by XORing it with the output of a linear-
feedback shift register (LFSR). Unlike classic Bluetooth

the seed of the LFSR depends only on the channel num-
ber. In practice whitening does not complicate sniffing
as the seed and LFSR are known.

3.1 Ubertooth

We built our sniffer on the Ubertooth platform. Uber-
tooth [6] is a USB dongle with an RF frontend, CC2400
radio chip, and LPC microcontroller. The CC2400 has
a reconfigurable narrowband radio transceiver that can
monitor a single BTLE channel at any given moment.
The CC2400 (roughly) converts RF into a bitstream,
which is then processed entirely on the LPC.

The Ubertooth project also implements a partial snif-
fer for classic Bluetooth. Because BTLE is a simpler
protocol than classic Bluetooth, we can process packets
entirely on the LPC (on-dongle). In contrast the classic
Bluetooth sniffer only uses the LPC to shovel bits from
the CC2400 to the PC. Our approach allows us to op-
erate with greater agility and enables the precise timing
necessary for recovering hop interval and hop increment.

Our approach also differs from the tactic used in [8]
which uses a wide-band USRP to sniff several channels
at the same time. We use a narrowband sniffer that is
only able to tune to a single BTLE channel at any given
moment. On one hand, our approach has much tighter
timing requirements. On the other hand our hardware
platform is much less expensive.

3.2 From RF to bytes

When a BTLE device transmits a packet on a particular
channel it generates a small amount of RF energy. At the
lowest level this modulated RF is what we aim to sniff.
Our first order of business is to therefore convert this RF
into something we can work with: bits.

We use the CC2400 radio chip on the Ubertooth to
demodulate the signal. The CC2400 contains a reconfig-
urable modem whose demodulation parameters we con-
figure to match those of BTLE. Namely, we configure
the modem to demodulate GFSK with a frequency offset
of 250 kHz and a data rate of 1 Mbit. We configure the
CC2400 to be in unbuffered mode and do all bitstream
processing on the LPC. We do not configure the chip to
look for a preamble, though that is a future optimization
worth exploring. Instead it constantly spews bits to the
LPC which we process in software.

We identify the start of a transmission by searching for
a known 32 bit access address. While we are on an adver-
tising channel the AA is fixed as 0x8e89bed6. The AA
used on a data channel is exchanged during connection
setup which we obtain either by sniffing the connection
setup or recover using techniques described later.

2



Figure 2: Master and slave each transmit on every chan-
nel, even if they have no meaningful data to exchange

The start of transmission, identified by access address,
implicitly defines the byte boundary of the message. We
therefore convert the bits into a sequence of bytes. From
here on out, interpreting the bytes is a matter of referring
to the spec.

3.3 Following Connections
We are able to convert RF to bytes on a given channel.
Bluetooth Low Energy connections do not remain on a
fixed channel: they hop across a sequence of data chan-
nels following a predefined hopping pattern. In order to
follow a BTLE connection we must therefore hop along
the same channels as the master and slave.

The BTLE channel hopping sequence is very straight-
forward. There are 37 data channels, and most connec-
tions use all 37. Given a hopIncrement, defined on a per-
connection basis, the next channel in a hopping sequence
is calculated by:

nextChannel ≡ channel +hopIncrement (mod 37)

While hopping, a master and slave hop to the same
channel at the same time. The master transmits a packet,
and the slave transmits a packet shortly thereafter. If
they have no meaningful content to exchange, they will
transmit an empty data packet which consists of a header,
empty body, and 24 bit CRC. The master and slave will
then wait for a period time called the hop interval before
hopping to the next channel as defined above. Refer to
figure 2 for a graphical explanation.

In order to sniff these exchanges, our sniffer hops
along the same sequence of channels at the same rate as
the master and slave.

4 Promiscuous Mode

We operate on the assumption that connections use all
37 data channels. The authors have never observed oth-
erwise, but the specification does allow fewer to be used.

In order to follow a connection, we need to know the
hop interval, hop increment, access address, and CRC
init as described in section 3. In connection following
mode, these values are extracted from the connection
initialization packet. In promiscuous mode, we recover
them by exploiting properties of BTLE packets.

4.1 Determining Access Address

Promiscuous mode begins by monitoring an arbitrary
data channel looking for empty data packets. These have
a predictable form and are transmitted frequently. The
BTLE spec requires that a master and slave transmit a
packet on each channel they hop to. Hops happen fre-
quently (typically many times per second) and only small
bursts of data are normally sent during a BTLE connec-
tion, so most of the packets transmitted are empty.

Data packets consist of a 16 bit header, 0-37 octets of
payload (PDU), and a 24 bit CRC. An empty data packet
consists of a 16 bit header and 24 bit CRC. Two bits of
the header vary (SN and NESN, used for flow control),
while the rest remain a constant zero. These packets are
thus easy to identify.

We read the bitstream looking for the 16 bit header
that defines an empty packet. When we identify the 16
bit pattern, we treat the prior 32 bits as a candidate ac-
cess address (AA). As we are only filtering the candidate
bitstream by 14 bits (when discounting for the 2 varying
bits of header) we are left with many false positives. We
keep a least-frequently used (LFU) table of every candi-
date AA we observe. After we observe a candidate AA
a configurable number of times (we arbitrarily choose 5)
we treat it as our target AA and can filter packets based
on this value.

4.2 Recovering CRCInit

Our techniques for recovering hop increment and hop in-
terval are sensitive to timing and are ineffective in the
presence of false positives. Therefore before moving
onto that portion of our attack we must filter by CRC.

Every packet carries a 24 bit CRC that is calculated
over the bits of the packet (including the header). This
value is calculated using a linear feedback shift regis-
ter (LFSR) that is pre-seeded with a 24 bit value known
as CRCInit. The CRCInit varies between connections,
which presents a challenge: we are unable to verify
CRCs until this 24 bit seed is recovered.

3



In [8] Spill and Bittau note that the LFSR used to cal-
culate a classic Bluetooth CRC is reversible. This holds
true for the BTLE CRC LFSR as well.

When we receive a candidate packet, we seed the re-
verse LFSR with the CRC from the air. We then run the
bits through the LFSR in the reverse order. The value left
in the LFSR at the end of this exercise is our candidate
CRCInit. As in the case of candidate access addresses,
we maintain an LFU table of candidate CRCInit values
and treat a value as our true CRCInit after it is observed
a fixed number of times (again arbitrarily chosen to be 5
times).

4.3 Hop Interval
The hop interval is recovered by observing that the hop
sequence completes a full cycle once every 37× 1.25×
hopInterval milliseconds. We sit on a data channel and
measure the time between two consecutive packets. We
directly calculate the hop interval using this formula:

hopInterval =
∆t

37×1.25 ms

If our sniffer misses a packet we may inadvertently
calculate an integer multiple of the true hop interval. For
this reason we measure the hop interval over several con-
secutive packets. After the same value has been observed
a fixed number of times we treat that value as our hop in-
terval.

4.4 Hop Increment
Finally the hop increment is recovered by measuring the
interarrival time of packets on two data channels (index
0 and 1). We wait for a packet on channel index 0, then
jump to channel index 1 and measure the time it takes for
a second packet to arrive.

From the interarrival time, we can calculate the num-
ber of channels hopped between the first and second
packet:

channelsHopped =
∆t

1.25 ms×hopInterval

We wish to find hopIncrement, which satisfies the fol-
lowing equation:

0+hopIncrement × channelsHopped ≡ 1 (mod 37)

Rearranging terms, we are left with:

hopIncrement ≡ channelsHopped−1 (mod 37)

The channel hopping sequence is isomorphic to
Z37, a field. This means that the multiplicative

inverse of channelsHopped is well-defined (since
channelsHopped is non-zero). Fermat’s little theorem
gives the following closed form:

channelsHopped−1 ≡ channelsHopped37−2 (mod 37)

We use a lookup table to map the 36 possible values to
the hop increment.

At this point, we have all four values needed to follow
a connection, and we enter connection following mode
as though we observed the initial connect packet.

5 Injection

We have implemented BTLE packet injection as a proof
of concept. From Ubertooth we send undirected adver-
tising messages broadcasting the existence of a device
with a user-specified MAC address. A PC running the
Linux Bluetooth stack (bluez) receives these packets and
lists the device during a scan for BTLE devices.

The theory of operation is similar to receiving, but all
the data flow occurs in the opposite direction. On the
LPC we craft an undirected advertising packet, which
has a well-defined form. The AdvA (advertising address)
is set to the user-specified MAC address, and the packet
CRC is calculated. Finally we whiten the data and send
it to the CC2400 to be transmitted.

We configure the CC2400 to operate in buffered mode
due to quirks of the CC2400’s unbuffered mode. This
does not affect the proof of concept, but a more sophis-
ticated injector will likely require the tighter timing that
can be achieved using unbuffered mode.

This proof of concept paves the way for future attacks
against the crypto system as well as Bluetooth stacks on
devices. We discuss this further in the Future Work sec-
tion.

6 Bypassing the Encryption

BTLE features encryption and in-band key exchange.
Rather than relying on a well-established key exchange
protocol such as one based on Elliptic Curve Diffie-
Hellmann (ECDH) [3], the Bluetooth SIG invented their
own key exchange protocol. We demonstrate that this
key exchange protocol has fundamental weaknesses that
undermine the privacy of communication against passive
eavesdroppers.

We note that the session encryption provided by BTLE
is known to be relatively secure. BTLE uses AES-
CCM [9], against which there are no known practical at-
tacks. Our attack targets the key exchange rather than
the encryption itself. Our technique is similar in princi-
ple to [5] and [7] in which an offline brute force attack is

4



mounted to recover a secret value when all other values
are transmitted over the air.

Before establishing an encrypted session, a master and
a slave must establish a shared secret known as a long-
term key (LTK). Under typical operation, a master and
slave establish an LTK once and reuse it for future ses-
sions. Otherwise, the master and slave establish an LTK
through a key exchange protocol.

The key exchange protocol begins by selecting a tem-
porary key (TK), a 128 bit AES key whose value de-
pends on pairing mode. The master and slave use this
value to calculate a so-called “confirm” value. Aside
from the TK, all values used to calculate the confirm are
exchanged in plaintext over the air. The confirm value
itself is also exchanged over the air in plaintext.

We exploit the fact that all values except the TK are
publicly known in order to brute force the TK.

As noted, the TK value depends on pairing mode.
Three pairing modes are defined: Just WorksTM, 6-digit
PIN, and OOB. The TK is as follows:

• Just WorksTM: 0

• 6-digit pin: a value between 0 and 999,999 padded
to 128 bits.

• OOB: a 128 bit value exchanged out-of-band

We use a simplistic brute force algorithm to guess TK:
we calculate the confirm for every possible TK value be-
tween 0 and 999,999. If the master and slave used Just
WorksTM or 6-digit PIN, we will quickly find the proper
TK whose confirm matches the value exchanged over the
air.

In practice we find that a TK can be cracked in less
than one second on a single core of an Intel Core i7 CPU.
This figure could be improved by brute forcing in parallel
and/or using processor-specific AES extensions.

After the confirm is calculated, the master and slave
follow the rest of the key exchange protocol to establish
a short-term key (STK) and finally an LTK. The STK
exchange messages are encrypted using the TK, whose
value we have trivially brute forced. Therefore, if we
can crack the TK then we are able to decrypt the STK
exchange and recover the STK. Finally the STK is used
to establish a link-layer encrypted session over which the
LTK is exchanged. If we crack the TK and recover the
STK, we can decrypt this session and recover the LTK.

From here on out if this master and slave communicate
in the future they will use the LTK that was established
using the mechanism described above. This optimiza-
tion means that a passive eavesdropper who is able to re-
cover the LTK is able to decrypt any future conversation
between this master and slave, rendering the in-protocol
encryption next to useless.

Note that our technique is ineffective against a well-
chosen OOB key. In practice we expect that Just
WorksTM and 6-digit PIN will be used in the overwhelm-
ing majority of use-cases. Exchanging a 128 bit OOB
key is cumbersome and may require specialized hard-
ware, whereas Just WorksTM and 6-digit PIN are easy
to implement even on the most constrained devices. To
date, we have not found any devices that implement OOB
key exchange.

We also note that our attack can be performed offline.
A passive eavesdropper can record the key exchange and
encrypted session setup to a file. An offline tool can an-
alyze the key exchange and crack the TK. Another tool
can use this information to decrypt the encrypted session
and dump the LTK exchange. Future conversations that
use this LTK can be recorded and decrypted offline as
long as the initial encryption setup (in which the session
key is established) is recorded.

We provide a tool called crackle to perform all these
attacks. crackle is open source and available online. See
section 10 for more information.

6.1 Mitigations and Counter-Mitigations

Certain aspects of BTLE mitigate the attacks we describe
above. As noted, if the master and slave have established
an LTK they need not re-establish a key using the key
exchange protocol. In addition, each encrypted session
uses a session-specific nonce exchanged at the beginning
of the session. Therefore even if the LTK is known, if
the session initialization is not captured the conversation
cannot be decrypted.

We present one theoretical and one practical active at-
tack against those mitigations.

To counter the first issue, we note that the BTLE pro-
tocol has provisions for a master or slave to reject a
LTK. This may be used, for instance, if the slave de-
vice loses its memory. We theorize an attack in which
an eavesdropper waits for an encrypted session to be ini-
tiated. At the proper moment during initialization, the
eavesdropper forces a key renegotiation by injecting the
appropriate link layer message (LL_REJECT_IND). We
can then attack the initialization using the technique de-
scribed above as if it were a new connection.

Countering the second issue, the case in which we
know the LTK but do not know the session nonce, is triv-
ial. We jam the connection, which forces the master and
slave to reconnect and re-establish a secure session, al-
lowing us to sniff the nonce. Our jammer follows along
the channel hopping sequence and injects random noise
(output from an LFSR). In practice this kills connections
almost instantly.

5



7 Future Work

Our contributions demonstrate several passive attacks
against the BTLE protocol. We also demonstrate a proof
of concept injector on the Ubertooth platform which lays
the foundation for a multitude of interesting attacks de-
scribed below.

In section 6 we describe a theoretical attack to force a
key renegotiation. If this attack succeeds it will prevent
a master and slave from using a pre-established key to
secure their communication. At this point if a master and
slave wish to use encryption they must renegotiate a key,
a process which we have demonstrated is vulnerable to a
passive attack.

Expanding on this attack, we theorize that it is possible
to perform a full man-in-the-middle (MitM) attack be-
tween the master and slave. To simplify this thought ex-
periment, suppose we have two Ubertooth dongles con-
nected to the same PC. On one dongle, the faux slave, we
implement a slave stack that communicates with the true
master. On the second dongle, the faux master, we im-
plement a master stack that communicates with the true
slave. The data would then be marshalled through the PC
where it can be tampered with without detection by the
target devices.

Such an attack may even be effective in the presence
of encryption. We allow the true master and slave to
communicate directly to establish an LTK. If the mas-
ter and slave use Just WorksTM or 6-digit pin pairing,
we can recover the LTK using the process described in
section 6. We then jam the connection with one of the
dongles and interpose with the faux master and slave.
Since we know the LTK, we can establish independent
encrypted streams between the faux and true devices that
are encrypted and authenticated from the perspective of
the true devices.

Fully functioning BTLE master and slave stacks also
invite the possibility of a stack fuzzer. The BTLE stacks
on smartphones, PCs, and slave devices all present large
unexplored attack surfaces. There is great potential for
memory corruption due to multiple layers of the packet
(link layer and L2CAP) having variable length fields.
Additionally, we expect much of the stack to be imple-
mented in kernel space.

8 Conclusion

We presented techniques for eavesdropping on Bluetooth
Low Energy conversations. We show how packets can
be intercepted and reassembled into connection streams.
We also demonstrate an attack against the key exchange
protocol which renders the encryption useless against
passive eavesdroppers. This eliminates any confiden-
tially associated with the protocol.

We also provide the first BTLE sniffer that is able to
follow connections that have already been established at
the time of sniffing.

Finally we provide a proof of concept injector. This
paves the way for many future active attacks against
hosts and devices. We offer theoretical attacks for
key renegotiation, man-in-the-middle, and hypothesize a
BTLE stack fuzzer.

9 Acknowledgments

We thank Michael Ossmann for designing the Uber-
tooth hardware and for generously donating an Uber-
tooth dongle. We also thank Dominic Spill of the Uber-
tooth project. This work would not be possible without
their knowledge, guidance, and humo[u]r. We also thank
Mike Kershaw (dragorn), marshallh, Zero_Chaos, Jared
Boone, and the rest of the Ubertooth team for technical
and moral support.

Many thanks to iSEC Partners for funding a portion of
this research.

Finally the author thanks his wife Jia Guo for tolerat-
ing many late nights of hacking.

10 Availability

Bluetooth Low Energy sniffing and injection is avail-
able as a part of the Ubertooth project. The project, in-
cluding the Ubertooth hardware design, is open source.
For source, documentation, and more information please
visit:

http://ubertooth.sourceforge.net/

Wireshark plugins for dissecting Bluetooth Low En-
ergy packets are available as a part of the open source
libbtbb project:

http://libbtbb.sourceforge.net/

crackle, the BTLE encryption cracker, is available
open source at:

http://lacklustre.net/projects/crackle/

References
[1] CC2540 USB Evaluation Module Kit. http://www.ti.com/

tool/cc2540emk-usb.

[2] SIG Membership. http://www.bluetooth.com/Pages/

SIG-Membership.aspx, 2013. [Online; accessed 01-May-2013].

[3] BARKER, E., JOHNSON, D., AND SMID, M. NIST SP 800-56A,
Recommendation for Pair-Wise Key Establishment Schemes Us-
ing Discrete Logarithm Cryptography, Mar. 2007.

[4] BLUETOOTH SIG. Bluetooth Specification Version 4.0. Bluetooth
SIG, 2010.

6



[5] LINDELL, A. Y. Attacks on the pairing protocol of bluetooth v2.1.
In BlackHat Briefings (Las Vegas, NV, USA, June 2008).

[6] OSSMANN, M., AND SPILL, D. Building an All-Channel Blue-
tooth Monitor. In ShmooCon 5 (Washington, DC, USA, 2009).

[7] SHAKED, Y., AND WOOL, A. Cracking the bluetooth pin. In
Proc. 3rd USENIX/ACM Conf. Mobile Systems, Applications, and
Services (MobiSys) (2005), pp. 39–50.

[8] SPILL, D., AND BITTAU, A. Bluesniff: Eve meets alice and blue-
tooth. In Proceedings of the first USENIX Workshop on Offensive
Technologies (Boston, MA, USA, 2007), WOOT ’07, USENIX
Association, pp. 5:1–5:10.

[9] WHITING, D., HOUSLEY, R., AND FERGUSON, N. Counter with
CBC-MAC (CCM). RFC 3610 (Informational), Sept. 2003.

7


