
ARM® and Thumb®-2 Instruction Set
Quick Reference Card

Key to Tables
Rm {, <opsh>} See Table Register, optionally shifted by constant
<Operand2> See Table Flexible Operand 2. Shift and rotate are only available as part of Operand2. <reglist> A comma-separated list of registers, enclosed in braces { and }.

<fields> See Table PSR fields. <reglist-PC> As <reglist>, must not include the PC.

<PSR> Either CPSR (Current Processor Status Register) or SPSR (Saved Processor Status Register) <reglist+PC> As <reglist>, including the PC.

C*, V* Flag is unpredictable in Architecture v4 and earlier, unchanged in Architecture v5 and later. +/- + or –. (+ may be omitted.)

<Rs|sh> Can be Rs or an immediate shift value. The values allowed for each shift type are the same as those § See Table ARM architecture versions.

shown in Table Register, optionally shifted by constant. <iflags> Interrupt flags. One or more of a, i, f (abort, interrupt, fast interrupt).

x,y B meaning half-register [15:0], or T meaning [31:16]. <p_mode> See Table Processor Modes
<imm8m> ARM: a 32-bit constant, formed by right-rotating an 8-bit value by an even number of bits. SPm SP for the processor mode specified by <p_mode>

Thumb: a 32-bit constant, formed by left-shifting an 8-bit value by any number of bits, or a bit <lsb> Least significant bit of bitfield.

pattern of one of the forms 0xXYXYXYXY, 0x00XY00XY or 0xXY00XY00. <width> Width of bitfield. <width> + <lsb> must be <= 32.

<prefix> See Table Prefixes for Parallel instructions {X} RsX is Rs rotated 16 bits if X present. Otherwise, RsX is Rs.

{IA|IB|DA|DB} Increment After, Increment Before, Decrement After, or Decrement Before. {!} Updates base register after data transfer if ! present (pre-indexed).

IB and DA are not available in Thumb state. If omitted, defaults to IA. {S} Updates condition flags if S present.

<size> B, SB, H, or SH, meaning Byte, Signed Byte, Halfword, and Signed Halfword respectively. {T} User mode privilege if T present.

SB and SH are not available in STR instructions. {R} Rounds result to nearest if R present, otherwise truncates result.

Operation § Assembler S updates Action Notes
Add Add ADD{S} Rd, Rn, <Operand2> N Z C V Rd := Rn + Operand2 N

with carry ADC{S} Rd, Rn, <Operand2> N Z C V Rd := Rn + Operand2 + Carry N
wide T2 ADD Rd, Rn, #<imm12> Rd := Rn + imm12, imm12 range 0-4095 T, P
saturating {doubled} 5E Q{D}ADD Rd, Rm, Rn Rd := SAT(Rm + Rn) doubled: Rd := SAT(Rm + SAT(Rn * 2)) Q

Address Form PC-relative address ADR Rd, <label> Rd := <label>, for <label> range from current instruction see Note L N, L
Subtract Subtract SUB{S} Rd, Rn, <Operand2> N Z C V Rd := Rn – Operand2 N

with carry SBC{S} Rd, Rn, <Operand2> N Z C V Rd := Rn – Operand2 – NOT(Carry) N
wide T2 SUB Rd, Rn, #<imm12> N Z C V Rd := Rn – imm12, imm12 range 0-4095 T, P
reverse subtract RSB{S} Rd, Rn, <Operand2> N Z C V Rd := Operand2 – Rn N
reverse subtract with carry RSC{S} Rd, Rn, <Operand2> N Z C V Rd := Operand2 – Rn – NOT(Carry) A
saturating {doubled} 5E Q{D}SUB Rd, Rm, Rn Rd := SAT(Rm – Rn) doubled: Rd := SAT(Rm – SAT(Rn * 2)) Q
Exception return without stack SUBS PC, LR, #<imm8> PC = LR – imm8, CPSR = SPSR(current mode), imm8 range 0-255. T

Parallel
arithmetic

Halfword-wise addition 6 <prefix>ADD16 Rd, Rn, Rm Rd[31:16] := Rn[31:16] + Rm[31:16], Rd[15:0] := Rn[15:0] + Rm[15:0] G
Halfword-wise subtraction 6 <prefix>SUB16 Rd, Rn, Rm Rd[31:16] := Rn[31:16] – Rm[31:16], Rd[15:0] := Rn[15:0] – Rm[15:0] G
Byte-wise addition 6 <prefix>ADD8 Rd, Rn, Rm Rd[31:24] := Rn[31:24] + Rm[31:24], Rd[23:16] := Rn[23:16] + Rm[23:16],

Rd[15:8] := Rn[15:8] + Rm[15:8], Rd[7:0] := Rn[7:0] + Rm[7:0]
G

Byte-wise subtraction 6 <prefix>SUB8 Rd, Rn, Rm Rd[31:24] := Rn[31:24] – Rm[31:24], Rd[23:16] := Rn[23:16] – Rm[23:16],
Rd[15:8] := Rn[15:8] – Rm[15:8], Rd[7:0] := Rn[7:0] – Rm[7:0]

G

Halfword-wise exchange, add, subtract 6 <prefix>ASX Rd, Rn, Rm Rd[31:16] := Rn[31:16] + Rm[15:0], Rd[15:0] := Rn[15:0] – Rm[31:16] G
Halfword-wise exchange, subtract, add 6 <prefix>SAX Rd, Rn, Rm Rd[31:16] := Rn[31:16] – Rm[15:0], Rd[15:0] := Rn[15:0] + Rm[31:16] G
Unsigned sum of absolute differences 6 USAD8 Rd, Rm, Rs Rd := Abs(Rm[31:24] – Rs[31:24]) + Abs(Rm[23:16] – Rs[23:16])

+ Abs(Rm[15:8] – Rs[15:8]) + Abs(Rm[7:0] – Rs[7:0])
and accumulate 6 USADA8 Rd, Rm, Rs, Rn Rd := Rn + Abs(Rm[31:24] – Rs[31:24]) + Abs(Rm[23:16] – Rs[23:16])

+ Abs(Rm[15:8] – Rs[15:8]) + Abs(Rm[7:0] – Rs[7:0])
Saturate Signed saturate word, right shift 6 SSAT Rd, #<sat>, Rm{, ASR <sh>} Rd := SignedSat((Rm ASR sh), sat). <sat> range 1-32, <sh> range 1-31. Q, R

Signed saturate word, left shift 6 SSAT Rd, #<sat>, Rm{, LSL <sh>} Rd := SignedSat((Rm LSL sh), sat). <sat> range 1-32, <sh> range 0-31. Q
Signed saturate two halfwords 6 SSAT16 Rd, #<sat>, Rm Rd[31:16] := SignedSat(Rm[31:16], sat),

Rd[15:0] := SignedSat(Rm[15:0], sat). <sat> range 1-16.
Q

Unsigned saturate word, right shift 6 USAT Rd, #<sat>, Rm{, ASR <sh>} Rd := UnsignedSat((Rm ASR sh), sat). <sat> range 0-31, <sh> range 1-31. Q, R
Unsigned saturate word, left shift 6 USAT Rd, #<sat>, Rm{, LSL <sh>} Rd := UnsignedSat((Rm LSL sh), sat). <sat> range 0-31, <sh> range 0-31. Q
Unsigned saturate two halfwords 6 USAT16 Rd, #<sat>, Rm Rd[31:16] := UnsignedSat(Rm[31:16], sat),

Rd[15:0] := UnsignedSat(Rm[15:0], sat). <sat> range 0-15.
Q

ARM and Thumb-2 Instruction Set
Quick Reference Card

Operation § Assembler S updates Action Notes
Multiply Multiply MUL{S} Rd, Rm, Rs N Z C* Rd := (Rm * Rs)[31:0] (If Rm is Rd, S can be used in Thumb-2) N, S

and accumulate MLA{S} Rd, Rm, Rs, Rn N Z C* Rd := (Rn + (Rm * Rs))[31:0] S

and subtract T2 MLS Rd, Rm, Rs, Rn Rd := (Rn – (Rm * Rs))[31:0]

unsigned long UMULL{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := unsigned(Rm * Rs) S

unsigned accumulate long UMLAL{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := unsigned(RdHi,RdLo + Rm * Rs) S

unsigned double accumulate long 6 UMAAL RdLo, RdHi, Rm, Rs RdHi,RdLo := unsigned(RdHi + RdLo + Rm * Rs)

Signed multiply long SMULL{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := signed(Rm * Rs) S

and accumulate long SMLAL{S} RdLo, RdHi, Rm, Rs N Z C* V* RdHi,RdLo := signed(RdHi,RdLo + Rm * Rs) S

16 * 16 bit 5E SMULxy Rd, Rm, Rs Rd := Rm[x] * Rs[y]

32 * 16 bit 5E SMULWy Rd, Rm, Rs Rd := (Rm * Rs[y])[47:16]

16 * 16 bit and accumulate 5E SMLAxy Rd, Rm, Rs, Rn Rd := Rn + Rm[x] * Rs[y] Q

32 * 16 bit and accumulate 5E SMLAWy Rd, Rm, Rs, Rn Rd := Rn + (Rm * Rs[y])[47:16] Q

16 * 16 bit and accumulate long 5E SMLALxy RdLo, RdHi, Rm, Rs RdHi,RdLo := RdHi,RdLo + Rm[x] * Rs[y]

Dual signed multiply, add 6 SMUAD{X} Rd, Rm, Rs Rd := Rm[15:0] * RsX[15:0] + Rm[31:16] * RsX[31:16] Q

and accumulate 6 SMLAD{X} Rd, Rm, Rs, Rn Rd := Rn + Rm[15:0] * RsX[15:0] + Rm[31:16] * RsX[31:16] Q

and accumulate long 6 SMLALD{X} RdLo, RdHi, Rm, Rs RdHi,RdLo := RdHi,RdLo + Rm[15:0] * RsX[15:0] + Rm[31:16] * RsX[31:16]

Dual signed multiply, subtract 6 SMUSD{X} Rd, Rm, Rs Rd := Rm[15:0] * RsX[15:0] – Rm[31:16] * RsX[31:16] Q

and accumulate 6 SMLSD{X} Rd, Rm, Rs, Rn Rd := Rn + Rm[15:0] * RsX[15:0] – Rm[31:16] * RsX[31:16] Q

and accumulate long 6 SMLSLD{X} RdLo, RdHi, Rm, Rs RdHi,RdLo := RdHi,RdLo + Rm[15:0] * RsX[15:0] – Rm[31:16] * RsX[31:16]

Signed top word multiply 6 SMMUL{R} Rd, Rm, Rs Rd := (Rm * Rs)[63:32]

and accumulate 6 SMMLA{R} Rd, Rm, Rs, Rn Rd := Rn + (Rm * Rs)[63:32]

and subtract 6 SMMLS{R} Rd, Rm, Rs, Rn Rd := Rn – (Rm * Rs)[63:32]

with internal 40-bit accumulate XS MIA Ac, Rm, Rs Ac := Ac + Rm * Rs

packed halfword XS MIAPH Ac, Rm, Rs Ac := Ac + Rm[15:0] * Rs[15:0] + Rm[31:16] * Rs[31:16]

halfword XS MIAxy Ac, Rm, Rs Ac := Ac + Rm[x] * Rs[y]

Divide Signed or Unsigned RM <op> Rd, Rn, Rm Rd := Rn / Rm <op> is SDIV (signed) or UDIV (unsigned)

Move
data

Move MOV{S} Rd, <Operand2> N Z C Rd := Operand2 See also Shift instructions N

NOT MVN{S} Rd, <Operand2> N Z C Rd := 0xFFFFFFFF EOR Operand2 N

top T2 MOVT Rd, #<imm16> Rd[31:16] := imm16, Rd[15:0] unaffected, imm16 range 0-65535

wide T2 MOV Rd, #<imm16> Rd[15:0] := imm16, Rd[31:16] = 0, imm16 range 0-65535

40-bit accumulator to register XS MRA RdLo, RdHi, Ac RdLo := Ac[31:0], RdHi := Ac[39:32]

register to 40-bit accumulator XS MAR Ac, RdLo, RdHi Ac[31:0] := RdLo, Ac[39:32] := RdHi

Shift Arithmetic shift right ASR{S} Rd, Rm, <Rs|sh> N Z C Rd := ASR(Rm, Rs|sh) Same as MOV{S} Rd, Rm, ASR <Rs|sh> N

Logical shift left LSL{S} Rd, Rm, <Rs|sh> N Z C Rd := LSL(Rm, Rs|sh) Same as MOV{S} Rd, Rm, LSL <Rs|sh> N

Logical shift right LSR{S} Rd, Rm, <Rs|sh> N Z C Rd := LSR(Rm, Rs|sh) Same as MOV{S} Rd, Rm, LSR <Rs|sh> N

Rotate right ROR{S} Rd, Rm, <Rs|sh> N Z C Rd := ROR(Rm, Rs|sh) Same as MOV{S} Rd, Rm, ROR <Rs|sh> N

Rotate right with extend RRX{S} Rd, Rm N Z C Rd := RRX(Rm) Same as MOV{S} Rd, Rm, RRX

Count leading zeros 5 CLZ Rd, Rm Rd := number of leading zeros in Rm

Compare Compare CMP Rn, <Operand2> N Z C V Update CPSR flags on Rn – Operand2 N

negative CMN Rn, <Operand2> N Z C V Update CPSR flags on Rn + Operand2 N

Logical Test TST Rn, <Operand2> N Z C Update CPSR flags on Rn AND Operand2 N

Test equivalence TEQ Rn, <Operand2> N Z C Update CPSR flags on Rn EOR Operand2

AND AND{S} Rd, Rn, <Operand2> N Z C Rd := Rn AND Operand2 N

EOR EOR{S} Rd, Rn, <Operand2> N Z C Rd := Rn EOR Operand2 N

ORR ORR{S} Rd, Rn, <Operand2> N Z C Rd := Rn OR Operand2 N

ORN T2 ORN{S} Rd, Rn, <Operand2> N Z C Rd := Rn OR NOT Operand2 T

Bit Clear BIC{S} Rd, Rn, <Operand2> N Z C Rd := Rn AND NOT Operand2 N

ARM and Thumb-2 Instruction Set
Quick Reference Card

Operation § Assembler Action Notes
Bit field Bit Field Clear T2 BFC Rd, #<lsb>, #<width> Rd[(width+lsb–1):lsb] := 0, other bits of Rd unaffected

Bit Field Insert T2 BFI Rd, Rn, #<lsb>, #<width> Rd[(width+lsb–1):lsb] := Rn[(width-1):0], other bits of Rd unaffected

Signed Bit Field Extract T2 SBFX Rd, Rn, #<lsb>, #<width> Rd[(width–1):0] = Rn[(width+lsb–1):lsb], Rd[31:width] = Replicate(Rn[width+lsb–1])

Unsigned Bit Field Extract T2 UBFX Rd, Rn, #<lsb>, #<width> Rd[(width–1):0] = Rn[(width+lsb–1):lsb], Rd[31:width] = Replicate(0)

Pack Pack halfword bottom + top 6 PKHBT Rd, Rn, Rm{, LSL #<sh>} Rd[15:0] := Rn[15:0], Rd[31:16] := (Rm LSL sh)[31:16]. sh 0-31.

Pack halfword top + bottom 6 PKHTB Rd, Rn, Rm{, ASR #<sh>} Rd[31:16] := Rn[31:16], Rd[15:0] := (Rm ASR sh)[15:0]. sh 1-32.

Signed
extend

Halfword to word 6 SXTH Rd, Rm{, ROR #<sh>} Rd[31:0] := SignExtend((Rm ROR (8 * sh))[15:0]). sh 0-3. N

Two bytes to halfwords 6 SXTB16 Rd, Rm{, ROR #<sh>} Rd[31:16] := SignExtend((Rm ROR (8 * sh))[23:16]),
Rd[15:0] := SignExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.

Byte to word 6 SXTB Rd, Rm{, ROR #<sh>} Rd[31:0] := SignExtend((Rm ROR (8 * sh))[7:0]). sh 0-3. N

Unsigned
extend

Halfword to word 6 UXTH Rd, Rm{, ROR #<sh>} Rd[31:0] := ZeroExtend((Rm ROR (8 * sh))[15:0]). sh 0-3. N

Two bytes to halfwords 6 UXTB16 Rd, Rm{, ROR #<sh>} Rd[31:16] := ZeroExtend((Rm ROR (8 * sh))[23:16]),
Rd[15:0] := ZeroExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.

Byte to word 6 UXTB Rd, Rm{, ROR #<sh>} Rd[31:0] := ZeroExtend((Rm ROR (8 * sh))[7:0]). sh 0-3. N

Signed
extend
with add

Halfword to word, add 6 SXTAH Rd, Rn, Rm{, ROR #<sh>} Rd[31:0] := Rn[31:0] + SignExtend((Rm ROR (8 * sh))[15:0]). sh 0-3.

Two bytes to halfwords, add 6 SXTAB16 Rd, Rn, Rm{, ROR #<sh>} Rd[31:16] := Rn[31:16] + SignExtend((Rm ROR (8 * sh))[23:16]),
Rd[15:0] := Rn[15:0] + SignExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.

Byte to word, add 6 SXTAB Rd, Rn, Rm{, ROR #<sh>} Rd[31:0] := Rn[31:0] + SignExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.

Unsigned
extend
with add

Halfword to word, add 6 UXTAH Rd, Rn, Rm{, ROR #<sh>} Rd[31:0] := Rn[31:0] + ZeroExtend((Rm ROR (8 * sh))[15:0]). sh 0-3.

Two bytes to halfwords, add 6 UXTAB16 Rd, Rn, Rm{, ROR #<sh>} Rd[31:16] := Rn[31:16] + ZeroExtend((Rm ROR (8 * sh))[23:16]),
Rd[15:0] := Rn[15:0] + ZeroExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.

Byte to word, add 6 UXTAB Rd, Rn, Rm{, ROR #<sh>} Rd[31:0] := Rn[31:0] + ZeroExtend((Rm ROR (8 * sh))[7:0]). sh 0-3.

Reverse Bits in word T2 RBIT Rd, Rm For (i = 0; i < 32; i++) : Rd[i] = Rm[31– i]

Bytes in word 6 REV Rd, Rm Rd[31:24] := Rm[7:0], Rd[23:16] := Rm[15:8], Rd[15:8] := Rm[23:16], Rd[7:0] := Rm[31:24] N

Bytes in both halfwords 6 REV16 Rd, Rm Rd[15:8] := Rm[7:0], Rd[7:0] := Rm[15:8], Rd[31:24] := Rm[23:16], Rd[23:16] := Rm[31:24] N

Bytes in low halfword,
sign extend

6 REVSH Rd, Rm Rd[15:8] := Rm[7:0], Rd[7:0] := Rm[15:8], Rd[31:16] := Rm[7] * &FFFF N

Select Select bytes 6 SEL Rd, Rn, Rm Rd[7:0] := Rn[7:0] if GE[0] = 1, else Rd[7:0] := Rm[7:0]
Bits[15:8], [23:16], [31:24] selected similarly by GE[1], GE[2], GE[3]

If-Then If-Then T2 IT{pattern} {cond} Makes up to four following instructions conditional, according to pattern. pattern is a string of up to three
letters. Each letter can be T (Then) or E (Else).

The first instruction after IT has condition cond. The following instructions have condition cond if the
corresponding letter is T, or the inverse of cond if the corresponding letter is E.

See Table Condition Field for available condition codes.

T U

Branch Branch B <label> PC := label. label is this instruction ±32MB (T2: ±16MB, T: –252 - +256B) N, B

with link BL <label> LR := address of next instruction, PC := label. label is this instruction ±32MB (T2: ±16MB).

and exchange 4T BX Rm PC := Rm. Target is Thumb if Rm[0] is 1, ARM if Rm[0] is 0. N

with link and exchange (1) 5T BLX <label> LR := address of next instruction, PC := label, Change instruction set.
label is this instruction ±32MB (T2: ±16MB).

C

with link and exchange (2) 5 BLX Rm LR := address of next instruction, PC := Rm[31:1]. Change to Thumb if Rm[0] is 1, to ARM if Rm[0] is 0. N

and change to Jazelle state 5J BXJ Rm Change to Jazelle state if available

Compare, branch if (non) zero T2 CB{N}Z Rn,<label> If Rn {== or !=} 0 then PC := label. label is (this instruction + 4-130). N T U

Table Branch Byte T2 TBB [Rn, Rm] PC = PC + ZeroExtend(Memory(Rn + Rm, 1) << 1). Branch range 4-512. Rn can be PC. T U

Table Branch Halfword T2 TBH [Rn, Rm, LSL #1] PC = PC + ZeroExtend(Memory(Rn + Rm << 1, 2) << 1). Branch range 4-131072. Rn can be PC. T U

Move to or
from PSR

PSR to register MRS Rd, <PSR> Rd := PSR

register to PSR MSR <PSR>_<fields>, Rm PSR := Rm (selected bytes only)

immediate to PSR MSR <PSR>_<fields>, #<imm8m> PSR := immed_8r (selected bytes only)

Processor
state
change

Change processor state 6 CPSID <iflags> {, #<p_mode>} Disable specified interrupts, optional change mode. U, N

6 CPSIE <iflags> {, #<p_mode>} Enable specified interrupts, optional change mode. U, N

Change processor mode 6 CPS #<p_mode> U

Set endianness 6 SETEND <endianness> Sets endianness for loads and saves. <endianness> can be BE (Big Endian) or LE (Little Endian). U, N

ARM Instruction Set
Quick Reference Card

Single data item loads and stores § Assembler Action if <op> is LDR Action if <op> is STR Notes
Load
or store
word, byte
or halfword

Immediate offset <op>{size}{T} Rd, [Rn {, #<offset>}]{!} Rd := [address, size] [address, size] := Rd 1, N

Post-indexed, immediate <op>{size}{T} Rd, [Rn], #<offset> Rd := [address, size] [address, size] := Rd 2
Register offset <op>{size} Rd, [Rn, +/-Rm {, <opsh>}]{!} Rd := [address, size] [address, size] := Rd 3, N

Post-indexed, register <op>{size}{T} Rd, [Rn], +/-Rm {, <opsh>} Rd := [address, size] [address, size] := Rd 4

PC-relative <op>{size} Rd, <label> Rd := [label, size] Not available 5, N
Load or store
doubleword

Immediate offset 5E <op>D Rd1, Rd2, [Rn {, #<offset>}]{!} Rd1 := [address], Rd2 := [address + 4] [address] := Rd1, [address + 4] := Rd2 6, 9

Post-indexed, immediate 5E <op>D Rd1, Rd2, [Rn], #<offset> Rd1 := [address], Rd2 := [address + 4] [address] := Rd1, [address + 4] := Rd2 6, 9

Register offset 5E <op>D Rd1, Rd2, [Rn, +/-Rm {, <opsh>}]{!} Rd1 := [address], Rd2 := [address + 4] [address] := Rd1, [address + 4] := Rd2 7, 9
Post-indexed, register 5E <op>D Rd1, Rd2, [Rn], +/-Rm {, <opsh>} Rd1 := [address], Rd2 := [address + 4] [address] := Rd1, [address + 4] := Rd2 7, 9

PC-relative 5E <op>D Rd1, Rd2, <label> Rd1 := [label], Rd2 := [label + 4] Not available 8, 9

Preload data or instruction § (PLD) § (PLI) Assembler Action if <op> is PLD Action if <op> is PLI Notes
Immediate offset 5E 7 <op> [Rn {, #<offset>}] Preload [address, 32] (data) Preload [address, 32] (instruction) 1, C

Register offset 5E 7 <op> [Rn, +/-Rm {, <opsh>}] Preload [address, 32] (data) Preload [address, 32] (instruction) 3, C
PC-relative 5E 7 <op> <label> Preload [label, 32] (data) Preload [label, 32] (instruction) 5, C

Other memory operations § Assembler Action Notes
Load multiple Block data load LDM{IA|IB|DA|DB} Rn{!}, <reglist-PC> Load list of registers from [Rn] N, I

return (and exchange) LDM{IA|IB|DA|DB} Rn{!}, <reglist+PC> Load registers, PC := [address][31:1] (§ 5T: Change to Thumb if [address][0] is 1) I

and restore CPSR LDM{IA|IB|DA|DB} Rn{!}, <reglist+PC>^ Load registers, branch (§ 5T: and exchange), CPSR := SPSR. Exception modes only. I
User mode registers LDM{IA|IB|DA|DB} Rn, <reglist-PC>^ Load list of User mode registers from [Rn]. Privileged modes only. I

Pop POP <reglist> Canonical form of LDM SP!, <reglist> N

Load
exclusive

Semaphore operation 6 LDREX Rd, [Rn] Rd := [Rn], tag address as exclusive access. Outstanding tag set if not shared address.
Rd, Rn not PC.

Halfword or Byte 6K LDREX{H|B} Rd, [Rn] Rd[15:0] := [Rn] or Rd[7:0] := [Rn], tag address as exclusive access.
Outstanding tag set if not shared address. Rd, Rn not PC.

Doubleword 6K LDREXD Rd1, Rd2, [Rn] Rd1 := [Rn], Rd2 := [Rn+4], tag addresses as exclusive access
Outstanding tags set if not shared addresses. Rd1, Rd2, Rn not PC.

9

Store multiple Push, or Block data store STM{IA|IB|DA|DB} Rn{!}, <reglist> Store list of registers to [Rn] N, I

User mode registers STM{IA|IB|DA|DB} Rn{!}, <reglist>^ Store list of User mode registers to [Rn]. Privileged modes only. I

Push PUSH <reglist> Canonical form of STMDB SP!, <reglist> N
Store
exclusive

Semaphore operation 6 STREX Rd, Rm, [Rn] If allowed, [Rn] := Rm, clear exclusive tag, Rd := 0. Else Rd := 1. Rd, Rm, Rn not PC.

Halfword or Byte 6K STREX{H|B} Rd, Rm, [Rn] If allowed, [Rn] := Rm[15:0] or [Rn] := Rm[7:0], clear exclusive tag, Rd := 0. Else Rd := 1
Rd, Rm, Rn not PC.

Doubleword 6K STREXD Rd, Rm1, Rm2, [Rn] If allowed, [Rn] := Rm1, [Rn+4] := Rm2, clear exclusive tags, Rd := 0. Else Rd := 1
Rd, Rm1, Rm2, Rn not PC.

9

Clear exclusive 6K CLREX Clear local processor exclusive tag C

Notes: availability and range of options for Load, Store, and Preload operations
Note ARM Word, B, D ARM SB, H, SH ARM T, BT Thumb-2 Word, B, SB, H, SH, D Thumb-2 T, BT, SBT, HT, SHT
1 offset: – 4095 to +4095 offset: –255 to +255 Not available offset: –255 to +255 if writeback, –255 to +4095 otherwise offset: 0 to +255, writeback not allowed

2 offset: – 4095 to +4095 offset: –255 to +255 offset: – 4095 to +4095 offset: –255 to +255 Not available

3 Full range of {, <opsh>} {, <opsh>} not allowed Not available <opsh> restricted to LSL #<sh>, <sh> range 0 to 3 Not available

4 Full range of {, <opsh>} {, <opsh>} not allowed Full range of {, <opsh>} Not available Not available

5 label within +/– 4092 of current instruction Not available Not available label within +/– 4092 of current instruction Not available

6 offset: –255 to +255 - - offset: –1020 to +1020, must be multiple of 4. -

7 {, <opsh>} not allowed - - Not available -

8 label within +/– 252 of current instruction - - Not available -

9 Rd1 even, and not r14, Rd2 == Rd1 + 1. - - Rd1 != PC, Rd2 != PC -

ARM Instruction Set
Quick Reference Card

Coprocessor operations § Assembler Action Notes

Data operations CDP{2} <copr>, <op1>, CRd, CRn, CRm{, <op2>} Coprocessor defined C2

Move to ARM register from coprocessor MRC{2} <copr>, <op1>, Rd, CRn, CRm{, <op2>} Coprocessor defined C2

Two ARM register move 5E MRRC <copr>, <op1>, Rd, Rn, CRm Coprocessor defined

Alternative two ARM register move 6 MRRC2 <copr>, <op1>, Rd, Rn, CRm Coprocessor defined C

Move to coproc from ARM reg MCR{2} <copr>, <op1>, Rd, CRn, CRm{, <op2>} Coprocessor defined C2

Two ARM register move 5E MCRR <copr>, <op1>, Rd, Rn, CRm Coprocessor defined

Alternative two ARM register move 6 MCRR2 <copr>, <op1>, Rd, Rn, CRm Coprocessor defined C

Loads and stores, pre-indexed <op>{2} <copr>, CRd, [Rn, #+/-<offset8*4>]{!} op: LDC or STC. offset: multiple of 4 in range 0 to 1020. Coprocessor defined C2

Loads and stores, zero offset <op>{2} <copr>, CRd, [Rn] {, 8-bit copro. option} op: LDC or STC. Coprocessor defined C2

Loads and stores, post-indexed <op>{2} <copr>, CRd, [Rn], #+/-<offset8*4> op: LDC or STC. offset: multiple of 4 in range 0 to 1020. Coprocessor defined C2

Miscellaneous operations § Assembler Action Notes

Swap word SWP Rd, Rm, [Rn] temp := [Rn], [Rn] := Rm, Rd := temp. D

Swap byte SWPB Rd, Rm, [Rn] temp := ZeroExtend([Rn][7:0]), [Rn][7:0] := Rm[7:0], Rd := temp D

Store return state 6 SRS{IA|IB|DA|DB} SP{!}, #<p_mode> [SPm] := LR, [SPm + 4] := CPSR C, I

Return from exception 6 RFE{IA|IB|DA|DB} Rn{!} PC := [Rn], CPSR := [Rn + 4] C, I

Breakpoint 5 BKPT <imm16> Prefetch abort or enter debug state. 16-bit bitfield encoded in instruction. C, N

Secure Monitor Call Z SMC <imm16> Secure Monitor Call exception. 16-bit bitfield encoded in instruction. Formerly SMI.

Supervisor Call SVC <imm24> Supervisor Call exception. 24-bit bitfield encoded in instruction. Formerly SWI. N

No operation 6 NOP None, might not even consume any time. N

Hints Debug Hint 7 DBG Provide hint to debug and related systems.

Data Memory Barrier 7 DMB Ensure the order of observation of memory accesses. C

Data Synchronization Barrier 7 DSB Ensure the completion of memory accesses, C

Instruction Synchronization Barrier 7 ISB Flush processor pipeline and branch prediction logic. C

Set event T2 SEV Signal event in multiprocessor system. NOP if not implemented. N

Wait for event T2 WFE Wait for event, IRQ, FIQ, Imprecise abort, or Debug entry request. NOP if not implemented. N

Wait for interrupt T2 WFI Wait for IRQ, FIQ, Imprecise abort, or Debug entry request. NOP if not implemented. N

Yield T2 YIELD Yield control to alternative thread. NOP if not implemented. N

Notes

A Not available in Thumb state. N Some or all forms of this instruction are 16-bit (Narrow) instructions in Thumb-2 code. For details
see the Thumb 16-bit Instruction Set (UAL) Quick Reference Card.B Can be conditional in Thumb state without having to be in an IT block.

C Condition codes are not allowed in ARM state. P Rn can be the PC in Thumb state in this instruction.

C2 The optional 2 is available from ARMv5. It provides an alternative operation. Condition codes are not
allowed for the alternative form in ARM state.

Q Sets the Q flag if saturation (addition or substraction) or overflow (multiplication) occurs. Read and
reset the Q flag using MRS and MSR.

D Deprecated. Use LDREX and STREX instead. R <sh> range is 1-32 in the ARM instruction.

G Updates the four GE flags in the CPSR based on the results of the individual operations. S The S modifier is not available in the Thumb-2 instruction.

I IA is the default, and is normally omitted. T Not available in ARM state.

L ARM: <imm8m>. 16-bit Thumb: multiple of 4 in range 0-1020. 32-bit Thumb: 0-4095. U Not allowed in an IT block. Condition codes not allowed in either ARM or Thumb state.

ARM Instruction Set
Quick Reference Card

ARM architecture versions Condition Field

n ARM architecture version n and above Mnemonic Description Description (VFP)

nT, nJ T or J variants of ARM architecture version n and above EQ Equal Equal

5E ARM v5E, and 6 and above NE Not equal Not equal, or unordered

T2 All Thumb-2 versions of ARM v6 and above CS / HS Carry Set / Unsigned higher or same Greater than or equal, or unordered

6K ARMv6K and above for ARM instructions, ARMv7 for Thumb CC / LO Carry Clear / Unsigned lower Less than

Z All Security extension versions of ARMv6 and above MI Negative Less than

RM ARMv7-R and ARMv7-M only PL Positive or zero Greater than or equal, or unordered

XS XScale coprocessor instruction VS Overflow Unordered (at least one NaN operand)

VC No overflow Not unordered

Flexible Operand 2 HI Unsigned higher Greater than, or unordered

Immediate value #<imm8m> LS Unsigned lower or same Less than or equal

Register, optionally shifted by constant (see below) Rm {, <opsh>} GE Signed greater than or equal Greater than or equal

Register, logical shift left by register Rm, LSL Rs LT Signed less than Less than, or unordered

Register, logical shift right by register Rm, LSR Rs GT Signed greater than Greater than

Register, arithmetic shift right by register Rm, ASR Rs LE Signed less than or equal Less than or equal, or unordered

Register, rotate right by register Rm, ROR Rs AL Always (normally omitted) Always (normally omitted)

All ARM instructions (except those with Note C or Note U) can have any one of these condition codes after the
instruction mnemonic (that is, before the first space in the instruction as shown on this card). This condition is
encoded in the instruction.

All Thumb-2 instructions (except those with Note U) can have any one of these condition codes after the
instruction mnemonic. This condition is encoded in a preceding IT instruction (except in the case of
conditional Branch instructions). Condition codes in instructions must match those in the preceding IT
instruction.

On processors without Thumb-2, the only Thumb instruction that can have a condition code is B <label>.

Register, optionally shifted by constant

(No shift) Rm Same as Rm, LSL #0

Logical shift left Rm, LSL #<shift> Allowed shifts 0-31

Logical shift right Rm, LSR #<shift> Allowed shifts 1-32

Arithmetic shift right Rm, ASR #<shift> Allowed shifts 1-32

Rotate right Rm, ROR #<shift> Allowed shifts 1-31

Rotate right with extend Rm, RRX Processor Modes Prefixes for Parallel Instructions

16 User S Signed arithmetic modulo 28 or 216, sets CPSR GE bits

PSR fields (use at least one suffix) 17 FIQ Fast Interrupt Q Signed saturating arithmetic

Suffix Meaning 18 IRQ Interrupt SH Signed arithmetic, halving results

c Control field mask byte PSR[7:0] 19 Supervisor U Unsigned arithmetic modulo 28 or 216, sets CPSR GE bits

f Flags field mask byte PSR[31:24] 23 Abort UQ Unsigned saturating arithmetic

s Status field mask byte PSR[23:16] 27 Undefined UH Unsigned arithmetic, halving results

x Extension field mask byte PSR[15:8] 31 System

Proprietary Notice
Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited.
Other brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the
copyright holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith.
However, all warranties implied or expressed, including but not limited to implied warranties of
merchantability, or fitness for purpose, are excluded.

This reference card is intended only to assist the reader in the use of the product. ARM Ltd shall not be
liable for any loss or damage arising from the use of any information in this reference card, or any error
or omission in such information, or any incorrect use of the product.

Document Number
ARM QRC 0001L

Change Log
Issue Date Change Issue Date Change
A June 1995 First Release B Sept 1996 Second Release
C Nov 1998 Third Release D Oct 1999 Fourth Release
E Oct 2000 Fifth Release F Sept 2001 Sixth Release
G Jan 2003 Seventh Release H Oct 2003 Eighth Release
I Dec 2004 Ninth Release J May 2005 RVCT 2.2 SP1
K March 2006 RVCT 3.0 L March 2007 RVCT 3.1

	QRC0001_UALside1.pdf
	QRC0001_UALside2.pdf

