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ABSTRACT
Water is nature’s most precious resource and growing de-
mand is pushing fresh water supplies to the brink of non-
renewability. New technological and social initiatives that
enhance conservation and reduce waste are needed. Provid-
ing consumers with fine-grained real-time information has
yielded benefits in conservation of power and gasoline. Ex-
tending this philosophy to water conservation, we introduce
a novel water monitoring system, NAWMS, that similarly
empowers users.

The goal of our work is to furnish users with an easy-to-
install self-calibrating system that provides information on
when, where, and how much water they are using. The sys-
tem uses wireless vibration sensors attached to pipes and,
thus, neither plumbing nor special expertise is necessary
for its installation. By implementing a non-intrusive, au-
tonomous, and adaptive system using commodity hardware,
we believe it is cost-effective and widely deployable.

NAWMS makes use of the existing household water flow
meter, which is considered accurate, but lacks spatial granu-
larity, and adds vibration sensors on individual water pipes
to estimate the water flow to each individual outlet. Com-
pensating for manufacturing, installation, and material vari-
abilities requires calibration of these low cost sensors to
achieve a reasonable level of accuracy. We have devised
an adaptive auto-calibration procedure, which attempts to
solve a two phase linear programming and mixed linear ge-
ometric programming problem.

We show through experiments on a three pipe testbed
that such a system is indeed feasible and adapts well to
minimize error in the water usage estimate. We report an
accuracy, over likely domestic flow-rate scenarios, with long-
term stability and a mean absolute error of 7%.
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1. INTRODUCTION
Bob hears about water conservation all the time. He is

told that if every citizen consumed water moderately, our
supplies would last forever. But, what is moderate? Is
he wasting water? He decides to consult his utility bill,
but quickly realizes that the monthly usage is for the whole
house. What he needs is a system that can tell him not
just how much water is being used, but where it gets used,
when, and by whom. Having a system prompt him in real-
time about usage for every outlet in the house puts him in
a better position to discover wastage and make corrections.

The problem Bob faces applies to any resource a house-
hold consumes. Most utilities do not provide the spatial and
temporal granularity needed for household members to ef-
fectively reduce their resource consumption, since it would
mean higher installation and infrastructure cost. The sys-
tems currently in place are adequate for their billing pur-
poses.

McMakin [28], Ester [18] and Stern [38] show in their
studies that providing fine-grained consumption information
helps consumers pinpoint waste, and enables improved ef-
ficiency. They also show that consumers are motivated to
conserve, “do the right thing”, and reduce expenses. At a
macroscopic level, conservation improves a country’s overall
resource management. For example, the U.S. Environmen-
tal Protection Agency claims that 3 trillion gallons of wa-
ter could be saved each year if every household in the U.S.
decreased its water consumption by 30 percent [41]. This
results in a dollar-volume saving of $49.3 million per day, or
more than $18 billion a year ! Water conservation is of even
greater financial significance as increasing purification cost



is being compounded by rapid demand growth. American
public water supply and treatment facilities consume about
56 billion kWh per year – enough electricity to power over
5 million homes [41]. To make things worse, higher global
temperatures are affecting our fresh water reserves in ice and
snow caps. The Water Poverty Index [10] illustrates that an
urgent global initiative toward conservation is necessary.

The first step toward conservation is measurement [18,
28,38]. For electricity, small power monitoring sensors have
emerged [15], but they are too expensive to be installed on
every electric appliance. For water, there is nothing anal-
ogous available. Current consumer-grade water flow me-
ters are meant to be installed inline, requiring non-trivial
plumbing, best handled by a professional. Thus, conven-
tional means of deriving high resolution data would come
with high installation cost. In some cases, where spatially
dense water monitoring systems are essential for correct op-
eration, this is justifiable (e.g. irrigation systems [9] or phar-
maceutical manufacturing plants).

The challenge is designing a system that provides the same
resolution at a cost and effort that is reasonable for house-
hold use. To this end, we propose NAWMS: a scalable water
monitoring system capable of estimating water flow rate us-
ing wireless sensor network technology. NAWMS uses inex-
pensive vibration sensors attached externally to pipes. This
reduces both cost and effort of installation. Inexpensive sen-
sors and their un-controlled installation, however, introduce
noise and variability in the measurements. NAWMS uses a
novel feedback optimization formulation that continuously
recalibrates the sensors, thus minimizing the estimation er-
ror for the total water consumption.

The contribution of this paper is three fold:

Well Defined Tiered Information Architecture:
We introduce a well defined tiered information archi-
tecture. The first tier is accurate but spatially coarse
grained. The second tier is less accurate but spatially
fine grained. We exploit the two-tiered information
architecture to achieve spatially fine grained and ac-
curate results(Fig. 1).

Realistic Modeling of a Water Monitoring System:

A sensor system needs to capture realistic constraints
such as external noise, physical limitations and char-
acteristics, and performance requirements. Our model
takes these into account in order to compensate for
side-effects.

Autonomous and Adaptive Calibration:
A sensor system often suffers from complex calibration,
and its periodic recalibration increases maintenance
cost. A well defined performance metric that evaluates
the system on the fly, and an optimization problem
formulation that yields calibration parameters, enable
the system to autonomously and adaptively calibrate
the water monitoring system while regulating its per-
formance.

The rest of the paper is structured as follows. Section 2
presents related work. We continue by describing the con-
ceptual system architecture of NAWMS in Section 3. In
Section 4 we formulate the mathematical challenges and in-
troduce several optimization problems to solve them. Our

system evaluation can be found in Section 6, where we de-
scribe our prototype and present the achieved system perfor-
mance. Finally, Section 7 contains future work for NAWMS.

2. RELATED WORK
There are two broad classes of related work: (a) Infras-

tructure monitoring for activity classification and mainte-
nance, and (b) water flow rate measurement techniques.

Infrastructure provides useful behavioral information about
its inhabitants and often times this information can be ex-
tracted through simple interfaces and means. For example,
Patel [31] monitors the electrical noise within the power-
lines of a house. They exploit the fact that each appliance
introduces a unique noise signature. By detecting and iden-
tifying this signature, they can infer if an appliance is on
or off but not its actual power consumption. Fogarty [21]
investigated monitoring of the plumbing system by using
microphones on pipes to infer water activity in a household.
Both systems are easy to install but employ complex cali-
bration mechanisms in order to learn the detection patterns.
Though these systems capture user behavior, we consider
them incomplete for conservation because they do not esti-
mate actual consumption numbers.

At a larger scale, cities are struggling with the mainte-
nance of aging water distribution and treatment systems.
Stoianov [39] describes an interesting prototype sensor net-
work that can monitor different water characteristics in real-
time. In a lab setup, they demonstrated how one can detect
a water leak in a pipe, by analyzing the frequency spectrum
of an accelerometer. Even though they use similar hard-
ware, Stoianov’s system has a completely different goal and
uses a different mathematical approach.

Methods to measure the water flow rate, or more gener-
ally the flow of liquid in pipes, is of great interest to many
fields. For example, chemical processes often require precise
control over fluid flow [37], agricultural irrigation networks
need monitoring to avoid over-watering [36], and utility com-
panies deploy inline water flow meters for billing purposes.
The methods could be divided into two categories: (a) open
channel water monitoring/discharged water monitoring and
(b) water flow rate estimation in closed pipes.

Large scale irrigation systems generally use open channels
to distribute water to different areas. Trimmer [40] describes
a way to estimate the discharged water flow rate by observ-
ing the water level and pipe diameter. Bankston [3] provides
look-up tables that map manually obtained observations to
the flow rate of an open channel. Unfortunately, this method
is laborious and lacks real-time response.

Modern irrigation networks leverage wireless sensor net-
work technology to monitor the water flow rate in each water
channel. Additionally, they use this information to regu-
late the flow rate in real-time. These distributed irrigation
control systems are a showcase for wireless sensors and ac-
tuators that deliver optimal water volume for agricultural
irrigation [9].

Measuring the flow rate of a liquid in a closed pipe is fur-
ther divided into two categories: inline direct flow measure-
ment and non-intrusive flow estimation. The most common
example of inline flow measurement is the main water flow
meter in a household that utility companies install. These
meters use a mechanical turbine that spins at an angular
velocity proportional to water flow rate. The constant of
proportionality is the exact diameter of the flow chamber,



Figure 1: NAWMS system and information architecture

which is estimated though factory calibration. Thus, count-
ing the number of rotations of the turbine yields directly the
flow rate in the pipe. The disadvantage of this technique is
that it needs to be installed between pipes segments, re-
quiring plumbing expertise. This is feasible during initial
construction, but retrofitting pipes is tedious and expensive.

Several techniques for a non-intrusive flow rate estima-
tion exist. The most common one uses ultrasound [19].
This technique is based on an ultrasound transmitter and
receiver pair that either measures the induced doppler shift
in the received signal, or the transmission time within the
liquid medium. Unfortunately, commercially available de-
vices [16] cost over $1000 a unit and require delicate instal-
lation. Thus, they are reserved for industrial, or diagnostic
testing purposes.

An innovative technique described by Evans [20] exploits
the vibration induced by the flow of liquid in pipes. This
technique is potentially cost-effective, since it uses an ac-
celerometer, and the data processing is trivial. However, it
requires careful calibration because the vibrations depend
heavily on the pipe material used and the sensor-to-pipe at-
tachment.

NAWMS combines the pre-installed inline flow meter (first
information tier) with non-intrusive inexpensive vibration
based sensors (second information tier) in order to provide
an accurate per pipe flow rate. NAWMS exploits the high
accuracy of the first information tier to autonomously cali-
brate the less precise, though spatially finer grained, second
information tier.

3. NAWMS SYSTEM ARCHITECTURE
A sensor usually measures a physical phenomenon indi-

rectly. For example, a temperature sensor exploits thermal
variation of resistance, a light sensor measures photo con-
ductivity, etc. Due to this indirectness, a sensor needs cali-
bration to establish a mathematical mapping between sensor
readings and the physical phenomena. Some sensors can be
bought factory calibrated, and some don’t even need cali-
bration. One example is the inline water flow meter. Since
its package dimensions are known during fabrication, there
is a well defined relation between turbine speed and flow
rate. Unfortunately, it is infeasible to retrofit a household
or an entire building with these sensors. For this reason, we
need a system that indirectly measures water flow within a
pipe.

3.1 Tiered Information Architecture
We propose NAWMS, a two tiered information architec-

ture that consists of one accurate pre-calibrated sensor that
provides us with the sum of all flows and an uncalibrated
vibration sensor for each individual pipe (Fig. 1). This ar-
chitecture has three characteristics:

• The first tier is reliable, and the service provider main-
tains it. A user does not have to worry about its ac-
curacy or correct operation.

• The calibration of the non-intrusive vibration based
water flow sensors can be automated considering the
correlation between the first and second tier informa-
tion sources.

• The first tier is ’ground truth’ that is always available.
This allows the system to compute and adapt the cal-
ibration parameters continuously.

3.2 Hardware and Software Architecture
The system consists of three main hardware and software

components with the following associated challenges:

• Tapping Into Existing Infrastructure: The main water
meter provides accurate water flow rate for the entire
household. However, a mechanism is needed to extract
readings with high fidelity for the NAWMS system.

• Spatially Distributed Vibration Based Water Flow Rate
Sensors: Accelerometers measure the vibrations ac-
cording to the microscopic water flow model in a pipe.
These accelerometers need to be calibrated in order to
achieve a good estimate.

• Information Fusion Algorithm: Calibration requires a
lot of time and human intervention. In this paper we
propose several optimization formulations that enable
the system to calibrate its parameters and coefficients
automatically using an open source optimization tool-
box.

3.2.1 Tapping Into Existing Infrastructure
There are several commercially available products [1, 2,

25] that allow one to interrogate the main water meter in
real-time. Various types of “pulsers” [25] provide a pulse
train that is proportional to the water flow rate in the pipe.
A microcontroller based circuit, such as a “sensor mote”
utilizing its built-in interrupts and timers, can easily decode
such a signal providing real-time water flow information.

Another approach was described by Chueng [12]. His
technique uses a hall effect sensor that picks up a varying
magnetic field produced by the spinning collector unit. He
reports volume measurements with a resolution of 0.005 gal-
lon.

Fortunately, a better solution is expected in the near fu-
ture. The Automatic Meter Reading Association [2] and
the American Water Works Association [1] are developing
a system that relays real-time meter information wirelessly
for billing purposes. Two products, one from Germany [17],
and another from the UK [35] are already available. Follow-
ing the trend of utility companies simplifying their billing
systems through wireless technologies, we believe that ex-
tracting data from the main water meter of a household in
real-time will soon be commonplace.



Figure 2: Microscopic view of the water flow in a pipe.

3.2.2 Non-intrusive Water Flow Rate Measurement
Using Vibration Sensors

As Evans described in [20], the flow rate in a pipe is pro-
portional to the vibration of a pipe. We describe this ef-
fect in further detail in Section 4.1. A sensor network node
equipped with a one dimensional accelerometer is adequate
to capture this signal since variance in the measured accel-
eration is a measure of vibration. Estimating variance is
computationally simple, and thus can be done locally. This
results in low communication load. We describe other de-
tails of the prototype used in Section 6.

3.2.3 Information Fusion, Optimization Toolbox, and
Aggregation Unit

The data collected by the vibration sensors is sent to the
fusion center, where the samples and the reading from the
main meter are “fused” to solve the mathematical optimiza-
tion problems introduced in Section 4.2. The solution calcu-
lates the calibration parameters for the individual vibration
sensors, which can then be used to map to real-time flow in
each pipe.

Many ready-to-use optimization problem solvers exist. In
our implementation, we use the CVX toolbox [8,14], an open
source convex optimization tool. Other advanced tools, such
as MOSEK [29], could also be used.

4. PROBLEM DESCRIPTION AND
FORMULATION

This section is further decomposed into the underlying
pipe dynamic theories, their application to household plumb-
ing, and the resulting formal optimization problem state-
ments.

4.1 Water Flow Rate Estimation using
Vibration Sensors

4.1.1 Theory of Operation
To understand how flow rate and vibration in a pipe are

related, we cover the basics of its micro-model. Water mole-
cules on average all travel in the main direction of flow,
as depicted in Figure 2. However, many molecules collide
against the pipe wall. According to the first law of thermo-
dynamics, some part of this kinetic energy converts to heat
as the turbulent eddies dissipate, but most of it translates
into potential energy in the form of pressure [32]. The pipe,
in turn, deforms converting potential to kinetic (during de-
formation) and back to potential as deformation completes.
The elasticity of the pipe material applies a restoring force.
Evans shows [20] that vibration in a pipe results from this
energy conversion cycle and is proportional to the average
flow rate within the pipe.
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Figure 3: Measured pipe vibration for different flow rates
for a 3/4“ copper pipe.

The main result of Evan’s work is based on the fact that
the velocity of a fluid at a point in the pipe can be decom-
posed into the time average velocity(ū, v̄) and fluctuating
velocity(u′, v′). Although there is no net flow in the perpen-
dicular direction to the pipe axis, the time averaged velocity
in that direction v̄ is zero, the time average of their product
u′ · v′ are, in general, negative.

From a non-trivial derivation by Evan et. al., we see

∂2y

∂t2
= −CEI ∂

4y

∂x4
= −Cp′(x) (1)

where,
C = g

Aγ
A : cross sectional area of the beam
γ : specific weight of the beam
g : gravity
EI : flexural rigidity.
This essentially indicates that the transverse acceleration

of the pipe is proportional to the pressure fluctuations in the
fluid.

The principle of operation is based on the relationship
between the standard deviation of the pipe vibration and the
mean flow rate of the fluid in the pipe. Blake stated in [5]
that the generation of vibration by fluid motion involves the
reaction of fluids and solids to stresses imposed by time-
varying flow. For dynamically similar flows, the ratio of the
flow fluctuations to the average flow is constant. Bird shows
[4] this relationship by noting that the oscillatory term is the
time average of the absolute magnitude of the oscillation,
given by

√
m̄ where m = u′2. They define this as “intensity

of turbulence”, which is a measure of the magnitude of the

turbulent disturbance, and is given by
√
m̄
ū

.
From the definition of turbulent flow, the intensity of tur-

bulence expression is rearranged as

m̄

ū2
=

1
N

PN
i=1 [ui(t)− ū]2

ū2
(2)

where,
ū: average velocity
u: instantaneous velocity.
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Figure 4: Measured pipe vibration for different flow rates
for a 3/4“ PVC pipe.

Multiplying both side by the number of points N and ū2,
and dividing by N − 1, we get

1

N − 1

NX
i=1

[ui(t)− ū]2 =
NC

N − 1
ū2 = Kū2 (3)

This shows that the flow fluctuations are proportional to
the pressure fluctuations and the pressure fluctuations are
proportional to the pipe vibration. It follows that the stan-
dard deviation of the pipe vibration is proportional to the
average flow rate. This result does not necessarily imply
that the water flow rate in a pipe is linearly proportional
to the vibration of the pipe. Instead, it implies that it has
a non-linear but proportional relation due to the non-linear
characteristics of vibration sensors, pipe structure, turbu-
lence, etc.

The end result eq. 3 gives an important point that regard-
less of the pipe mounting methods, shape, and topology, at
any exposed point on a pipe we can find a signal that is
strongly correlated with the water flow rate at that point.

4.1.2 Vibration to Flow Rate Model
To verify the theory explained in Section 4.1.1 we con-

ducted a simple experiment. We attached accelerometers
on two different pipes, a copper and a PVC pipe. We mea-
sured the vibration occurring on the pipes while changing
the flow rate of the water running through it. Figure 3 and
4 illustrate the result. To find a mathematical relationship
between vibration and flow rate, we tested the applicability
of various models, details of which we cover in Section 6.1.1.
We found that a third order root function,

f(t) = α 3
p
v(t) + β

p
v(t) + γv(t) + δ, (4)

where f(t) is the water flow rate, and v(t) the measured
vibration, fit the measured data well. We use this function
henceforth to map the measured vibration to the actual wa-
ter flow rate in the pipe.

4.2 Simple Pipe Structure
In this section, we formulate the large scale water flow

rate monitoring system for the pipe topology depicted in
Figure 5. The system consists of the main water meter,

Figure 5: Simple pipe topology where one main pipe with
flow rate M(t) splits up into N subpipes.

and one vibration sensor on each of the N sub-pipes. The
water meter provides the system with the real-time water
flow M(t), an accurate measurement for the main pipe. We
denote the flow rate in each sub-pipe i, fi(t). Since all the
sub-pipes are connected to the main pipe (assuming no leaks
in the system), we have

M(t) =

NX
i=1

fi(t). (5)

where, fi(t) = αi 3
p
vi(t)+βi

p
vi(t)+γivi(t)+δi as defined

in the last section.
The goal of the calibration is to find the calibration pa-

rameters αi, βi, γi and δi for each sub-pipe. One possibility
would be to attach a flow meter to each sub-pipe and cali-
brate each pipe individually. But this is tedious and involves
manual effort. A better way is formulating a mathematical
optimization problem that estimates these parameters si-
multaneously.

Assume that the sensors are synchronized, and that they
sample the vibration every ∆t seconds. Thus, Equation 5
in discrete-time becomes M(k∆t) =

PN
i=1 fi(k∆t). After

collecting K samples of M(t) every ∆t second, we get K
equalities

M(k∆t) =

NX
i=1

fi(k∆t) for k = 1, 2, 3, ...,K. (6)

We define

M
def
= [M(∆t),M(2∆t), ...,M(K∆t)]T

F
def
=

"
NX
i=1

fi(∆t),

NX
i=1

fi(2∆t), ...,

NX
i=1

fi(K∆t)

#T
.

We now formulate Equation 6 as an optimization problem
because M = F holds true, unless there is water leakage.
Thus, the optimization problem is written as

min ||M− F||1
subject to 0 ≤ fi(k∆t) ≤ fi,max. (7)

Note that M(k∆t) and vi(k∆t) are measurements from
the sensors, and αi, βi, γi and δi are the decision variables.
Additionally, the problem consists of linear constraints only,
and its objective function is also be expressed as a linear
function [6]. Therefore, any available Linear Programming
solver can solve this problem very efficiently, and it guaran-
tees a global optimum.



Figure 6: More realistic pipe topology where sub pipes can
split up into sub-sub pipes.

The solution to the problem yields the calibration param-
eters for each individual pipe. Thus, no human intervention
is necessary in order to calibrate the system, since every-
thing is be automated.

4.3 General Pipe Structure
The plumbing system in a typical household is far more

complicated than the simplified structure assumed in the
previous section. We show in this section how even a com-
plex structure can be reduced into several optimization prob-
lems, and that each of these problems is similar to Equation
7. This allows us to focus on the simple structure thereafter
without loss of generality.

Consider the pipe structure depicted in Figure 6. Assum-
ing no leakage, the total flow rate M(t) is equal to the sum
of the flow rates of each sub pipe. Similarly, the flow rate of
each sub pipe is to the sum of the flow rate of its sub-sub
pipes. Thus, from the law of mass conservation, we get the
following equalities:

fi(t) =

JiX
j=1

fi,j(t)

M(t) =

NX
i=1

fi(t), (8)

where, fi,j is the flow of sub-sub pipe j of sub pipe i and
Ji is the number of sub-sub pipes of sub pipe i. Similar

to fi(t), we define fi,j(t)
def
= αi,j 3

p
vi,j(t) + βi,j

p
vi,j(t) +

γi,jvi,j(t) + δi,j .With these equations, we formulate a new
optimization problem similar to Equation 7:

min ||M− F||1
subject to 0 ≤ fi(k∆t) ≤ fi,max (9)

where

fi(k∆t) =

8<:
PJi
j=1 fi,j(k∆t) if i-th sub pipe has

sub-sub pipes
fi(k∆t) else

In general, the water flow rate in a pipe is the sum of the
water flow rate in its sub pipes. Therefore, any tree like pipe
structure can be formulated in a form similar to Equation
9.

4.4 Accounting for Vibration Propagation
We have assumed thus far that the vibration of a pipe

does not affect other pipes. However, since pipes are physi-
cally coupled, vibration propagates to other pipe segments.
This phenomenon needs to be accounted for in our equa-
tions. Vibration propagation depends on pipe topology,
pipe material, interconnects, and flow rate. Nevertheless,
the induced vibrations are relatively small. As a first order
approximation, we assume that propagated vibration is lin-
early proportional to inherent vibration. This assumption is
reinforced by actual experiments on our testbed, which are
described in Section 6.1.1.

Consider vibration only in pipe j. We define the vibration
propagation from pipe j to pipe i as:

ṽi(t) = pi,jvj(t) (10)

where,
ṽi(t) : Measured vibration on pipe i
pi,j : Vibration propagation constant from pipe j to pipe

i
vj(t) : Water flow induced vibration on pipe j
Generalizing this to the case where the measured vibration

on a pipe i is the superposition of all possible vibrations, we
get

ṽi(t) =

NX
j=1

pi,jvj(t)

pi,j = 1 if i = j
0 ≤ pi,j < 1 else

We now update our optimization problem to include the
vibration propagation coefficients:

min ||M− F||1
subject to 0 ≤ fi(k∆t) ≤ fi,max

ṽi(k∆t) =

NX
j=1

pi,jvj(k∆t) (11)

Introducing propagation coefficients adds a posynomial
equality constraint to Equation 7. This renders the opti-
mization problem non-linear and non-convex and harder to
solve. In the following sections, we explore two ways of
reformulating the problem as (a) a generalized geometric
programming (GP) problem, by relaxing and restricting the
constraints with reasonably tight bounds, while conserving
physically meaningful values, and (b) a two phase linear
programming (LP) problem by decomposing the optimiza-
tion problem in two parts. It is well known that both, GP,
and two phase LP problems can be solved in polynomial
time [7, 8]. Either of the techniques can estimate the cali-
bration parameters. Depending on system performance re-
quirements, an algorithm could potentially select which one
to use.

4.5 Mixed Linear Geometric Programming
Model

The posynomial equality constraints due to vibration prop-
agation coefficients prevent us from solving the optimization
problem as a GP problem [7,8]. Additionally, the objective



function is not in standard GP form. We require to re-
formulate it since this class of problems, called Signomial
Programs, are in general NP-hard [13].

First, we introduce a slack vector s
def
= [s1, ..., sK ]T ∈ RK+ .

We then reformulate Equation 11 using the slack vector to
the equivalent problem:

min

KX
k=1

sk

subject to −s ≤ F−M ≤ s (12)

0 ≤ fi(k∆t) ≤ fi,max

ṽi(k∆t) =

NX
j=1

pi,jvj(k∆t) (13)

By restricting the first constraint to be positive, we can
rewrite equation 13 as

min

KX
k=1

sk

subject to 0 ≤ F−M ≤ s

0 ≤ fi(k∆t) ≤ fi,max

ṽi(k∆t) =

NX
j=1

pi,jvj(k∆t) (14)

This restriction shrinks the search space considerably, but
could make the problem infeasible. In most of the cases,
however, the problem is still solvable [13]. According to [13],
relaxing the posynomial equality constraints with reasonable
tightness allows us to reformulate the problem in standard
GP form.

We assume the following relaxation, since measured vibra-
tion on a pipe is the sum of all propagated vibrations plus
the vibration induced by the water flowing through that
pipe. Thus,

NX
j=1

pi,jvj(t) ≤ ṽi(t) ∀i (15)

As a consequence, we can rewrite Equation 14 as

min

KX
k=1

sk

subject to F ≤ s + M

0 ≤ fi(k∆t) ≤ fi,max
NX
j=1

pi,jvj(k∆t) ≤ ṽi(k∆t). (16)

According to [8] Section 7.3, this is a mixed linear GP
problem, as its objective function is linear and all constraints
are in a form either 1) (Posynomial) < (Affine) or 2) Posyn-
omial inequalities.

Note that αi 3
p
vi(k∆t) + βi

p
vi(k∆t) + γivi(k∆t) + δi is

posynomial because all the αi, βi, γi and δi are positive, and
measured vibration is always positive. Therefore, since the
class of posynomial is closed under summation, all the con-
straints on the left hand side are posynomial.

We can now solve Equation 16 very efficiently, roughly
proportional to max{n3, n2m,F}, where n is the number of
variables, m the number of constraints, and F is the cost of
evaluating a posynomial’s first and second derivative. Ad-
ditionally, we can guarantee a global optimum since it is a
mixed linear GP problem. Note that GPs are a special class
of mathematical programs that can be converted to convex
form using a change of variable. However, CVX [22] per-
forms well on medium-scale GP problems, and it is thus not
necessary to perform this intermediate step.

Solving Equation 16 provides us with vibration propaga-
tion coefficients and flow rate parameters, but its perfor-
mance may be affected due to relaxed constraints. There-
fore, we also introduce a two phase LP problem which can
solve the same set of equations.

4.6 Two Phase Linear Programming Model
We reduce the complexity of solving Equation 11 by deriv-

ing it as an approximate LP problem. The propagation co-
efficients are unknown and need to be estimated. However,
since pipe topology is static and not expected to change sig-
nificantly over time, we can estimate the propagation coeffi-
cients opportunistically. After computing these coefficients,
Equation 11 becomes a LP problem because the posyno-
mial equality terms become linear equations. Therefore, the
problem can be decomposed into two problems: (a) vibra-
tion propagation coefficient estimation, and (b) water flow
rate parameter estimation.

4.6.1 Vibration Propagation Parameter Estimation
It is likely that only one pipe j has running water during

some period, and thus the system can measure the vibra-
tion propagation between the pipes. In this case, ṽj = vj .
The measured vibration on every other pipe i can then be
estimated by

ṽi = pi,j ṽj . (17)

Additionally, the following holds true:

pi,j = 1 if i = j

pi,j =
ṽi
ṽj

otherwise (18)

If the system behaved ideally, the measurements would be
perfect, and the propagation coefficient computation would
be trivial. However, inherent measurement noise requires
us to reformulate this as a parameter estimation problem.
We choose L1-norm minimization with linear inequality con-
straints, since this tends to be less sensitive to significant
outliers compared to a least squares approach. According to
previously published results in sensor networks [11,23,24,27],
inexpensive sensors on motes tend to have significant out-
liers and faults.

The problem is solvable using a standard LP solver with
the appropriate linear inequality constraints. We define l as
the sample index, and let L be the total number of samples.
The problem is then,

min
˛̨̨˛̨̨

Ṽi − pi,jṼj

˛̨̨˛̨̨
1

subject to
pi,j = 1 if i = j
0 ≤ pi,j < 1 else

(19)



where,
Ṽi = [ṽi(1), ṽi(2), ..., ṽi(L)]T ∈ RL+
Ṽj = [ṽj(1), ṽj(2), ..., ṽj(L)]T ∈ RL+

4.6.2 Vibration to Water Flow Rate Parameter Esti-
mation

Once we compute the vibration propagation coefficients,
the problem simplifies to a standard LP problem since the
matrix P = [pi,j ] is now known and invertible. Finally, we
solve

min ||M− F||1
subject to 0 ≤ fi(k∆t) ≤ fi,max

V(k∆t) = P−1Ṽ(k∆t) (20)

where
k = 1, 2, ...,K
P = [pi,j ]
V(k∆t) = [v1(k∆t), v2(k∆t), ..., vN (k∆t)]T ∈ RN+
Ṽ(k∆t) = [ṽ1(k∆t), ṽ2(k∆t), ..., ṽN (k∆t)]T ∈ RN+

4.7 Correction Mechanism and Performance
Metric

Solving the optimization problem above, the system can
estimate the parameters required to map vibration measure-
ments to flow rate. However, system characteristics can
change over time due to topological changes, seasonal tem-
perature variations and aging. Therefore, we need a mech-
anism that tests the system performance and recalibrates
the mapping, if necessary, through iteratively solving the
optimization problems.

We define a performance metric

Performance
def
=

˛̨̨̨
˛
PN
i=1 f̂i(t)−M(t)

M(t)

˛̨̨̨
˛ (21)

where, f̂i(t) is the estimated flow rate in pipe i. If its
value is close to 0, we know the system is performing well,
since the sum of the estimated flow rates has to be close to
the total flow rate M(t). However, if the metric exceeds a
set threshold ε, the system needs recalibration.

A further improvement can be made based on this obser-
vation. By normalizing each estimated flow rate f̂i with the
ratio of the total flow rate to the sum of all estimated flow
rates, i.e.,

f̃i(t) =
f̂i(t)M(t)PN
i=1 f̂i(t)

(22)

we ensure that
PN
i=1 f̃i = M(t) and is nearer the real flow

rate in the pipe.

5. SYSTEM DESCRIPTION
A user installs the vibration sensors on the pipes in their

plumbing and specifies the topology to formulate the opti-
mization problem. Thereafter, the system runs autonomously.
First, it collects vibration and water flow rate data to get
a solution to the optimization problem. After the parame-
ters are found, the system can estimate the individual flow
rate in each pipe. Simultaneously, the system calculates and
tests the performance metric introduced in Section 4.7. If

Figure 7: Algorithm flowchart for NAWMS. After an initial
data gathering, NAWMS solves an optimization problem to
retrieve the calibration parameters. During system runtime,
NAWMS monitors its own performance. If the performance
is bad, it recalibrates itself.

Table 1: Pipe Properties

Pipe Number Pipe Material Diameter
Pipe 1 Copper 3/4 in (19.05mm)
Pipe 2 PVC 3/4 in (19.05mm)
Pipe 3 PVC 1 in (25.4mm)

this metric exceeds a user specified threshold ε, the system
recalibrates and solves the optimization problem again. Fig-
ure 7 illustrates this algorithm in a flow chart.

6. EVALUATION
In order to test and validate our system, we constructed

a plumbing testbed with three pipes of different materials
and diameters. Table 1 summarizes the pipe properties, and
Figure 8 shows a picture of the setup. The main water pipe is
equipped with a commercial water flow meter that generates
a pulse train proportional to the flow rate. We connected
this pulse train to a Crossbow MicaZ mote that provides the
fusion center with real-time flow rate measurements M(t).

Each branch of the testbed is equipped with an accelerom-
eter. In our setup, we use a MicaZ mote with the MTS310
sensor board. The MTS310 sensor board contains a 2D
Analog Device ADXL202 accelerometer that has a range of
±2g. The node samples the axis perpendicular to the pipe
at 100Hz and calculates the variance of acceleration every
50 samples. This variance, ṽi(k∆t),is then sent to the fusion
center for further processing.

In addition to the sensors, each branch has a ball type
valve at the end in order to control the flow rate within each
pipe. To get the per-pipe ground truth, we added another
flow rate meter to the end of each pipe.

6.1 Evaluation of Water Flow Rate Model

6.1.1 Vibration to Water Flow Rate Model
Validation

Equation (3) suggests that the relation between the vi-
bration variance and the flow rate is linear. Unfortunately,
because of modeling inaccuracy and sensor characteristics,
the relationship is non-linear as Figures 3 and 4 suggest. Us-
ing a good fitting model is essential in order to minimize the



Table 2: Vibration to Water Flow Rate Fitting Model

Pipe Fitting Model Coefficient Fitting Error

Copper Pipe
f(t) = α 3

p
v(t) + β

p
v(t) + γv(t) + δ α = 0.1548, β = 0, γ = 0, δ = 0.0472 1.865

f(t) = β
p
v(t) + γv(t) + δ β = 0.1067, γ = 0, δ = 0.0923 2.030

f(t) = γv(t) + δ γ = 0.0478, δ = 0.1470 2.724

PVC Pipe
f(t) = α 3

p
v(t) + β

p
v(t) + γv(t) + δ α = 0.0896, β = 0, γ = 0, δ = 0.0160 1.058

f(t) = β
p
v(t) + γv(t) + δ β = 0.0530, γ = 0, δ = 0.0520 1.282

f(t) = γv(t) + δ γ = 0.0154, δ = 0.0884 1.892

Pipes
Accelerometers

Main Flow Meter

Figure 8: Image of the plumbing testbed showing the three
pipes with accelerometers, and the main water flow meter.

estimation error. A commonly used fitting model would be
a polynomial function. But our prior measurements showed
the vibration in a pipe saturates at some point. This effect
is better captured with a square root, or even 3rd order root
curve. Table 2 summarizes the different fitting curves, their
parameters, and the fitting error for two different types of
pipe material. We see that a 3rd order root curve has the
least fitting error for both pipes. Higher order root curves
might fit better, but the increase in complexity (more cal-
ibration parameters to estimate) does not ratify the small
gain in fitting error.

6.1.2 Vibration Propagation Among Pipes
To verify the vibration propagation among the pipes, we

turned on one pipe, and measured the vibration occurring
on all three pipes. Figure 9 depicts the case where pipe
2 is running, and we plot the vibration of pipe 2 versus
the vibration of pipe 1 and 3. We see that our first order
approximation in Equation 10 is reasonable and yields a
good fit on the collected data, though the variation within
the samples is very large. This might limit the achievable
precision in the flow estimation, but we illustrate in the next
section how this can be ameliorated. Future research on this
could further improve the propagation model by accounting
for vibration propagation time.

6.2 Flow Rate Estimation
For all of the following experiments, we used the two phase

LP problem to get the calibration information. In the first
experiment, we investigate how well the system can track the
flow in only one pipe. Thus, the flow rate in the main pipe
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Figure 9: Vibration induced by water flow in pipe 2 prop-
agates to pipe 1 and 3. NAWMS has to compensate for this
effect to minimize estimation error.
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Figure 10: Water flow rate estimate for a single pipe.
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Figure 11: Water flow rate estimation of pipe 1 and 2. The
top graph shows NAWMS estimated flow, the bottom is the
ground truth measured by the per pipe flow meters.
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Figure 12: Water flow rate estimation error for pipe 1 and
2. The flow estimation is higher at low absolute flow rates
(t = [0, 230] seconds) because of resolution problems in the
ADC.

was the same as the flow rate in the pipe under investigation.
Figure 10 shows the result. On average, the estimation error
over the 180 second experiment was -0.49%, with a standard
deviation of 9.93 (In absolute numbers mean -0.0049L/s with
a standard deviation of 0.014).

We now focus on the concurrent estimation of the flow rate
in two pipes. Figure 11 compares the ground truth measure-
ments (lower graph) to the estimated flow rate within the
pipes and Figure 12 depicts its relative error. We see that
the error of the sum of the two estimated flows is almost
0. This is not surprising given that we normalize the two
individual flows with the sum. Note that the relative er-
ror reduces after about 230 seconds. The reason for this is
that the actual water flow rate almost doubled after that
point. While the accelerometer has enough sensitivity for
low vibrations, our current 10 bit ADC lacks the necessary
resolution to get below 0.004g, and thus a higher error at
lower flow rates is to be expected. Our next prototype will
take care of this by providing a signal amplifier in these low
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Figure 13: Accumulated water usage estimation error.
The total water used was approximately 400L.
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Figure 14: After an initial guess of the calibration param-
eters, NAWMS recalibrates at t = 150 and the performance
metric improves considerably.

vibration regions. Figure 13 shows the error in the accumu-
lated per pipe water usage and we see that it stays low, even
over a long period of time and high volume of water.

It is interesting to see how well our different modeling
parameters influence the estimation accuracy. For this pur-
pose, we ran the different optimization calculations from
Section 4 on the same experimental data. A summary of
the result can be found in table 3. In the first calculation,
we didn’t use any compensation (Figure 15a) and thus the
estimation doesn’t account for vibration propagation, nor
uses the normalization correction. In the second calcula-
tion, we accounted for vibration propagation only (Figure
15b). We see that just accounting for this improves the esti-
mation by more than a factor of 2. In the third calculation,
we used the normalization correction described in Section
4.7 (Figure 15c). The effect on the precision of the esti-
mation is tremendous, since now the error of the sum of
the two vibration estimates is forced to be 0. Last, using
all the correction mechanisms and accounting for vibration
propagation and normalizing the two flows yields the best
result (Figure 15d). This shows that our modeling of vibra-
tion effects and correction mechanisms are efficient and help
reducing the overall estimation error.

Our last experiment shows the effectiveness of the per-
formance metric. Figure 14 depicts the experiment result.
First, we assumed some wrong calibration parameters and
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Figure 15: Adding the different water flow models and compensation techniques increases the precision of the water flow
estimation. (a) is the baseline where no additional compensations are made. (b) accounts for vibration propagation. (c)
normalizes the individual flow rates with the total flow rate in the main pipe, and (d) shows NAWMS’ performance while
accounting for vibration propagation and normalizing the individual flow rates.

Table 3: Estimation improvement by using different flow rate models and compensation techniques

Scheme Pipe 1 Pipe 2
Mean Error STD Mean Error STD

None -0.054L/s (-53.1%) 0.011 -0.094L/s (-63.0%) 0.017
Vib Prop -0.016L/s (-15.8%) 0.010 -0.040L/s (-26.8%) 0.009

Normalization 0.016L/s (15.6%) 0.006 -0.013L/s (-8.5%) 0.006
Both 0.010L/s (9.6%) 0.010 -0.007L/s (-4.4%) 0.011

used them to calculate the estimated flow rate. At t = 150
seconds, the algorithm decides to recalibrate the system, us-
ing the data collected between t = [0, 150]. The water flow
rate estimation error after that point immediately drops to
almost 0, and the performance metric goes from almost 1
down to approximately 0.4. This shows that using this per-
formance metric, an efficient recalibration scheme can be
developed and used to keep the system accurate and effi-
cient.

7. FUTURE WORK
Our testbed shows that it is feasible to exploit the corre-

lation among vibration on each of pipes and the main meter
reading to estimate water flow rate in individual pipe.

One limitation of the current system architecture is the re-
quirement of having a sensor on each pipe. This can quickly
become tedious and cost intensive as the pipes have to be
exposed in order to install a sensor on them, and as the
size of the pipe topology increases. In a typical household,
however, the number of water faucets is limited. For exam-
ple, a bathroom usually has 5-7 water outlets, a kitchen has
4 water pipes for a sink and a dishwasher, and a laundry
room has 3-4 water outlets. From a simple calculation, a 3-
bed and 2-bathroom house has approximately 17-21 outlets
excluding outlets for the outdoor purpose. This basically
means that we need around 20 vibration sensors to estimate
water flow rate.

In a building, however, the number of pipes is much more
than this. To cope with this problem, we are currently ex-
ploring ways of estimating the water flow rate with a fewer

amount of sensors. One possibility exploits the vibration
propagation within the pipes. By detecting a specific sig-
nature of propagated vibration, it might be possible to esti-
mate the flow in pipes that do not have a sensor on them.

Since the vibration is mechanically propagating, pipes,
physically mounted on a wall, are sensitive to external vibra-
tion sources. Although our testbed showed that it is quite
robust to the external vibration sources such as foot steps,
hitting the wall, and other typical activities in a room, a
real house deployment can reveal interesting research ques-
tions about how to cope with external noise sources to get
a better estimate.

With a slight modification, we envision that our proposed
framework for water monitoring could be applied to other re-
source monitoring systems. For example, the electric energy
distribution in a household has a very similar architecture
to the water monitoring system. It has one main meter,
and there exist simple to install sensors that need to be cal-
ibrated in order to estimate the power consumption of an
appliance [26]. The same is true for natural gas for heating
and cooking.

A further application of our system would be activity clas-
sification, since water usage inherently requires human pres-
ence, similar to [21]. However, the information that the sys-
tem would provide could be more meaningful since it could
help people improve their natural resource efficiency.

Lastly, but not least, we want to investigate how a leak
will affect the overall system’s performance and how we can
detect the leak. If a leak suddenly happens, one can imagine
that the vibration to water flow rate parameters change thus



the estimation error will become worse. The main question
is to find out how the parameters change or what other
signatures we need to have. Once this is done, the system
could further alarm the owner if it detects that an unusual
amount of water, or a continuous amount of water suggesting
a leak or criminal activity. This can be especially helpful for
outdoor irrigation systems where the owner might not be
able to immediately detect a water leak, because the visible
effects disappear quickly.

8. CONCLUSION
We have introduced a less intrusive, auto-calibrated, per

pipe water monitoring system that provides spatially fine
grained real-time water usage previously not possible with-
out extensive installation of inline sensors. In our work, we
considered various pipe topologies and formulated several
optimization problems that yield the system calibration co-
efficients. The system makes extensive use of a two-tired
architecture and exploits pre-installed equipment that can
usually be found in a household.

In our experimental results, we showed that vibration
based water flow rate estimation is feasible and that the
achieved individual per pipe flow rate error on average is
less than 10%. By introducing a performance metric, we
can efficiently monitor the system calibration status, and
automatically decide if recalibration is necessary.
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