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ABSTRACT
We describe a low-power VLSI wake-up detector for use in an
acoustic surveillance sensor network. The detection criterion is
based on the degree of low-frequency periodicity in the acoustic
signal. To this end, we have developed a periodicity estimation
algorithm that maps particularly well to a low-power VLSI imple-
mentation. The time-domain algorithm is based on the “bumpi-
ness” of the autocorrelation of one-bit version of the signal. We dis-
cuss the relationship of this algorithm to the maximum-likelihood
estimator for periodicity. We then describe a full-custom CMOS
ASIC that implements this algorithm. This ASIC is fully func-
tional and its core consumes 835 nano-Watts. The ASIC was in-
tegrated into an acoustic enclosure and tested outdoors on synthe-
sized sounds. This unit was also deployed in a three-node sensor
network and tested on ground-based vehicles.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Hardware Types and Design Styles—
Algorithms implemented in hardware; C.3 [Special-Purpose and
Application-Based Systems]: Signal processing systems
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1. INTRODUCTION
Sensor network nodes are subject to strict power budgets, as dic-

tated by the need to prolong battery life. This requirement neces-
sitates power-conscious design from high-level algorithms down to
the circuit implementation. One way to reduce power consumption
is to employ a power management strategy. In the case of a surveil-
lance application, the system may only be required to operate at full
functionality in the presence of a novel object. For the remainder
of the time, the system can persist in a “sleep” state, where the only
required functionality is to detect the presence of the novel object.
This power management scheme requires a “wake-up” front-end—
a subsystem that detects the novel object and arouses the surveil-
lance system to full functionality. It is crucial that the wake-up sub-
system consume very little power relative to the system as a whole
if the power management strategy is to be effective.

In this paper, we describe a wake-up detector for an acoustic
surveillance sensor network. This sensor network detects and local-
izes ground-based vehicles such as jeeps and tanks. The wake-up
criterion is based on the presence of low-frequency periodicity in
the acoustic signal, a feature that is characteristic of sounds gener-
ated by vehicle engines. In Section 2, we summarize a maximum-
likelihood approach to periodicity estimation and detection. In
Section 3, we describe an algorithm for periodicity estimation that
maps to a low-power VLSI implementation and a wake-up criterion
based on this algorithm. We relate this algorithm to the maximum
likelihood approach. In Section 4, we highlight the main features
of the ASIC that implements the wake-up detection algorithm. In
Section 5, we show experimental results from field tests with syn-
thesized sounds and actual ground-based vehicles. In Section 6, we
summarize the paper and discuss the factors that limit the perfor-
mance of the system.
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2. MAXIMUM LIKELIHOOD APPROACH
In this section, we derive the maximum likelihood estimator (MLE)

for periodicity. The MLE can be combined with a threshold to
make a periodicity detector. In the next section, we will present
an alternative periodicity measure that maps to a low-power VLSI
implementation. In general, the performance of an estimation al-
gorithm can be gauged by comparison with the MLE, which can be
thought of as a “gold standard”.

The problem of periodicity estimation is closely related to that
of pitch estimation. Pitch estimation asks the question, “What is
the period of the signal”, whereas periodicity estimation asks the
question, “What is the degree of periodicity in the signal?” Much
work has been done on pitch estimation, particularly in the context
of speech recognition applications [4]. A maximum likelihood ap-
proach has been developed by several authors [3, 7, 1]. We will
briefly summarize that approach, and then we will relate it to max-
imum likelihood periodicity estimation.

For the problem of pitch estimation, it is assumed that the sound
consists of a distinct repeating pattern and the goal is to extract the
period of this pattern. We start with a received signal x[k] that is K
samples long. This signal can be decomposed into a periodic signal
s[k] plus noise n[k]:

x[k] = s[k]+n[k] (1)

The signal s[k] can be considered a repeating version of a subseg-
ment q[k], which is P samples long and repeated L = K/P times1

such that

s[k] = q[k mod P] (2)

where q[k] and P are unknown and must be estimated by maximiz-
ing the likelihood of the received signal. For a given value of P,
qP[k] is given by

qP[k] =
1
L

L

∑
l=0

x[k + lP] (3)

The energy of qP[k] is given by

�
Q(P) = L

P−1

∑
k=0

(qP[k])2 (4)

The MLE for the period P̂ is given by the value of P that maximizes
�

Q(P).
Once we obtain the MLE for the period, we only need go one

step further to find the MLE for periodicity. Our estimate of the
underlying repeating sequence is given by

q̂[k] = qP̂[k] (5)

We can use Equation 2 to obtain

ŝ[k] = q̂[k mod P̂] (6)

The degree of periodicity, in a maximum likelihood sense, is given
by the estimated signal-to-noise ratio:

�
MLE =

�

Ŝ
�

N̂
=

∑K−1
k=0 (ŝ[k])2

∑K−1
k=0 (x[k]− ŝ[k])2

(7)

Figure 1 shows the analysis of two typical signals with the MLE
method (ambient recording in (a) and (b) and vehicle recording in
(c) and (d)). Figure 1(a) and (c) show the periodicity (in dB SNR)
as a function of time (x-axis; 1 second-blocks, corresponding to

1For simplicity, we will only describe the case where x[k] is an
integer number number of periods (K = LP).

1024 samples per block) and candidate periods (y-axis). During
each 1 second block, the period which maximizes the SNR is the
MLE for the pitch period. The maximum SNR is the MLE for
periodicity, which is plotted in Figure 1(c) and (d). We see that the
MLE for periodicity is sufficient for distinguishing the two sounds.

To rigorously quantify the discrimination ability of the detec-
tor, we constructed a receiver operating characteristic (ROC) curve
(Figure 1(e)). This curve was compiled from 16 vehicle record-
ings and one ambient recording. Each recording was approximately
200 seconds long. For this detector, the area under the ROC curve
is 0.977. The minimum probability of error P[miss]+P[false alarm]
is 11.9% and the corresponding threshold is −7.71 dB.2

3. ALTERNATIVE ALGORITHM
The MLE for periodicity is computationally intensive, as it re-

quires the estimation of the period of the underlying signal P, which
in turn requires the computation of qP[k] for each value of P. We
propose an alternative periodicity measure (PM) that does not re-
quire an estimation of P. It is based on the autocorrelation function
(ACF), given by

Rxx[n] =
1
K

K−1

∑
j=0

x[k]x[k +n] (8)

We will also refer to the normalized ACF:

R̄xx[n] = Rxx[n]/Rxx[0] (9)

Figure 2 depicts the normalized ACF for 1 second segments of am-
bient and vehicle recordings. The ACF of the noise-like ambient
recording has low energy at higher lag values, whereas the ACF of
the periodic vehicle recording has high energy at higher lag values.
We can formulate and alternative periodicity measure (PM) that
quantifies this. We define a range of lags of interest, [Nmin,Nmax],
and we sum the squares of the ACF over this range:

�
alt =

Nmax

∑
n=Nmin

(R̄xx[n])2 (10)

Our proposed periodicity measure can be related to the MLE for
periodicity in the following way. Wise et al. [7] shows that power
of the MLE estimate of the underlying periodic signal ŝ[k], which
is maximized to find P̂, is equivalent to the following expression:

�
ŝ(P) =

P̂
K

(

R′
xx[0]+2

N−1

∑
l=1

R′
xx[lP̂]

)

(11)

where R′
xx[n] is alternative version of the ACF:

R′
xx[n] =

K−1−n

∑
k=0

x[k]x[k +n] (12)

In words, the power of the estimate of the signal is related to the
value of the ACF at its peaks, which occur every P̂ samples. For the
class of signals that we are interested in, an ACF that has large val-
ues at the (non-zero) peaks also tends to have large energy. There-
fore, our algorithm is sufficient for estimating the periodicity.

For practical reasons, our PM requires a modification. In reality,
the signal is not stationary, enabling low-frequency fluctuations to
introduce additional peaks into the ACF, as shown in Figure 2(a).
If the peaks corresponding to these fluctuations are far above the
2It should be kept in mind that minimizing the probability of error
will not necessarily correspond to optimal performance. The true
optimal operating point will be determined by the relative costs of
misses and false alarms.
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Figure 1: Detection results for the measure based on the maximum likelihood estimator for periodicity. The periodicity measure
was computed for 1 second blocks (K = 1024 samples). Periods covering the range of [10,60] samples were examined. (a) Periodicity
estimates over all periods for an ambient recording. White corresponds to 5 dB and black corresponds to −40 dB. (b) MLE for
periodicity (the periodicity estimate at P̂) for an ambient recording. The dotted line corresponds to the threshold that gives the
minimum probability of error. (c) Periodicity estimates over all periods for a vehicle recording. (d) MLE for periodicity for a vehicle
recording. (e) ROC curve for MLE periodicity measure generated from 16 vehicle recordings and one ambient recording. Lines of
constant d′ are shown, corresponding to d′ = [0 1 2 3 ∞]. The point on the ROC curve which minimizes the probability of error is
given by the ∗.

range of lags, they will appear as an offset in the ACF, causing
the measure described above to indicate periodicity where none is
present. We can eliminate this offset by first computing an approx-
imate time derivative of the ACF, and then computing the sum of
the squares. The expression for the PM becomes

�
alt =

Nmax−1

∑
n=Nmin

(R̄xx[n+1]− R̄xx[n])2 (13)

This can be thought of as a measure of the “bumpiness” of the ACF.
Because the derivative is a high-pass operation, this can be thought
of as emphasizing higher-frequency components of the signal, and
de-emphasizing lower-frequency components of the signal.

Figure 3 shows the analysis of the two typical signals with the
alternative PM. Figure 3(a) and (c) show the ACF as a function of
time (x-axis; 1 second-blocks) and lags (y-axis). Figure 3(b) and
(d) show the PM as a function of time. This measure is clearly also
sufficient for distinguishing the two sounds. The ROC curve for this
measure is shown in Figure 3(e)). In this case, the area under the
ROC curve is 0.970. The minimum probability of error is 10.1%,
corresponding to a threshold of 8.34× 10−3. This performance is
comparable to the MLE detector. It should be noted that the ROC
curve in this case is somewhat skewed, enabling very high detection
probabilities with essentially no false alarms.

Algorithm simplifications for implementation
The algorithm we have just described can be simplified a great
deal and still give satisfactory results for the detection task. These
simplifications have been made with a hardware implementation in
mind, whether it be in an embedded processor or in a full-custom
ASIC.

The signals used in the previous section were quantized with 16-
bit precision. It turns out that one-bit precision is sufficient to give
acceptable results for the detection task. This is because an in-
finitely clipped version of the signal retains the periodic structure
of the original signal. In fact, the ACF of an infinitely clipped sig-
nal x̃[n] is related to the ACF of the original signal x[n] by [6]

Rx̃x̃[n] =
2
π

sin−1(Rxx[n]) (14)

Provided that we encode the signal with zeros and ones (as opposed
to −1s and +1s), the use of one-bit input signals greatly simplifies
the hardware implementation. For example, the multiply operation
in the correlation computation is reduced to an XNOR. The one-
bit signal has the additional advantage that the normalization step
in the ACF computation (the division by Rxx[0]) is eliminated, as
the amplitude information in the signal has already been discarded.
One caveat is that we must ensure that the signal is centered around
the quantizer threshold point. The PM computation can be further
simplified by computing the sum of the absolute value of the dis-
crete differences rather than the sum of the squares.
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Figure 2: Normalized autocorrelation functions for the two recorded sounds. (a) Ambient recording. (b) Vehicle recording.

The PM equations become

R̃x̃x̃[n] =
K−1

∑
k=0

x[k]⊕ x[k +n] (15)

�
simp =

Nmax

∑
n=Nmin

|R̃x̃x̃[n+1]− R̃x̃x̃[n]| (16)

where ⊕ represents the XOR operation and the bar represents nega-
tion.

Figure 4 shows the results of the simplified PM. The format of
the figure is the same as that of Figure 3. In this case, the area
under the ROC curve is 0.964. The minimum probability of error
is 10.3%, corresponding to threshold of 551. We see that the use of
the one-bit signal does not affect the discriminability of the signals
in any way.

4. VLSI IMPLEMENTATION
We designed a full-custom CMOS ASIC to implement the sim-

plified wake-up detection algorithm described in the previous sec-
tion. The chip was fabricated on a 3 mm×1.5 mm die in a 0.5 µm-
process available from the MOSIS service. A micrograph of the
chip is shown in Figure 5.

Figure 6 shows a block diagram of the detection circuitry. The
1024 clock cycle detection operation consists of two main phases:
an 984 clock cycle ACF phase and a 40 clock cycle PM phase. Dur-
ing both phases, the chip takes as input a one-bit stream of audio
data. A 52-sample history of the input is stored in an input regis-
ter INP. The 40 most recent samples (INP[0 : 39]) in the register
are correlated with the oldest sample (INP[51]); this realizes a lag
range of [13,52]. As discussed in the previous section, the corre-
lation consists of an XNOR operation. During the ACF phase, the
output of each correlation operation goes to a 10-bit accumulator
ACC. After the ACF has been computed for 984 clock cycles, the
PM phase begins. A state machine generates select signals such
that one even ACF lag and one odd ACF lag are driven onto their
respective busses in the proper sequence, enabling the computation
of the discrete derivative of the ACF. The results are accumulated
in the PM ACC register. At the end of the PM phase, the PM is
compared to a user-settable detection threshold, which generates a
detection signal. At this point, the ACF registers are reset, and the
detection operation begins anew.

The wake-up ASIC was connected to a microphone and signal
conditioning circuitry (including a comparator for one-bit A/D con-
version) and tested in a laboratory setting. The entire chip con-
sumes 6.3 µW during operation. Because we use separate power
supply pins for the I/O pads and the core, we can divide the total
power consumption into its constituent parts. The I/O pads con-

sume 5.5 µW and the core consumes 835 nW. The large power
consumption of the pads is attributable to two factors: First, the
clock input switches at 32 kHz, and is subsequently internally di-
vided down to 1 kHz. This design decision was made in order to
facilitate integration with a COTS oscillator. Secondly, approx-
imately 40 non-essential pads were included for debugging pur-
poses. Therefore, it is reasonable to assume that a next generation
chip in the same process would consume 1 µW. This power con-
sumption level is far smaller than that of the microphones and sig-
nal conditioning circuitry, which draw 300 µW. At these levels,
the system will run for well over a year on 3 AA batteries.

5. FIELD TEST RESULTS
The wake-up ASIC was integrated into acoustic surveillance unit

(ASU) enclosure along with an array of four Knowles SiSonic MEMS
microphones, signal conditioning circuitry, and two bearing esti-
mation ASICs [5, 2]. The ASU enclosure is depicted in Figure 7.
We conducted two field tests, one in a public park in Severna Park,
Md. with synthesized sounds (field test 1), and another at Aberdeen
Proving Ground, Aberdeen, Md. with a selection of ground-based
military vehicles (field test 2). In both tests, the detection thresh-
old was set to 1024. This setting corresponds to the point at which
the ROC curve in Fig. 4(e) departs from the y-axis and attains the
highest value of P[detection] for which P[false alarm] = 0.

5.1 Field test 1: Synthesized sounds
In the first field test, synthesized sounds were played from a sub-

woofer placed in an open field. In this setting, we had strict control
of the frequency content and amplitude of the sounds. In all tri-
als, the ASU was placed 30 feet from the sub-woofer at an angle
of 90◦. We first performed a series of trials with a signal consist-
ing of three simultaneous time-varying, harmonically related tones
(125 Hz, 150 Hz, 175 Hz). This signal is often used as a model for
sound generated by a vehicle. The wake-up detector was reliably
triggered down to a narrowband SNR of 13 dB (Figure 8). In trials
with broadband white noise, the loudest possible volume (50 dB
SPL) did not elicit a trigger.

5.2 Field test 2: Ground-based vehicles
In the second field test, vehicles were driven around a 662 m×

108 m oval-shaped track, and three ASUs were placed at various
points around the oval. One ASU, at one end of the oval, contained
the wake-up detector. When the detector was triggered, the bear-
ing estimation circuit on all of the ASUs localized and tracked the
sound source. Table 1 summarizes the wake-up results on an as-
sortment of vehicles in terms of the maximum distance that elicited
a sustained detection. During the duration of the test, the false
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Figure 3: Detection results for the alternative periodicity measure. Nmin = 13 samples and Nmax = 51 samples. (a) Autocorrelation
function for an ambient recording. White corresponds to +1 and black corresponds to −1. (b) Periodicity measure for an ambient
recording. The detection threshold value was set to the value that minimizes the probability of error. (c) Autocorrelation function for
vehicle recording. (d) Periodicity measure for vehicle recording. (e) ROC curve for simplified periodicity measure generated from
16 vehicle recordings and one ambient recording. Same format as Figure. 1(e).

alarm rate was less than 2 per hour. Also, numerous unscripted tar-
gets were detected, such as helicopters, powerboats, and trucks. At
one instance, an F/A-18 fighter jet flew overhead at approximately
10,000 ft and a detection was not elicited.

Vehicle Description Distance
M60 Heavy Tracked > 500 m
HEMET Heavy Wheeled ∼ 250 m
M548 Light Tracked ∼ 400 m
HMMWV Light Wheeled ∼ 55 m

Table 1: Performance of the wake-up system on ground-based
vehicles.

6. CONCLUSION
We have presented a wake-up detector algorithm based on the

degree of periodicity in acoustic signals generated by ground-based
vehicles. This algorithm was developed with a low-power VLSI
implementation in mind. We designed and tested a CMOS ASIC
that implements this algorithm. The core of the ASIC consumes
835 nW, and we expect the next-generation entire chip to consume
on the order of 1 µW. The wake-up detector has been field tested
and its performance is robust.

The performance of the wake-up system is limited by the signal
acquisition and conditioning subsystem rather than the algorithm
itself. Because the algorithm requires a one-bit input, it relies on a
high-quality comparator at the output of the microphone. In order
to provide a useful signal, the comparator threshold must be able

to track the DC level of the acoustic signal. In the case of low-
amplitude sounds, the microphone output is on the order of the
comparator offset, and the comparator fails to trigger. The design of
a low-power, low-offset comparator for integration with a MEMS
microphone is a focus of our current research in this area.
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Figure 5: Micrograph of the wake-up detector CMOS ASIC.
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Figure 7: Photograph of acoustic surveillance unit enclosure.
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Spectrogram representation of a loud sound. The line indicates the moment that the detection signal is triggered. (b) Spectrogram
representation of a lower amplitude sound, corresponding to the limits of the system’s operation. (c) Power spectral density for loud
sound from seconds 11 to 12. (d) Power spectral density for lower amplitude sound from seconds 2 to 3.
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