Graphs, Tables and Captions My biased take on how to view your data

Aaron Schulman Featuring graphs from many talented artists

Why do we graph?

- To grasp lots of observations
- To find patterns in observations
- To see the distribution of observations
- To determine the relationship between observations (be careful with correlation)
- To find bugs in the experiment
- To show others our observations

- X independent
- Y dependent axis labels (and units) data

X - independent

Y - dependent axis labels (and units) data

- X independent
- Y dependent axis labels (and units) data

- X independent
- Y dependent axis labels (and units) data

Scatter plot

Always view the raw data first

Figure 6: Runs on live swarms

Credit: Neil Spring (left) Dave Levin (right)

Bar graph

Figure 5: Percentage of leaders, bridges, and clients in different topologies. The value on top of each bar denotes the average remaining battery for each case.

Credit: Seungjoon Lee

Box and whisker

Credit: Neil Spring

Standard deviation and confidence interval

Know your data

3D and heatmap

IETF 2005 chan. 11 ple

- 3D is not your friend
- Use a heatmap

Multiple axis and shared axis

Watch out for grayscale

2

signal

.....

1.5

-50

-60

-70

-80

-90

-100

-110

-120

Captions

- Hypothesis or conclusion from the figure
- Description the experiment
- Description of the data points
 - Point out interesting ones
 - Give statistics
 - Explain outliers

Credit: Lawrence Brakmo

EDWARD R. TUFTE VISUAL EXPLANATIONS

Demo

Graphing tools

- Gnuplot does everything, horrible defaults
- matplotlib python
- Matlab, R statistics, not flexible?
- Jgraph nice defaults, obscure
- Excel simple, horrible defaults, plot and data are one, not easy to script

Why make a table

- If you only have a few data points
- If the interesting data is obvious
- If you want to present a visual comparison

Tables

		No extra bits	Maintain	Compatible	Incremental	Partial Packet
Technique	Protocol	for correct packets	link latency	with 802.11	deployment	Recovery
Checksum	Maranello	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Seda [6]			N/A	\checkmark	\checkmark
	FRJ [11]				\checkmark	\checkmark
FEC	ZipTx [14]				\checkmark	\checkmark
PHY layer	PPR [12]	\checkmark	\checkmark	N/A		\checkmark
hints	SOFT [27]	\checkmark	\checkmark	N/A		
Diversity	MRD [20]	\checkmark	\checkmark		\checkmark	
	SPaC [4]	\checkmark	N/A	N/A	\checkmark	
	PRO [16]	\checkmark	\checkmark	\checkmark	\checkmark	

Table 1: Desired behavior and functionality of wireless error recovery protocols

Parameter	Value		
Hardware	iPhone 3GS [1]	-	150
Software	SignalScope Pro [2]		
Function	Signal Generator	L Sur	125
Output	Headphones	, A	
Туре	Tone		100
Frequency	20 Hz to 24 kHz (5 kHz nom)	nrre	75
Amplitude	0.00 dB	nt o	13
Pan	0.000%	outp	50
Volume	Maximum	0	
			25

0

Table 1: Experiment parameters for determining the availablepower from the iPhone 3GS headset port.

Deadlines & camera ready

- Easiest to edit
 smallest to distribute
- Script + data files → EPS,PS → PDF
- You will have to make changes after submission
- PDF Embedded fonts