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Why do we graph?

• To grasp lots of observations

• To find patterns in observations

• To see the distribution of observations

• To determine the relationship between 
observations (be careful with correlation)

• To find bugs in the experiment

• To show others our observations
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AS Name ISP with customer & peer POPs
Routers Links Routers Links

1221 Telstra (Australia) 345 735 3,000 3,140 61
1239 Sprintlink (US) 471 1,337 8,280 9,022 44
1755 Ebone (Europe) 133 250 569 387 26
2914 Verio (US) 862 1,941 7,284 6,490 122
3257 Tiscali (Europe) 247 405 854 653 51
3356 Level3 (US) 624 5,299 3,446 6,741 53
3967 Exodus (US) 157 341 783 644 24
4755 VSNL (India) 11 12 120 68 11
6461 Abovenet (US) 357 914 2,249 1,292 22
7018 AT&T (US) 487 1,067 9,968 10,138 109

Total 3,694 12,301 36,553 38,575 523
Table I. The number of routers, links, and POPs for all ten ISPs we studied. ISP routers include backbone and access routers. With customer and peer routers adds

directly connected customer access and peer routers. Links include only interconnections between these sets of routers. POPs are identified by distinct location
tags in the ISP’s naming convention.
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Fig. 10. Backbone routers in a POP relative to its size. A small random jitter
was added to the data points to expose their density. Circles represent the
median of at least ten nearby values: fewer medians are present for the
few large POPs. The dotted line follows x = y, where all routers in a
POP are backbone routers. The solid line traces a linear regression fit with
R

2 = 0.69. This is an aggregate graph over the ten ISPs.

Unsurprisingly, we find that most of the routers in small POPs
are used to connect to other POPs, likely to the better connected
core of the network. However, while we expected that as POPs
became larger, a smaller fraction backbone routers would be re-
quired, instead we found that this is not always the case: POPs
with more than 20 routers vary widely in the number of back-
bone routers used to serve them. We conclude from this graph
that the smallest POPs have multiple backbone routers for re-
dundancy, while larger POPs vary widely in the number of back-
bone routers present.

In Figure 11, we show the outdegree of a POP as a function of
the number of backbone routers present. We were surprised to
find a roughly linear relationship. In general, the median tracks
a line where the outdegree of a POP is equal to the number
of backbone routers present. However, there are POPs where
one or two backbone routers connect to several other POPs, and
conversely there are POPs where several backbone routers pro-
vide redundancy in connecting to a just a few other POPs. We
conclude that there is no standard template for how backbone
routers are connected to other POPs.
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Fig. 11. POP outdegree vs backbone routers in the POP. A small random jitter
was added to the data points to expose their density. Circles represent the
median of at least ten nearby values: fewer medians are present for the
few large POPs. The solid line traces a linear regression fit, with R

2 =
0.70. This is an aggregate graph over nine ISPs, excluding Level3 due to
its logical mesh topology that gives POPs very high outdegree.

E. Router Degree Distribution

To describe the distribution of router outdegree in the ISP net-
works we use the complementary cumulative distribution func-
tion (CCDF). This plots the probability that the observed values
are greater than the ordinate. We consider all routers, regardless
of their role in the ISP.
The CCDF of router outdegree is shown in the aggregate over

all ISPs in Figure 12. We fit the tails of these distributions us-
ing Pareto (“power-law”), Weibull, and lognormal distributions.
The � parameter for the Pareto fit is estimated over the right half
of the graph to focus on the tail of the distribution. The Weibull
scale and shape parameters are estimated using a linear regres-
sion over a Weibull plot. The lognormal line is based on the
mean µ and variance of the log of the distribution.
We observe that, unlike the measured degree in AS graphs [8],

router outdegree has a small range in our data; it covers only
two orders of magnitude over the ten ISPs. Physical size and
power constraints naturally limit the underlying router outde-
gree. However, our data can include undetected layer two
switches and multi-access links, which would inflate the ob-

this mechanism will keep that peer to achieving at most f times
the amount of bandwidth it sends. When two peers wish to upload
to one another, the multiplicative factor ramps up the allocation
exponentially fast.

8. PROPSHARE EVALUATION
In this section we present our experimental evaluation of our

PropShare client.
We emphasize the goal of our PropShare client: to maintain ro-

bust incentive properties without sacrificing speed. The previous
sections of this paper show PropShare’s resilience to many forms
of strategic gaming. Demonstrating these points experimentally is
difficult if not impossible, as one failed attempt at gaming a system
is hardly proof that it is impervious to strategic manipulation. The
auction-based model we presented in Section 4 is intended to serve
as a general tool for a rigorous study of incentives in BitTorrent-
like settings where experiments do not apply. Here, we focus on
PropShare’s performance both in live swarms and on PlanetLab.

8.1 How do we expect PropShare to perform?
In our evaluation, we compare our PropShare client to BitTor-

rent and BitTyrant. While BitTyrant was built specifically to game
BitTorrent, the goal of our PropShare client is to provide robust
incentives even against future clients. Our implementation there-
fore takes no BitTorrent- or BitTyrant-specific actions. As such,
we expect that BitTyrant will perform better in a swarm consisting
predominately of BitTorrent peers.

In the publicly available BitTyrant implementation, BitTyrant
peers ramp bandwidth allocations to one another using a k-TFT-
like scheme. This strategy is not shown to be strategyproof [22].
We considered modifying the BitTyrant client to remove this po-
tentially game-able strategy, or to announce our PropShare client
as a Tyrant to gain from others’ sharing. However, in practice, one
would not be able to do this, and there may be many peers employ-
ing many different strategies. We thus opted to let our PropShare
client “fly blind” against BitTyrant peers.

8.2 Experiments on live swarms
We begin our evaluation by comparing performance of BitTor-

rent, BitTyrant, and PropShare on live swarms. In these experi-
ments, we chose torrents with a large leecher-to-seeder ratio to test
the various clients’ ability to trade with others. We started the three
clients simultaneously from three separate machines, each on the
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Figure 6: Runs on live swarms

University of Maryland network. We limited each client’s upload
bandwidth to 100 kilobytes per second.

Figure 6 validates our hypotheses regarding PropShare’s per-
formance relative to other clients. We plot results from 21 live
swarms, sorted by PropShare completion time. BitTyrant, being
tailored specifically to exploiting BitTorrent peers, frequently per-
forms the best of the three clients. Although our PropShare client is
a straightforward realization of the proportional share mechanism
from Section 6 that employs no BitTorrent-specific mechanisms, it
performs comparably well to BitTyrant, and in all but one down-
load, much better than BitTorrent. We believe PropShare expe-
riences good performance in live swarms because it shares some
similarities with BitTyrant; PropShare allocates more bandwidth to
peers with greater return on investment. The main difference be-
tween PropShare and BitTyrant is that PropShare will reward all
peers, even those with poor return on investment, with bandwidth.
The results in Figure 6 indicate that this additional expenditure is
not detrimental, and in some cases improves performance.

We conclude that PropShare is incrementally deployable. Users
could begin using and benefiting from a PropShare client today,
and we intend to make our client available as open source. Prop-
Share does not require a full deployment to benefit, or a change
in the protocol to improve performance. This is a result of Prop-
Share’s resilience to strategic manipulation; PropShare does not re-
quire mechanisms such as voting or long-term agreements in order
to benefit, and is even resilient to colluding peers. It is thus natu-
ral that a single PropShare peer would perform well in a swarm of
non-PropShare (but rational) peers.

8.3 Competitive experiments
It is reasonable to assume that the vast majority of the peers con-

tacted in our live swarms experiments ran unmodified BitTorrent
clients. We now study how PropShare performs when either it or
BitTyrant hold the majority.

Experimental setup
We ran competitive experiments on roughly 110 PlanetLab nodes.
In these experiments, we pitted two clients against one another by
keeping the number of peers fixed across all experiments, but vary-
ing the relative fraction of client types. We adopted Piatek et al.’s
BitTyrant experimental setup: three seeders per file, with a com-
bined upload bandwidth of 128KBps, a locally run tracker, and
peers downloading 5MB files. We used the bandwidth distribution
presented by Piatek et al. [22], and varied each peer’s bandwidth
cap in each run. Each peer left the swarm as soon as it was done
downloading the file. We reduced dependencies across runs by not
using the same file between two separate runs; many trackers im-
pose a limit on how often peers can request new peers, which could
force some of the slower peers from an earlier experiment to be
forced into long waits at the beginning of the next. Each pair of
points in the figures that follow represents the average over at least
3 runs, and error bars denote 95% confidence intervals.

BitTyrant vs. BitTorrent
The original BitTyrant study [22] measured average download times
on swarms consisting of all BitTyrant or all BitTorrent peers, or
when one BitTyrant peer attempted to game the rest of the sys-
tem. We augment that study by considering intermediate ratios of
clients. Figure 7 shows that there are interesting dynamics between
the two extreme points. There is a clear trend toward an increase in
BitTyrant performance as there are fewer of them.

The trend of Figure 7 is clear within the context of the auction
model of Section 4. Consider a strategic bidder b; if there are few

252
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Bar graph

Backbone Completion Time (s)
N Connected All Links
130 14.7 (13.0) 231 (230)
227 23.9 (14.4) 231 (202)
306 34.7 (22.1) 379 (234)

Table 1: Average backbone construction
time when all peers know the correct dis-
tribution of costs (uniform). The values in
parentheses denote standard deviations.

Avg. Rem. Batt. Completion Time (s) Cvg. of Max
N Ldr Brg Cli Connected All Links Conn. Comp
130 .397 .215 .064 873 (414) 1849 (454) .986 (.0108)
227 .357 .226 .073 1560 (236) 1970 (390) .908 (.109)
306 .376 .223 .065 1860 (656) 2170 (495) .985 (.0170)

Table 2: Results when all peers believe that the cost distri-
bution is uniform when it actually is long-tail (majority of
nodes have low battery). Due to many low-battery nodes,
only 25% of the runs resulted in a fully connected compo-
nent. The completion times shown are from those runs only.
The values in parentheses denote standard deviations.
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Figure 5: Percentage of leaders, bridges, and clients
in different topologies. The value on top of each bar
denotes the average remaining battery for each case.

quickly (10 sec in this plot). Since nodes only have informa-
tion about their local neighborhoods, they continue playing
bridge games until every leader is connected to each other
leader that is within 3 hops. It can take a considerable
amount of time to add all of these redundant links (more
than 3 minutes in this case). We show further evidence of
this in Table 1. For example, with 306-node networks, it
takes around 34 seconds to form a connected backbone, but
379 seconds to add all the links. Though many redundant
links are added, the backbone is not adversely affected; as
shown in the top of Fig. 4, few nodes are promoted into the
backbone once it is connected.

The Effect of Incomplete Information. In the GVTD anal-
ysis, we assume that the distribution F of nodes’ costs-to-
volunteer is public knowledge. Since this assumption may
not hold in practice, we performed experiments to under-
stand the effect of incomplete information on our protocol.
In this experiment, each node in the system assumes that
the cost distribution F is uniform, as we did in our analysis,
when in reality costs actually follow a different distribution.
Since it is unclear what a reasonable distribution of battery
values is in practice, we experimented with various distri-
butions. In this section, we present our results using the
Pareto distribution; we chose this because it is substantially
different from the assumed uniform distribution.

We present our results in Table 2. The quality of the
backbone our protocol constructs is very resilient to even
vastly inaccurate prior assumptions. For all system sizes in

Table 2, the distribution of costs for each role remains the
same as when the nodes are well-informed; leaders still have
the highest remaining capacity, and so on. The fundamental
difference is in the completion time; the average completion
times are orders of magnitude longer than the case with uni-
form distributions (see Table 1). This follows directly from
the analysis in Section 3; since most nodes’ battery levels are
very low, their assumptions of a uniform distribution leads
them to believe that their neighbors must have greater ca-
pacity, and would therefore be willing to volunteer first. The
coverage of the maximum connected component, also shown
in Table 2, shows that there is a small percentage of nodes
who have so little remaining battery that they are willing
to wait indefinitely for one of their neighbors to volunteer;
if they joined the backbone, they would immediately lose
their remaining battery. In 75% of our experiments, these
nodes were willing to wait longer than the duration of the
simulation (20 min).

Besides the long-tail distribution, we also ran experiments
when the actual costs follow a normal distribution. Our find-
ings were similar, and lead us to the following conclusion:
The distribution of costs according to roles remain indepen-
dent of the accuracy of the information. However, the time
to form a fully connected backbone can change significantly.
When nodes’ battery levels are lower than what they ex-
pect the average to be, they become increasingly patient,
and the backbone takes more time to converge (Table 2).
Conversely, when nodes have what they perceive to be a
higher-than-average battery level, they become more willing
to volunteer, and the backbone forms significantly faster.

The Price of Free-Riding. We study the effect of free-
riders on the system. By free-riding, we mean that the node
refuses to take any role in the backbone. We show that free-
riding has an adverse effect on each node in the network,
including the free-riders, and conclude that free-riding is
not a rational strategy.

We experimented with a varying number of nodes acting
as free-riders on the 130-node topology. Clearly, if all nodes
deviated in such a manner, the network would be completely
disconnected and yield no social benefit.

As expected, we see in Figure 6 that the connectivity
quickly declines with respect to the number of free-riders
in the system. In other words, rampant free-riding causes
system collapse, so utility-maximizing, rational nodes will
have no incentive to free-ride on such a large scale. When
only a small percentage of nodes refuse to be either leader
or bridge nodes, the backbone can still be connected. In the
inset to Figure 6, we focus on the regime with few free-riders
(between 0% and 10%), and include only the runs that re-

Credit: Seungjoon Lee
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pause between accesses to the same traceroute server to avoid
overloading it. Traceroutes to the same destination prefix are
not executed simultaneously to avoid hot-spots.
The traceroute parser extracts IP addresses that represent

router interfaces and pairs of IP addresses that represent links
from the output of traceroute servers. Often this output includes
presentation mark-up like headers, tables and graphics.

V. ISP MAPS

We ran Rocketfuel to map ten diverse ISPs during December,
2001 and January, 2002. In this section, we present summary
map information and samples of backbone and POP topology.
The full map set, with images of the backbones and all the POPs
of the ten ISPs, is available at [22]. We then analyze the ISP
maps to report their properties, with the goal of understanding
their structure and engineering. We describe the sizes and com-
position of POPs, degree distributions over both the router-level
and backbone graph, and finally the router-level adjacencies that
make up inter-ISP peerings. We defer an evaluation of the va-
lidity of these maps to Section VI.

A. Summary Information
The aggregate statistics for all ten mapped ISPs are shown in

Table I. The biggest networks, AT&T, Sprint, and Verio are up
to 100 times larger than the smallest networks we studied.

B. Backbones
Figure 7 shows five sample backbones overlaid on a map of

the United States. Backbone design style varies widely between
ISPs. We see that the AT&T’s backbone network topology in-
cludes hubs in major cities and spokes that fan out to smaller
per-city satellite POPs. In contrast, Sprint’s network has only 20
POPs in the USA, all in major cities and well connected to each
other, implying that their smaller city customers are back-hauled
into these major hubs. Level3 represents yet another paradigm
in backbone design, which is most likely the result of using a
circuit technology, such as MPLS, ATM, or frame relay PVCs,
to tunnel between POPs.

C. POPs
Unlike the backbone designs, we found POP designs to be rel-

atively similar. Each POP is a physical location where the ISP
houses a collection of routers. A generic POP has a few back-
bone routers in a densely connected mesh. In large POPs, back-
bone routers may not be connected in a full mesh. Backbone
routers also connect to backbone routers in other POPs. Each
access router connects to one or more routers from the neigh-
boring domain and to two backbone routers for redundancy. It
is not necessary that all neighboring routers are connected to
the access router using a point-to-point link. Instead, a layer
2 device such as a bridge, or a multi-access medium such as a
LAN may aggregate neighboring routers that connect to an ac-
cess router. A limitation of our study is that traceroute cannot
differentiate these scenarios from point-to-point connections.
As an example of a common pattern, Figure 8 shows our map

of Sprint’s POP in Springfield, MA. This is a small POP; large
POPs are too complex to show here in detail. In the figure,
names of the aliases are listed together in the same box. The

sl−bb12−spr−15−0
sl−bb12−spr−14−0
sl−bb12−spr−10−0

sl−bb10−spr−10−0
sl−bb10−spr−13−1
sl−bb10−spr−14−0
sl−bb10−spr−15−0

sl−bb11−spr−13−1
sl−bb11−spr−10−0

sl−bb11−spr−14−0

sl−gw4−spr−14−0sl−gw6−spr−0−0
sl−gw1−spr−0−0−0
sl−gw1−spr−1−1−1−ts0
sl−gw1−spr−5−0−0−ts23
sl−gw1−spr−6−0−0−ts3

sl−bb11−spr−15−0

Other POPS

Other
POPSOther

POPS

Neighbors Neighbors Neighbors

Fig. 8. A sample POP topology from Sprint in Springfield, Massachusetts. The
names are prefixes of the full names, without sprintlink.net. Aliases for the
same router are listed in the same box. Most POPs in Sprint are larger and
too complex to show, but exhibit a similar structure.
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Fig. 9. The cumulative distribution of POP sizes (solid), and the distribution of
routers in POPs of different sizes (dotted). The mean POP size is 7.4 routers,
and the median is 3 routers.

three backbone nodes are shown on top, with the access routers
below. Sprint’s naming convention is apparent: sl-bbn names
backbone routers, and sl-gwn names their access routers. Most
directly connected neighboring routers (not shown) are named
as sl-neighborname.sprintlink.net. These are mainly
small organizations for which Sprint provides transit. The value
of DNS names for understanding the role of routers in the topol-
ogy is clear from this naming practice.

D. POP composition
The distribution of POP sizes, aggregated over the ten ISPs,

is shown in Figure 9. Most POPs are small, but most routers are
in big POPs. In [25], we present a sample of the variation by
ISP: some have more small POPs or a few larger POPs. Small
POPs may be called by other names within the ISP; we do not
distinguish between exchange points, data centers, and private
peering points.
In Figure 10, we show the number of backbone routers rel-

ative to the total number of routers in the POP. “Backbone”
routers are those that connect to other POPs, and the routers
we consider are limited to those identifiable by DNS name and
IP address as being part of the ISP. We define backbone in this
ISP-independent way because DNS tags that represent the ISP’s
idea of a router’s role in the topology are not universally used.
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Multiple axis and shared axis
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Figure 10: Current over time for two states of Blink
recorded with the oscilloscope, showing the mean cur-
rent and the iCount pulses that Quanto accumulates.

ferent nodes. We then look at three case studies in which
Quanto exposes real-world effects and costs of applica-
tion design decisions, and lastly we quantify some of the
costs involved in using Quanto itself. In these experi-
ments processed Quanto data with a set of tools we wrote
to parse and visualize the logs. We used GNU Octave to
perform the regressions.

4.1 Calibration

We set up a simple experiment to calibrate Quanto
against the ground truth provided by a digital oscillo-
scope. The goal is to establish that Quanto can indeed
measure the aggregate energy used by the mote, and that
the regression does separate this energy use by hardware
components.

We use Blink, the hello world application in TinyOS.
Blink is very simple; it starts three independent timers
with intervals of 1, 2, and 4s. When these timers fire,
the red, green, and blue LEDs are toggled, such that in
8 seconds Blink goes through 8 steady states, with all
combinations of the three LEDs on and off. The CPU is
in its sleep state during these steady states, and only goes
active to perform the transitions.

Using the Hydrowatch board (cf. Section 2.2), we con-
nected a Tektronix MSO4104 oscilloscope to measure
the voltage across a 10 resistor inserted between iCount
circuit and the mote power input. We measured the volt-
age provided by the regulator for the mote to be 3.0V.

We confirmed the result from [9] that the switching
frequency of iCount varies linearly with the current. Fig-
ure 10 shows the current for two sample states of Blink.
This curve has a wealth of information: from it we
can derive both the switching frequency of the regula-
tor, which is what Quanto measures directly, and the
actual average current, Iavg . We verified over the 8
power states that Iavg , in mA, and the switching fre-

X Y
L0 L1 L2 C I(mA)
0 0 0 1 0.74
1 0 0 1 3.32
0 1 0 1 3.05
1 1 0 1 5.53
0 0 1 1 1.62
1 0 1 1 4.15
0 1 1 1 3.88
1 1 1 1 6.30

⇧
I(mA)

LED0 2.50
LED1 2.23
LED2 0.83
Const. 0.79

X⇧
I(mA)

0.79
3.29
3.02
5.53
1.62
4.12
3.85
6.36

Table 2: Oscilloscope measurements of the current for
the steady states of Blink, and the results of the regres-
sion with the current draw per hardware component. The
relative error (⇥Y �X�⇥/⇥Y⇥) is 0.83%.

quency fiC , in kHz, have a linear dependency given by
Iavg = 2.77fiC�0.05, with an R2 value of 0.99995. We
can infer from this that each iCount pulse corresponds,
in this hardware, at 3 V, to 8.33 µJ. We also verified that
Iavg was stable during each interval.

Lastly we tested the regression methodology from
Section 2.5, using the average current measured by the
oscilloscope in each state of Blink and the external state
of the LEDs as the inputs. We also added a constant
term to account for any residual current not captured by
the LED state. Table 2 shows the results, and the small
relative error indicates that for this case the linearity as-
sumptions hold reasonably well, and that the regression
is able to produce a good breakdown of the power draws
per hardware device.

4.2 Two Illustrative Examples

4.2.1 Blink
We instrumented Blink with Quanto to verify the re-

sults from the calibration and to demonstrate a simple
case of tracking multiple activities on a single node.
We divided the application into 3 main activities: Red,
Green, and Blue, which perform the operations related
to toggling each LED. Each LED, when on, gets labeled
with the respective activity by the CPU, such that its en-
ergy consumption can be charged to the correct activity.
We also created an activity to represent the managing of
the timers by the CPU (VTimer). We recorded the power
states of each LED (simply on and off), and consider the
CPU to only have two states as well: active, and idle.

Figures 11(a) and (b) show details of a 48-second run
of Blink. In these plots, the X axis represents time, and
each color represents one activity. The lower part of (a)
shows how each hardware component divided its time
among the activities. The topmost portion of the graph
shows the aggregate power draw measured by iCount.
There are eight distinct stable draws, corresponding to
the eight states of the LEDs.

Part (b) zooms in on a particular state transition span-
ning 4 ms, around 8 s into the trace, when all three LEDs
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Watch out for grayscale
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Captions

• Hypothesis or conclusion from the figure

• Description the experiment

• Description of the data points

• Point out interesting ones

• Give statistics

• Explain outliers
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Credit: Lawrence Brakmo
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Graphing tools

• Gnuplot - does everything, horrible defaults

• matplotlib - python

• Matlab, R - statistics, not flexible?

• Jgraph - nice defaults, obscure

• Excel - simple, horrible defaults, plot and data 
are one, not easy to script
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Why make a table

• If you only have a few data points

• If the interesting data is obvious

• If you want to present a visual comparison
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Tables
No extra bits Maintain Compatible Incremental Partial Packet

Technique Protocol for correct packets link latency with 802.11 deployment Recovery
Maranello X X X X X

Checksum Seda [6] N/A X X
FRJ [11] X X

FEC ZipTx [14] X X
PHY layer PPR [12] X X N/A X

hints SOFT [27] X X N/A
MRD [20] X X X

Diversity SPaC [4] X N/A N/A X
PRO [16] X X X X
Table 1: Desired behavior and functionality of wireless error recovery protocols

Reduce recovery latency Seda, FRJ, and ZipTx may
increase the recovery latency by aggregating feed-
back for a group of corrupted packets. MRD and
SOFT may also increase the recovery latency for the
packets that cannot be repaired by frame combining.

Compatible with 802.11 Among the protocols de-
signed for 802.11 wireless networks, MRD, FRJ,
and ZipTx disable the retransmission protocol at the
MAC layer and thus do not interoperate with native
802.11.

Incremental deployment Most of the protocols are
implemented using commercial hardware, either
802.11 cards or MICA motes, and thus can be in-
crementally deployed on widely available wireless
devices. In contrast, PPR and SOFT use physical
layer information provided by GNU Radio systems.

Partial packet recovery Protocols like PRO and SOFT
always retransmit the entire packet when the origi-
nal cannot be recovered.

Table 1 shows that none of these protocols achieve all
these features simultaneously.

2.1 Block Checksum
Acknowledgment frames can be extended to include
feedback to help error recovery protocols. Seda [6] is
a recovery mechanism designed for data streaming in
wireless sensor networks. In Seda, a sender divides each
packet into blocks and encodes each block with a one-
byte sequence number and a (one-byte) CRC-8 for er-
ror detection. A receiver, after receiving several pack-
ets, will test the block-level CRC-8’s for packets that fail
the CRC-32 (if any) and request retransmission of those
blocks.

FRJ [11] uses jumbo frames to increase wireless link
capacity. Each jumbo frame comprises 30 segments and
each segment has its own CRC checksum. The receivers
can check these segment checksums to perform partial
retransmissions when the segments are corrupted. FRJ

uses both MAC-layer ACKs and its own ACKs. FRJ
sends its own ACKs after 100 ms or 64 received frames.

Unlike Seda and FRJ, Maranello introduces no extra
bits for correctly received frames and performs retrans-
mission immediately after corrupted frames are detected.

2.2 Forward Error Correction
Forward error correction codes are beneficial to error
recovery because they do not require explicit informa-
tion about error locations. ZipTx [14] uses a two-round
forward error correction mechanism to repair corrupted
packets. In the first round, the transmitter sends a small
number of Reed-Solomon bits for a corrupted packet,
based on the feedback provided by the receiver. If the
receiver still cannot recover the corrupted packets using
these parity bits, the transmitter sends more parity bits
in the second round. If both rounds fail, the receiver re-
quests a retransmission of the whole packet. To reduce
the number of feedback frames, ZipTx receivers accu-
mulate feedback information to be transmitted after re-
ceiving eight packets or after a timeout.

Although ZipTx increases throughput, it may also in-
crease recovery latency. This is because it disables MAC
layer retransmission and generates its own ACKs for a
group of packets in the driver. As a result, the delay
for the recovered packets may be significantly higher
than that of the retransmitted native 802.11 packets.
Maranello repairs corrupted packets immediately after
transmission fails and thus can reduce recovery latency.

2.3 PHY Layer Hints
Error recovery protocols can benefit from physical layer
information beyond the best guess at the received sym-
bol, although most commercial 802.11 cards do not ex-
pose such extra information. PPR [12] requests retrans-
missions of only those symbols that are likely corrupted.
PPR also provides a compact encoding of the ranges
of bits requested for retransmission and replicates the
preamble to a “postamble” so that receivers may recover

3

Parameter Value
Hardware iPhone 3GS [1]
Software SignalScope Pro [2]
Function Signal Generator
Output Headphones
Type Tone

Frequency 20 Hz to 24 kHz (5 kHz nom)
Amplitude 0.00 dB

Pan 0.000%
Volume Maximum

Table 1: Experiment parameters for determining the available
power from the iPhone 3GS headset port.

Using the headset port to power and communicate with external
peripherals poses several engineering and research challenges. The
headset output is a low voltage signal, often even lower than typical
transistor threshold voltages. To be useful, it must be converted to
a higher voltage using energy harvesting and voltage boosting cir-
cuits that can operate with input AC voltages in the 200 mV range.
Due to the limited voltage headroom, simple rectification is diffi-
cult without substantial power losses, and maximum power point
tracking may be required in some cases. Matching the harvesting
circuit’s cost, complexity, and conversion efficiency with the ideal
audio waveform also presents an iterative co-design problem. Us-
ing the audio output to deliver power and data functionality requires
exploring these design tradeoffs.

In this paper, we characterize the power available from the au-
dio jack, design a circuit to harvest this power, and evaluate the
efficiency of the conversion. We find that the headset can deliver
15.8 mW per channel from the iPhone’s headset port. We present
a circuit that can harvest energy from a single channel and an au-
dio signal that when played on the phone can maximize the output
power from the harvesting circuit. Our energy harvesting circuit
delivers up to 7.4 mW to a load – a 47% power transfer efficiency
compared with the output power capability of the headset port –
using just $2.34 in electronic components.

We also demonstrate that a pair of (coded) audio signals can be
generated by the phone processor and transmitted to both the en-
ergy harvesting circuit (for power transfer) and a microcontroller
(for data transfer). Conversely, we show that the microcontroller
can generate a coded signal that can be sampled by the mobile
phone’s microphone input and decoded by the phone to present a
stream of digital data, establishing an 8.82 kbps bi-directional data
stream using the hardware resources found in a microcontroller.

Integrating the pieces, we present an oscilloscope, EKG monitor,
and soil moisture sensor that runs partly on the phone and partly
on an external microcontroller (MCU) powered using the mobile
phone’s right audio channel. The two processors communicate us-
ing the left audio channel (phone to MCU) and microphone channel
(MCU to phone). We also present a single circuit board, measuring
just 1.0” x 1.0”, on which application-specific sensors are attached.

2. ENERGY HARVESTING
Our first design goal is to harvest energy from the headset jack

of a mobile phone, convert it into a more usable form, and achieve
high conversion efficiency in the process. We begin by characteriz-
ing the AC waveforms that are available, the output impedance of
the headset port, and the range of variables available for manipula-
tion. We then design and evaluate an energy harvesting circuit to
convert the available power into a more usable form.
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Figure 2: Available power from the iPhone headset jack. The
IV curve data show that it is possible to draw 15.8 mW from
an iPhone 3GS with an ideally-matched 3.6 � load. The iPhone
can supply enough to power to operate many low-power elec-
tronics. To be useful, however, the current must be rectified,
the voltage must be boosted, and the output must be filtered.

2.1 Determining Available Power
We now explore the question of how much power can be har-

vested from iPhone’s headset port. To do so, we use the Faber
Acoustical iPhone SignalScope Pro software [2] to generate a range
of audio frequencies, from 20 Hz to 24 kHz, and output them over
the iPhone’s audio port. We find that the output power is indepen-
dent of frequency, so we use a 5 kHz AC tone in our subsequent
experiments. Table 1 shows the settings to generate the output.

A load is connected between the right audio channel and com-
mon line on the headset and varied from 0 � to 15 k�, and the
output voltage and load current are measured at several points. A
linear fit of the data yields the (essentially linear) IV curve shown
in Figure 2. From these data, we generate the power transfer curve,
which shows that maximum power transfer occurs at 240 mVrms
and when delivering 66.0 mArms, for a 3.6 � load impedance.

2.2 Exploring the Design Space
We next explore the question of how to efficiently harvest the

energy produced from the headset output. The two engineering
challenges are to increase the signal amplitude and convert the AC
signal into a DC one. Figure 2 shows that the open circuit volt-
age, Voc, is less than 500 mV and that the maximum power point
voltage, Vmpp, occurs at 240 mV. These voltages are far below the
turn on voltages of switching regulators (typically in the range of
800 mV to 900 mV). They are also below the required startup volt-
age, after rectification, of ultra-low voltage step-up DC-DC con-
verters, like the Seiko S-882Z [3], which require 300 mV to start.

Rectification losses can be significant in both high-power and
low-voltage systems. In our case, for example, to achieve maxi-
mum power transfer, an RMS current of 66 mA is required. When
rectified using even a low-Vf Schottky diode like the DFLS120L,
a 200 mV forward voltage drop occurs (See Fig 1 in reference [4]),
meaning that 80% of the power is lost during rectification, and only
20% can be delivered to the load.1

1This assumes that only a single rectifier diode is on the path, which
would of course reduce the available power by 50%. If two diodes
are on the path, as would be the case for a bridge rectifier, the losses
would be substantially higher.
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