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4. Software – writing software for this new computing class presents a number of challenges.  
The two classes of SRAM (volatile and NV) requires data partitioning and low-level memory man-
agement.  The high time and energy cost of paging underscore the need to track dirty data to reduce 
unnecessary write-backs.  Limited energy requires an energy-aware OS scheduler.  High concurren-
cy from communications, image processing, and memory management, coupled with a small 
memory renders thread-based programming infeasible and event-driven programming preferable. 

(iii) Evidence that pursuing this vision will lead to major advances in the field – The technology 
being developed by our team at Michigan seeks to push the frontiers and enable the applications 
envisioned possible when perpetual, cubic-mm, wireless sensor nodes transitioned from science 
fiction into reality. Our team is collaborating with biologists, medical doctors, and other engineering 
disciplines to define applications that will benefit from pervasive, cubic-mm computing. Specific 
applications include intra-ocular and intra-cranial pressure sensing, intrusion monitoring, and inves-
tigating the biotic effects of climate change on targeted animals. As cubic-mm platforms are adopt-
ed by the sensor network community, many new and exciting applications will no doubt be realized 
by researchers years ahead of market forces. To that end, we identify the following three application 
themes that we seek to sufficiently support to enable third party research. Sensory skins cover sur-
faces with a dense deployment of small, stick-on nodes that monitor the properties of the manifold 
itself or its surroundings including: detection and tracking of movement [6], detecting corrosion 
across metal surfaces [7], or monitoring EEG signals [8]. Thinking and linking gives everyday static 
and mobile objects sensing, computing, communication, and tracking ability. For example, tiny tags 
can be stitched into clothing for in-home elder care [9], smart waybills can report on the tempera-
ture fluctuations a shipping package experiences [10], active baggage tags can locate a bag in an 
airplane fuselage [11], asset tracking can become as commonplace as asset tagging [12]. Implanta-
ble intelligence gives visibility and voice to deeply embedded physical and biological processes.  
New applications will be enabled, like cancer and tumor growth monitoring [13], novel human-
computer interaction systems that couple biological and computational processes, and smart band-
aids for ECG or EMG [14]. 
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