
COMPUTING
PRACTICES

A History and Evaluation
of System R

Donald D. Chamberlin
Morton M. Astrahan
Michael W. Blasgen
James N. Gray
W. Frank King
Bruce G. Lindsay
Raymond Lorie
James W. Mehl

Thomas G. Price
Franco Putzolu
Patricia Griffiths Selinger
Mario Schkolnick
Donald R. Slutz
Irving L. Traiger
Bradford W. Wade
Robert A. Yost

IBM Research Laboratory
San Jose, California

1. Introduction

Throughout the history of infor-
mation storage in computers, one of
the most readily observable trends
has been the focus on data indepen-
dence. C.J. Date [27] defined data
independence as "immunity of ap-
plications to change in storage struc-
ture and access strategy." Modern
database systems offer data indepen-
dence by providing a high-level user
interface through which users deal
with the information content of their
data, rather than the various bits,
pointers, arrays, lists, etc. which are
used to represent that information.
The system assumes responsibility
for choosing an appropriate internal

Permission to copy without fee all or part of
this material is granted provided that the cop-
ies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title o f the publication and its
date appear, and notice is given that copying
is by permission of the Association for Com-
puting Machinery. To copy otherwise, or to
republish, requires a fee and/or specific per-
mission.
Key words and phrases: database manage-
ment systems, relational model, compilation,
locking, recovery, access path selection, au-
thorization
CR Categories: 3.50, 3.70, 3.72, 4.33, 4.6
Authors' address: D. D. Chamberlin et al.,
IBM Research Laboratory, 5600 Cottle Road,
San Jose, California 95193.
© 1981 ACM 0001-0782/81/1000-0632 75¢.

632

SUMMARY: System R, an experimental database system,
was constructed to demonstrate that the usability advantages
of the relational data model can be realized in a system with
the complete function and high performance required for
everyday production use. This paper describes the three
principal phases of the System R project and discusses some
of the lessons learned from System R about the design of
relational systems and database systems in general.

representation for the information;
indeed, the representation of a given
fact may change over time without
users being aware of the change.

The relational data model was
proposed by E.F. Codd [22] in 1970
as the next logical step in the trend
toward data independence. Codd ob-
served that conventional database
systems store information in two
ways: (1) by the contents of records
stored in the database, and (2) by the
ways in which these records are con-
nected together. Different systems
use various names for the connec-
tions among records, such as links,
sets, chains, parents, etc. For exam-
ple, in Figure l(a), the fact that sup-
plier Acme supplies bolts is repre-

Communications
of
the ACM

sented by connections between the
relevant part and supplier records. In
such a system, a user frames a ques-
tion, such as "What is the lowest
price for bolts?", by writing a pro-
gram which "navigates" through the
maze of connections until it arrives
at the answer to the question. The
user of a "navigational" system has
the burden (or opportunity) to spec-
ify exactly how the query is to be
processed; the user's algorithm is
then embodied in a program which
is dependent on the data structure
that existed at the time the program
was written.

Relational database systems, as
proposed by Codd, have two impor-
tant properties: (1) all information is

October 1981
Volume 24
Number 10

represented by data values, never by
any sort of "connections" which are
visible to the user; (2) the system
supports a very high-level language
in which users can frame requests for
data without specifying algorithms
for processing the requests. The re-
lational representation of the data in
Figure l(a) is shown in Figure l(b).
Information about parts is kept in a
PARTS relation in which each record
has a "key" (unique identifier) called
PARTNO. Information about suppliers
is kept in a SUPPLIERS relation keyed
by SUPPNO. The information which
was formerly represented by connec-
tions between records is now con-
tained in a third relation, PRICES, in
which parts and suppliers are repre-
sented by their respective keys. The
question "What is the lowest price
for bolts?" can be framed in a high-
level language like SQL [16] as fol-
lows:

SELECT MIN(PRICE)
FROM PRICES
WHERE PARTNO IN

(SELECT PARTNO
FROM PARTS.
WHERE NAME = 'BOLT');

A relational system can maintain
whatever pointers, indices, or other
access aids it finds appropriate for
processing user requests, but the
user's request is not framed in terms
of these access aids and is therefore
not dependent on them. Therefore,
the system may change its data rep-
resentation and access aids periodi-
cally to adapt to changing require-
ments without disturbing users' ex-
isting applications.

Since Codd's original paper, the
advantages of the relational data
model in terms of user productivity
and data independence have become
widely recognized. However, as in
the early days of high-level program-
ming languages, questions are some-
times raised about whether or not an
automatic system can choose as ef-
ficient an algorithm for processing a
complex query as a trained program-
mer would. System R is an experi-
mental system constructed at the San
Jose IBM Research Laboratory to
demonstrate that a relational data-
base system can incorporate the high
performance and complete function

633

SUPPLIERS

Fig. l (a) . A "Navigational" Database.

FF

p cF

required for everyday production
use .

The key goals established for Sys-
tem R were:

(1) To provide a high-level,
nonnavigational user interface for
maximum user productivity and data
independence.

(2) To support different types
of database use including pro-
grammed transactions, ad hoc que-
ries, and report generation.

(3) To support a rapidly chang-
ing database environment, in which
tables, indexes, views, transactions,
and other objects could easily be
added to and removed from the data-
base without stopping the system.

(4) To support a population of
many concurrent users, with mecha-

nisms to protect the integrity of the
database in a concurrent-update en-
vironment.

(5) To provide a means of re-
covering the contents of the database
to a consistent state after a failure of
hardware or software.

(6) To provide a flexible mech-
anism whereby different views of
stored data can be defined and var-
ious users can be authorized to query
and update these views.

(7) To support all of the above
functions with a level of performance
comparable to existing lower-func-
tion database systems.

Throughout the System R project,
there has been a strong commitment
to carry the system through to an
operationally complete prototype

PARTS SUPPLIERS PRICES

PARTNO NAME

P107 Bolt
P113 Nut
P125 Screw
P132 Gear

SUPPNO NAME

$51 Acme
$57 Ajax
$63 Amco

Fig. l (b) . A Relational Database.

Communications
of
the ACM

PARTNO SUPPNO PRICE

P107 $51 .59
P107 $57 .65
P113 $51 .25
P113 $63 .21
P125 $63 .15
P132 $57 5.25
P132 $63 10.00

October 1981
Volume 24
Number 10

COMPUTING
PRACTICES

which could be installed and evalu-
ated in actual user sites.

The history of System R can be
divided into three phases. "Phase
Zero" of the project, which occurred
during 1974 and-most of 1975, in-
volved the development of the SQL
user interface [14] and a quick im-
plementation of a subset of SQL for
one user at a time. The Phase Zero
prototype, described in [2], provided
valuable insight in several areas, but
its code was eventually abandoned.
"Phase One" of the project, which
took place throughout most of 1976
and 1977, involved the design and
construction of the full-function,
multiuser version of System R. An
initial system architecture was pre-
sented in [4] and subsequent updates
to the design were described in [10].
"Phase Two" was the evaluation of
System R in actual use. This oc-
curred during 1978 and 1979 and
involved experiments at the San Jose
Research Laboratory and several
other user sites. The results of some
of these experiments and user expe-
riences are described in [19-21]. At
each user site, System R was installed
for experimental purposes only, and
not as a supported commercial prod-
uct.1

This paper will describe the de-
cisions which were made and the
lessons learned during each of the
three phases of the System R project.

2. Phase Zero: An Initial Proto-
type

Phase Zero of the System R proj-
ect involved the quick implementa-
tion of a subset of system functions.
From the beginning, it was our inten-
tion to learn what we could from this
initial prototype, and then scrap the
Phase Zero code before construction
of the more complete version of Sys-
tem R. We decided to use the rela-

1The System R research prototype later
evolved into SQL/Data System, a relational
database management product offered by
IBM in the DOS/VSE operating system en-
vironment.

tional access method called XRM,
which had been developed by R.
Lorie at IBM's Cambridge Scientific
Center [40]. '(XRM was influenced,
to some extent, by the "Gamma
Zero" interface defined by E.F.
Codd and others at San Jose [11].)
Since XRM is a single-user access
method without locking or recovery
capabilities, issues relating to con-
currency and recovery were excluded
from consideration in Phase Zero.

An interpreter program was writ-
ten in PL/ I to execute statements
in the high-level SQL (formerly
SEQUEL) language [14, 16] on top
of XRM. The implemented subset
of the SQL language included que-
ries and updates of the database, as
well as the dynamic creation of
new database relations. The Phase
Zero implementation supported the
"subquery" construct of SQL, but
not its "join" construct. In effect, this
meant that a query could search
through several relations in comput-
ing its result, but the final result
would be taken from a single rela-
tion.

The Phase Zero implementation
was primarily intended for use as a
standalone query interface by end
users at interactive terminals. At the
time, little emphasis was placed on
issues of interfacing to host-language
programs (although Phase Zero
could be called from a PL/ I
program). However, considerable
thought was given to the human fac-
tors aspects of the SQL language,
and an experimental study was con-
ducted on the learnability and usa-
bility of SQL [44].

One of the basic design decisions
in the Phase Zero prototype was that
the system catalog, i.e., the descrip-
tion of the content and structure of
the database, should be stored as a
set of regular relations in the data-
base itself. This approach permits the
system to keep the catalog up to date
automatically as changes are made
to the database, and also makes the
catalog information available to the
system optimzer for use in access
path selection.

The structure of the Phase Zero
interpreter was strongly influenced

by the facilities ofXRM. XRM stores
relations in the form of "tuples,"
each of which has a unique 32-bit
"tuple identifier" (TID). Since a TID
contains a page number, it is possi-
ble, given a TID, to fetch the asso-
ciated tuple in one page reference.
However, rather than actual data
values, the tuple contains pointers to
the "domains" where the actual data
is stored, as shown in Figure 2. Op-
tionally, each domain may have an
"inversion," which associates do-
main values (e.g., "Programmer")
with the TIDs of tuples in which the
values appear. Using the inversions,
XRM makes it easy to find a list of
TIDs of tuples which contain a given
value. For example, in Figure 2, if
inversions exist on both the JOB and
LOCATION domains, XRM provides
commands to create a list of TIDs of
employees who are programmers,
and another list of TIDs of employ-
ees who work in Evanston. If the
SQL query calls for programmers
who work in Evanston, these TID
lists can be intersected to obtain the
list of TIDs of tuples which satisfy
the query, before any tuples are ac-
tually fetched.

The most challenging task in con-
structing the Phase Zero prototype
was the design of optimizer algo-
rithms for efficient execution of SQL
statements on top of XRM. The de-
sign of the Phase Zero optimizer is
given in [2]. The objective of the
optimizer was to minimize the num-
ber of tuples fetched from the data-
base in processing a query. There-
fore, the optimizer made extensive
use of inversions and often manipu-
lated TID lists before beginning to
fetch tuples. Since the TID lists were
potentially large, they were stored as
temporary objects in the database
during query processing.

The results of the Phase Zero
implementation were mixed. One
strongly felt conclusion was that it is
a very good idea, in a project the size
of System R, to plan to throw away
the initial implementation. On the
positive side, Phase Zero demon-
strated the usability of the SQL lan-
guage, the feasibility of creating new
tables and inversions "on the fly"

634 Communications
of
the ACM

October 1981
Volume 24
Number 10

and relying on an automatic opti-
mizer for access path selection, and
the convenience of storing the system
catalog in the database itself. At the
same time, Phase Zero taught us a
number of valuable lessons which
greatly influenced the design of our
later implementation. Some of these
lessons are summarized below.

(1) The optimizer should take
into account not just the cost of
fetching tuples, but the costs of cre-
ating and manipulating TID lists,
then fetching tuples, then fetching
the data pointed to by the tuples.
When these "hidden costs" are taken
into account, it will be seen that the
manipulation of TID lists is quite
expensive, especially if the TID lists
are managed in the database rather
than in main storage.

(2) Rather than "number of tu-
pies fetched," a better measure of
cost would have been "number of
I/Os." This improved cost measure
would have revealed the great im-
portance of clustering together re-
lated tuples on physical pages so that
several related tuples could be
fetched by a single I/O. Also, an
I /O measure would have revealed a
serious drawback of XRM: Storing
the domains separately from the tu-
pies causes many extra I /Os to be
done in retrieving data values. Be-
cause of this, our later implementa-
tion stored data values in the actual
tuples rather than in separate do-
mains. (In defense of XRM, it should
be noted that the separation of data
values from tuples has some advan-
tages if data values are relatively
large and if many tuples are proc-
essed internally compared to the
number of tuples which are materi-
alized for output.)

(3) Because the Phase Zero im-
plementation was observed to be
CPU-bound during the processing of
a typical query, it was decided the
optimizer cost measure should be a
weighted sum of CPU time and I /O
count, with weights adjustable ac-
cording to the system configuration.

(4) Observation of some of the
applications of Phase Zero con-
vinced us of the importance of the
"join" formulation of SQL. In our

Domain #1 : Names

John Smith

Domain # 3: Locations

Evanston

T'D 1 / I
~ 2 : Jobs

Programmer

\

Fig. 2. XRM Storage Structure.

subsequent implementation, both
"joins" and "subqueries" were sup-
ported.

(5) The Phase Zero optimizer
was quite complex and was oriented
toward complex queries. In our later
implementation, greater emphasis
was placed on relatively simple in-
teractions, and care was taken to
minimize the "path length" for sim-
ple SQL statements.

3. Phase One: Construction of a
Multiuser Prototype

After the completion and evalu-
ation of the Phase Zero prototype,
work began on the construction of
the full-function, multiuser version
of System R. Like Phase Zero, Sys-
tem R consisted of an access method
(called RSS, the Research Storage
System) and an optimizing SQL
processor (called RDS, the Rela-
tional Data System) which runs on
top of the RSS. Separation of the
RSS and RDS provided a beneficial
degree of modularity; e.g., all locking
and logging functions were isolated
in the RSS, while all authorization

and access path selection functions
were isolated in the RDS. Construc-
tion of the RSS was underway in
1975 and construction of the RDS
began in 1976. Unlike XRM, the
RSS was originally designed to sup-
port multiple concurrent users.

The multiuser prototype of Sys-
tem R contained several important
subsystems which were not present
in the earlier Phase Zero prototype.
In order to prevent conflicts which
might arise when two concurrent
users attempt to update the same
data value, a locking subsystem was
provided. The locking subsystem en-
sures that each data value is accessed
by only one user at a time, that all
the updates made by a given trans-
action become effective simultane-
ously, and that deadlocks between
users are detected and resolved. The
security of the system was enhanced
by view and authorization subsys-
tems. The view subsystem permits
users to define alternative views of
the database (e.g., a view of the em-
ployee file in which salaries are de-
leted or aggregated by department).

635 Communications
of
the ACM

October 1981
Volume 24
Number 10

COMPUTING
PRACTICES

The authorization subsystem ensures
that each user has access only to
those views for which he has been
specifically authorized by their cre-
ators. Finally, a recovery subsystem
was provided which allows the data-
base to be restored to a consistent
state in the event of a hardware or
software failure.

In order to provide a useful host-
language capability, it was decided
that System R should support both
PL/ I and Cobol application pro-
grams as well as a standalone query
interface, and that the system should
run under either the VM/CMS or
MVS/TSO operating system envi-
ronment. A key goal of the SQL
language was to present the same
capabilities, and a consistent syntax,
to users of the PL/ I and Cobol host
languages and to ad hoc query users.
The imbedding of SQL into PL/ I is
described in [16]. Installation of a
multiuser database system under
VM/CMS required certain modifi-
cations to the operating system in
support of communicating virtual
machines and writable shared virtual
memory. These modifications are de-
scribed in [32].

The standalone query interface
of System R (called UFI, the User-
Friendly Interface) is supported by
a dialog manager program, written
in PL/I , which runs on top of System
R like any other application pro-
gram. Therefore, the UFI support
program is a cleanly separated com-
ponent and can be modified inde-
pendently of the rest of the system.
In fact, several users improved on
our UFI by writing interactive dialog
managers of their own.

The Compilation Approach
Perhaps the most important de-

cision in the design of the RDS was
inspired by R. Lorie's observation, in
early 1976, that it is possible to com-
pile very high-level SQL statements
into compact, efficient routines in
System/370 machine language [42].
Lorie was able to demonstrate that

636

SQL statements of arbitrary com-
plexity could be decomposed into a
relatively small collection of ma-
chine-language "fragments," and
that an optimizing compiler could
assemble these code fragments from
a library to form a specially tailored
routine for processing a given SQL
statement. This technique had a very
dramatic effect on our ability to sup-
port application programs for trans-
action processing. In System R, a
PL/ I or Cobol pi'ogram is run
through a preprocessor in which its
SQL statements are examined, opti-
mized, and compiled into small, ef-
ficient machine-language routines
which are packaged into an "access
module" for the application pro-
gram. Then, when the program goes
into execution, the access module is
invoked to perform all interactions
with the database by means of calls
to the RSS. The process of creating
and invoking an access module is
illustrated in Figures 3 and 4. All the
overhead of parsing, validity check-
ing, and access path selection is re-
moved from the path of the execut-
ing program and placed in a separate
preprocessor step which need not be
repeated. Perhaps even more impor-
tant is the fact that the running pro-
gram interacts only with its small,
special-purpose access module rather
than with a much larger and less
efficient general-purpose SQL inter-
preter. Thus, the power and ease of
use of the high-level SQL language
are combined with the execution-
time efficiency of the much lower
level RSS interface.

Since all access path selection de-
cisions are made during the prepro-
cessor step in System R, there is the
possibility that subsequent changes
in the database may invalidate the
decisions which are embodied in an
access module. For example, an in-
dex selected by the optimizer may
later be dropped from the database.
Therefore, System R records with
each access module a list of its "de-
pendencies" on database objects
such as tables and indexes. The de-
pendency list is stored in the form of
a regular relation in the system cat-
alog. When the structure of the data-

Communications
of
the ACM

base changes (e.g., an index is
dropped), all affected access modules
are marked "invalid." The next time
an invalid access module is invoked,
it is regenerated from its original
SQL statements, with newly opti-
mized access paths. This process is
completely transparent to the System
R user.

SQL statements submitted to the
interactive UFI dialog manager are
processed by the same optimizing
compiler as preprocessed SQL state-
ments. The UFI program passes the
ad hoc SQL statement to System R
with a special "EXECUTE" call. In re-
sponse to the EXECUTE call, System R
parses and optimizes the SQL state-
ment and translates it into a ma-
chine-language routine. The routine
is indistinguishable from an access
module and is executed immediately.
This process is described in more
detail in [20].

RSS Access Paths
Rather than storing data values

in separate "domains" in the manner
of XRM, the RSS chose to store data
values in the individual rcords of the
database. This resulted in records be-
coming variable in length and
longer, on the average, than the
equivalent XRM records. Also, com-
monly used values are represented
many times rather than only once as
in XRM. It was felt, however, that
these disadvantages were more than
offset by the following advantage:
All the data values of a record could
be fetched by a single I/O.

In place of XRM "inversions,"
the RSS provides "indexes," which
are associative access aids imple-
mented in the form of B-Trees [26].
Each table in the database may have
anywhere from zero indexes up to an
index on each column (it is also pos-
sible to create an index on a combi-
nation of columns). Indexes make it
possible to scan the table in order by
the indexed values, or to directly ac-
cess the records which match a par-
ticular value. Indexes are maintained
automatically by the RSS in the
event of updates to the database.

The RSS also implements
"links," which are pointers stored

October 1981
Volume 24
Number l0

P L / I Source Program

I
f
I

SELECT NAME INTO $)<
FROM EMP
WHERE EMPNO=$Y

I
I
I

Modified P L / I Program

I
I

CALL

I
I

SYSTEM R
PRECOMPILER

(XPREP)

Access Module

Machine code
ready to run
on RSS

Fig. 3. Precompilation Step.

User's Object
Program

call

Execution-time
System
(XRDI)

Loads,
then calls

Fig. 4. Execution Step.

Access
Module

l call

RSS

637

with a record which connect it to
other related records. The connec-
tion of records on links is not per-
formed automatically by the RSS,
but must be done by a higher level
system.

The access paths made available
by the RSS include (1) index scans,
which access a table associatively
and scan it in value order using an
index; (2) relation scans, which scan
over a table as it is laid out in phys-
ical storage; (3) link scans, which
traverse from one record to another
using links. On any of these types of
scan, "search arguments" may be
specified which limit the records re-
turned to those satisfying a certain
predicate. Also, the RSS provides a
built-in sorting mechanism which
can take records from any of the scan
methods and sort them into some
value order, storing the result in a

Communications
of
the ACM

temporary list in the database. In
System R, the RDS makes extensive
use of index and relation scans and
sorting. The RDS also utilizes links
for internal purposes but not as an
access path to user data.

The Optimizer
Building on our Phase Zero ex-

perience, we designed the System R
optimizer to minimize the weighted
sum of the predicted number of I /Os
and RSS calls in processing an SQL
statement (the relative weights of
these two terms are adjustable ac-
cording to system configuration).
Rather than manipulating TID lists,
the optimizer chooses to scan each
table in the SQL query by means of
only one index (or, if no suitable
index exists, by means of a relation
scan). For example, if the query calls
for programmers who work in Ev-
anston, the optimizer might choose
to use the job index to find program-
mers and then examine their loca-
tions; it might use the location index
to find Evanston employees and ex-
amine their jobs; or it might simply
scan the relation and examine the
job and location of all employees.
The choice would be based on the
optimizer's estimate of both the clus-
tering and selectivity properties of
each index, based on statistics stored
in the system catalog. An index is
considered highly selective if it has a
large ratio of distinct key values to
total entries. An index is considered
to have the clustering property if the
key order of the index corresponds
closely to the ordering of records in
physical storage. The clustering
property is important because when
a record is fetched via a clustering
index, it is likely that other records
with the same key will be found on
the same page, thus minimizing the
number of page fetches. Because of
the importance of clustering, mech-
anisms were provided for loading
data in value order and preserving
the value ordering when new records
are inserted into the database.

The techniques of the System R
optimizer for performing joins of two
or more tables have their origin in a
study conducted by M. Blasgen and

October 1981
Volume 24
Number 10

COMPUTING
PRACTICES

K. Eswaran [7]. Using APL models,
Blasgen and Eswaran studied ten
methods of joining together tables,
based on the use of indexes, sorting,
physical pointers, and TID lists. The
number of disk accesses required to
perform a join was predicted on the
basis of various assumptions for the
ten join methods. Two join methods
were identified such that one or the
other was optimal or nearly optimal
under most circumstances. The two
methods are as follows:

Join Method 1: Scan over the
qualifying rows of table A. For each
row, fetch the matching rows of table
B (usually, but not always, an index
on table B is used).

Join Method 2: (Often used
when no suitable index exists.) Sort
the qualifying rows of tables A and
B in order by their respective join
fields. Then scan over the sorted lists
and merge them by matching values.

When selecting an access path for
a join of several tables, the System R
optimizer considers the problem to
be a sequence of binary joins. It then
performs a tree search in which each
level of the tree consists of one of the
binary joins. The choices to be made
at each level of the tree include which
join method to use and which index,
if any, to select for scanning. Com-
parisons are applied at each level of
the tree to prune away paths which
achieve the same results as other, less
costly paths. When all paths have
been examined, the optimizer selects
the one of minimum predicted cost.
The System R optimizer algorithms
are described more fully in [47].

Views and Authorization
The major objectives of the view

and authorization subsystems of Sys-
tem R were power and flexibility.
We wanted to allow any SQL query
to be used as the definition of a view.
This was accomplished by storing
each view definition in the form of

an SQL parse tree. When an SQL
operation is to be executed against a
view, the parse tree which defines
the operation is merged with the
parse tree which defines the view,
producing a composite parse tree
which is then sent to the optimizer
for access path selection. This ap-
proach is similar to the "query mod-
ification" technique proposed by
Stonebraker [48]. The algorithms de-
veloped for merging parse trees were
sufficiently general so that nearly
any SQL statement could be exe-
cuted against any view definition,
with the restriction that a view can
be updated only if it is derived from
a single table in the database. The
reason for this restriction is that some
updates to views which are derived
from more than one table are not
meaningful (an example of such an
update is given in [24]).

The authorization subsystem of
System R is based on privileges
which are controlled by the SQL
statements GRANT and REVOKE. Each
user of System R may optionally be
given a privilege called RESOURCE
which enables h im/her to create new
tables in the database. When a user
creates a table, he/she receives all
privileges to access, update, and de-
stroy that table. The creator of a
table can then grant these privileges
to other individual users, and subse-
quently can revoke these grants if
desired. Each granted privilege may
optionally carry with it the "GRANT
option," which enables a recipient to
grant the privilege to yet other users.
A REVOKE destroys the whole chain
of granted privileges derived from
the original grant. The authorization
subsystem is described in detail in
[37] and discussed further in [31].

The Recovery Subsystem
The key objective of the recovery

subsystem is provision of a means
whereby the database may be re-
covered to a consistent state in the
event of a failure. A consistent state
is defined as one in which the data-
base does not reflect any updates
made by transactions which did not
complete successfully. There are
three basic types of failure: the disk

media may fail, the system may fail,
or an individual transaction may fail.
Although both the scope of the fail-
ure and the time to effect recovery
may be different, all three types of
recovery require that an alternate
copy of data be available when the
primary copy is not.

When a media failure occurs,
database information on disk is lost.
When this happens, an image dump
of the database plus a log of"before"
and "after" changes provide the al-
ternate copy which makes recovery
possible. System R's use of "dual
logs" even permits recovery from
media failures on the log itself. To
recover from a media failure, the
database is restored using the latest
image dump and the recovery pro-
cess reapplies all database changes
as specified on the log for completed
transactions.

When a system failure occurs, the
information in main memory is lost.
Thus, enough information must al-
ways be on disk to make recovery
possible. For recovery from system
failures, System R uses the change
log mentioned above plus something
called "shadow pages." As each page
in the database is updated, the page
is written out in a new place on disk,
and the original page is retained. A
directory of the "old" and "new"
locations of each page is maintained.
Periodically during normal opera-
tion, a "checkpoint" occurs in which
all updates are forced out to disk, the
"old" pages are discarded, and the
"new" pages become "old." In the
event of a system crash, the "new"
pages on disk may be in an incon-
sistent state because some updated
pages may still be in the system
buffers and not yet reflected on disk.
To bring the database back to a con-
sistent state, the system reverts to the
"old" pages, and then uses the log to
redo all committed transactions and
to undo all updates made by incom-
plete transactions. This aspect of the
System R recovery subsystem is de-
scribed in more detail in [36].

When a transaction failure o c -
curs, all database changes which
have been made by the failing trans-
action must be undone. To accom-

638 Communications
of
the ACM

October 1981
Volume 24
Number 10

plish this, System R simply processes
the change log backwards removing
all changes made by the transaction.
Unlike media and system recovery
which both require that System R be
reinitialized, transaction recovery
takes place on-line.

The Locking Subsystem
A great deal of thought was given

to the design of a locking subsystem
which would prevent interference
among concurrent users of System
R. The original design involved the
concept of "predicate locks," in
which the lockable unit was a data-
base property such as "employees
whose location is Evanston." Note
that, in this scheme, a lock might be
held on the predicate LOC = 'EVANS-
TON', even if no employees currently
satisfy that predicate. By comparing
the predicates being processed by
different users, the locking subsys-
tem could prevent interference. The
"predicate lock" design was ulti-
mately abandoned because: (1) de-
termining whether two predicates are
mutually satisfiable is difficult and
time-consuming; (2) two predicates
may appear to conflict when, in fact,
the semantics of the data prevent any
conflict, as in "PRODUCT = AIR-
CRAFT" and "MANUFACTURER ---~

ACME STATIONERY CO."; a n d (3) w e

desired to contain the locking sub-
system entirely within the RSS, and
therefore to make it independent of
any understanding of the predicates
being processed by various users.
The original predicate locking
scheme is described in [29].

The locking scheme eventually
chosen for System R is described in
[34]. This scheme involves a hierar-
chy of locks, with several different
sizes of lockable units, ranging from
individual records to several tables.
The locking subsystem is transparent
to end users, but acquires locks on
physical objects in the database as
they are processed by each user.
When a user accumulates many
small locks, they may be "traded"
for a larger lockable unit (e.g., locks
on many records in a table might be
traded for a lock on the table). When
locks are acquired on small objects,

"intention" locks are simultaneously
acquired on the larger objects which
contain them. For example, user A
and user B may both be updating
employee records. Each user holds
an "intention" lock on the employee
table, and "exclusive" locks on the
particular records being updated. If
user A attempts to trade her individ-
ual record locks for an "exclusive"
lock at the table level, she must wait
until user B ends his transaction and
releases his "intention" lock on the
table.

4. Phase Two: Evaluation

The evaluation phase of the Sys-
tem R project lasted approximately
2'/2 years and consisted of two parts:
(l) experiments performed on the
system at the San Jose Research Lab-
oratory, and (2) actual use of the
system at a number of internal IBM
sites and at three selected customer
sites. At all user sites, System R was
installed on an experimental basis
for study purposes only, and not as
a supported commercial product.
The first installations of System R
took place in June 1977.

General User Comments
In general, user response to Sys-

tem R has been enthusiastic. The
system was mostly used in applica-
tions for which ease of installation,
a high-level user language, and an
ability to rapidly reconfigure the
database were important require-
ments. Several user sites reported
that they were able to install the
system, design and load a database,
and put into use some application
programs within a matter of days.
User sites also reported that it was
possible to tune the system perform-
ance after data was loaded by creat-
ing and dropping indexes without
impacting end users or application
programs. Even changes in the data-
base tables could be made transpar-
ent to users if the tables were read-
only, and also in some cases for up-
dated tables.

Users found the performance
characteristics and resource con-
sumption of System R to be gener-
ally satisfactory for their experimen-

tal applications, although no speci-
fic performance comparisons were
drawn. In general, the experimental
databases used with System R were
smaller than one 3330 disk pack (200
Megabytes) and were typically ac-
cessed by fewer than ten concurrent
users. As might be expected, inter-
active response slowed down during
the execution of very complex SQL
statements involving joins of several
tables. This performance degrada-
tion must be traded off against
the advantages of normalization
[23, 30], in which large database
tables are broken into smaller parts
to avoid redundancy, and then
joined back together by the view
mechanism or user applications.

The SQL Language
The SQL user interface of System

R was generally felt to be successful
in achieving its goals of simplicity,
power, and data independence. The
language was simple enough in its
basic structure so that users without
prior experience were able to learn a
usable subset on their first sitting. At
the same time, when taken as a
whole, the language provided the
query power of the first-order pred-
icate calculus combined with opera-
tors for grouping, arithmetic, and
built-in functions such as SUM and
AVERAGE.

Users consistently praised the
uniformity of the SQL syntax across
the environments of application pro-
grams, ad hoc query, and data defi-
nition (i.e., definition of views).
Users who were formerly required to
learn inconsistent languages for these
purposes found it easier to deal with
the single syntax (e.g., when debug-
ging an application program by
querying the database to observe its

" effects). The single syntax also en-
hanced communication among dif-
ferent functional organizations (e.g.,
between database administrators and
application programmers).

While developing applications
using SQL, our experimental users
made a number of suggestions for
extensions and improvements to the
language, most of which were imple-
mented during the course of the proj-

639 Communications
of
the ACM

October 1981
Volume 24
Number 10

COMPUTING
PRACTICES

ect. Some of these suggestions are
summarized below:

(1) Users requested an easy-to-
use syntax when testing for the exist-
ence or nonexistence of a data item,
such as an employee record whose
department number matches a given
department record. This facility was
implemented in the form of a special
"EXISTS" predicate.

(2) Users requested a means of
seaching for character strings whose
contents are only partially known,
such as "all license plates beginning
with NVK." This facility was imple-
mented in the form of a special
"LIKE" predicate which searches for
"patterns" that are allowed to con-
tain "don't care" characters.

(3) A requirement arose for an
application program to compute an
SQL statement dynamically, submit
the statement to the System R optim-
izer for access path selection, and
then execute the statement repeat-
edly for different data values without
reinvoking the optimizer. This facil-
ity was implemented in the form of
PREPARE and EXECUTE statements
which were made available in the
host-language version of SQL.

(4) In some user applications
the need arose for an operator which
Codd has called an "outer join" [25].
Suppose that two tables (e.g., suP-
PLIERS and PROJECTS) are related by
a common data field (e.g., PARTNO).

In a conventional join of these tables,
supplier records which have no
matching project record (and vice
versa) would not appear. In an
"outer join" of these tables, supplier
records with no matching project rec-
ord would appear together with a
"synthetic" project record containing
only null values (and similarly for
projects with no matching supplier).
An "outer-join" facility for SQL is
currently under study.

A more complete discussion of
user experience with SQL and the
resulting language improvements is
presented in [19].

The Compilation Approach
The approach of compiling SQL

statements into machine code was
one of the most successful parts of
the System R project. We were able
to generate a machine-language rou-
tine to execute any SQL statement of
arbitrary complexity by selecting
code fragments from a library of ap-
proximately 100 fragments. The re-
sult was a beneficial effect on trans-
action programs, ad hoc query, and
system simplicity.

In an environment of short, re-
petitive transactions, the benefits of

compilation are obvious. All the
overhead of parsing, validity check-
ing, and access path selection are
removed from the path of the run-
ning transaction, and the application
program interacts with a small, spe-
cially tailored access module rather
than with a larger and less efficient
general-purpose interpreter pro-
gram. Experiments [38] showed that
for a typical short transaction, about
80 percent of the instructions were
executed by the RSS, with the re-
maining 20 percent executed by the
access module and application pro-

Example 1 :

SELECT SUPPNO, PRICE
FROM QUOTES
WHERE PARTNO = '010002'
AND MINQ< = 1000 AND MAXQ> = 1000;

Operation

Parsing

Access Path
Selection

Code
Generation

Fetch
answer set
(per record)

CPU time Number
(msec on 168) of I /Os

13.3 0

40.0 9

10.1 0

1.5 0.7

Example 2:

SELECT ORDERNO,ORDERS.PARTNO,DESCRIP,DATE,QTY
FROM ORDERS,PARTS
WHERE ORDERS.PARTNO = PARTS.PARTNO
AND DATE BETWEEN '750000' AND '751231'
AND SUPPNO = '797';

CPU time
Operation

(msec on 168)

Parsing 20.7

Access Path 73.2
Selection

Code 19.3
Generation

Fetch 8.7
answer set
(per record)

Number
of I /Os

0

9

0

10.7

Fig. 5. Measurements of Cost of Compilation.

64O Communications October 1981
of Volume 24
the ACM Number l0

gram. Thus, the user pays only a
small cost for the power, flexibility,
and data independence of the SQL
language, compared with writing the
same transaction directly on the
lower level RSS interface.

In an ad hoc query environment
the advantages of compilation are
less obvious since the compilation
must take place on-line and the
query is executed only once. In this
environment, the cost of generating
a machine-language routine for a
given query must be balanced
against the increased efficiency of
this routine as compared with a more
conventional query interpreter. Fig-
ure 5 shows some measurements of
the cost of compiling two typical
SQL statements (details of the exper-
iments are given in [20]). From this
data we may draw the following con-
clusions:

(1) The code generation step
adds a small amount of CPU time
and no I /Os to the overhead of pars-
ing and access path selection. Parsing
and access path selection must be
done in any query system, including
interpretive ones. The additional in-
structions spent on code generation
are not likely to be perceptible to an
end user.

(2) I f code generation results in
a routine which runs more efficiently
than an interpreter, the cost of the
code generation step is paid back
after fetching only a few records. (In
Example 1, if the CPU time per rec-
ord of the compiled module is half
that of an interpretive system, the
cost of generating the access module
is repaid after seven records have
been fetched.)

A final advantage of compilation
is its simplifying effect on the system
architecture. With both ad hoc que-
ries and precanned transactions
being treated in the same way, most
of the code in the system can be
made to serve a dual purpose. This
ties in very well with our objective of
supporting a uniform syntax between
query users and transaction pro-
grams.

Available Access Paths

As described earlier, the principal
access path used in System R for
retrieving data associatively by its
value is the B-tree index. A typical
index is illustrated in Figure 6. If we
assume a fan-out of approximately
200 at each level of the tree, we can
index up to 40~000 records by a two-
level index, and up to 8,000,000 rec-

] Root

[] [] [] [] Data
[] Pages

Fig. 6. A B-Tree Index.

Intermediate
Pages

Leaf
Pages

ords by a three-level index. If we
wish to begin an associative scan
through a large table, three I /Os will
typically be required (assuming the
root page is referenced frequently
enough to remain in the system
buffers, we need an I /O for the in-
termediate-level index page, the
"leaf" index page, and the data
page). If several records are to be
fetched using the index scan, the
three start-up I /Os are relatively in-
significant. However, if only one rec-
ord is to be fetched, other access
techniques might have provided a
quicker path to the stored data.

Two common access techniques
which were not utilized for user data
in System R are hashing and direct
links (physical pointers from one rec-
ord to another). Hashing was not
used because it does not have the
convenient ordering property of a B-
tree index (e.g., a B-tree index on
SALARY enables a list of employees
ordered by SALARY to be retrieved
very easily). Direct links, although
they were implemented at the RSS
level, were not used as an access path
for user data by the RDS for a two-
fold reason. Essential links (links
whose semantics are not known to
the system but which are connected
directly by users) were rejected be-
cause they were inconsistent with the
nonnavigational user interface of a
relational system, since they could
not be used as access paths by an
automatic optimizer. Nonessential
links (links which connect records to
other records with matching data
values) were not implemented be-
cause of the difficulties in automati-
cally maintaining their connections.
When a record is updated, its con-
nections on many links may need to
be updated as well, and this may
involve many "subsidiary queries" to
find the other records which are in-
volved in these connections. Prob-
lems also arise relating to records
which have no matching partner rec-
ord on the link, and records whose
link-controlling data value is null.

In general, our experience
showed that indexes could be used
very efficiently in queries and trans-
actions which access many records,

641 Communications
of
the ACM

October 1981
Volume 24
Number 10

COMPUTING
PRACTICES

but that hashing and links would
have enhanced the performance of
"canned transactions" which access
only a few records. As an illustration
of this problem, consider an inven-
tory application which has two
tables: a PRODUCTS table, and a much
larger PARTS table which contains
data on the individual parts used for
each product. Suppose a given trans-
action needs to find the price of the
heating element in a particular
toaster. To execute this transaction,
System R might require two I /Os to
traverse a two-level index to find the
toaster record, and three more I /Os
to traverse another three-level index
to find the heating element record. If
access paths based on hashing and
direct links were available, it might
be possible to find the toaster record
in one I /O via hashing, and the heat-
ing element record in one more I /O
via a link. (Additional I /Os would
be required in the event of hash col-
lisions or if the toaster parts records
occupied more than one page.) Thus,
for this very simple transaction hash-
ing and links might reduce the num-
ber of I /Os from five to three, or
even two. For transactions which re-
trieve a large set of records, the ad-
ditional I /Os caused by indexes com-
pared to hashing and links are less
important.

The Optimizer

A series of experiments was con-
ducted at the San Jose IBM Research
Laboratory to evaluate the success of
the System R optimizer in choosing
among the available access paths for
typical SQL statements. The results
of these experiments are reported in
[6]. For the purpose of the experi-
ments, the optimizer was modified in
order to observe its behavior. Or-
dinarily, the optimizer searches
through a tree of path choices, com-
puting estimated costs and pruning
the tree until it arrives at a single
preferred access path. The optimizer

was modified in such a way that it
could be made to generate the com-
plete tree of access paths, without
pruning, and to estimate the cost of
each path (cost is defined as a
weighted sum of page fetches and
RSS calls). Mechanisms were also
added to the system whereby it could
be forced to execute an SQL state-
ment by a particular access path and
to measure the actual number of
page fetches and RSS calls incurred.
In this way, a comparison can be
made between the optimizer's pre-
dicted cost and the actual measured
cost for various alternative paths.

In [6], an experiment is described
in which ten SQL statements, includ-
ing some single-table queries and
some joins, are run against a test
database. The database is artificially
generated to conform to the two
basic assumptions of the System R
optimizer: (1) the values in each col-
umn are uniformly distributed from
some minimum to some maximum
value; and (2) the distribution of val-
ues of the various columns are inde-
pendent of each other. For each of
the ten SQL statements, the ordering
of the predicted costs of the various
access paths was the same as the
ordering of the actual measured costs
(in a few cases the optimizer pre-
dicted two paths to have the same
cost when their actual costs were un-
equal but adjacent in the ordering).

Although the optimizer was able
to correctly order the access paths in
the experiment we have just de-
scribed, the magnitudes of the pre-
dicted costs differed from the mea-
sured costs in several cases. These
discrepancies were due to a variety
of causes, such as the optimizer's in-
ability to predict how much data
would remain in the system buffers
during sorting.

The above experiment does not
address the issue of whether or not a
very good access path for a given
SQL statement might be overlooked
because it is not part of the opti-
mizer's repertoire. One such example
is known. Suppose that the database
contains a table T in which each row
has a unique value for the field
SEQNO, and suppose that an index

exists on SEQNO. Consider the follow-
ing SQL query:

SELECT * FROM T WHERE SEQNO IN

(15, 17, 19, 21);

This query has an answer set of
(at most) four rows, and an obvious
method of processing it is to use the
SEQNO index repeatedly: first to find
the row with SEQNO = 15, then SEQNO
= 17, etc. However, this access path
would not be chosen by System R,
because the optimizer is not pres-
ently structured to consider multiple
uses of an index within a single query
block. As we gain more experience
with access path selection, the opti-
mizer may grow to encompass this
and other access paths which have so
far been omitted from consideration.

Views and Authorization

Users generally found the System
R mechanisms for defining views
and controlling authorization to be
powerful, flexible, and convenient.
The following features were consid-
ered to be particularly beneficial:

(1) The full query power of
SQL is made available for defining
new views of data (i.e., any query
may be defined as a view). This
makes it possible to define a rich
variety of views, containing joins,
subqueries, aggregation, etc., without
having to learn a separate "data def-
inition language." However, the view
mechanism is not completely trans-
parent to the end user, because of the
restrictions described earlier (e.g.,
views involving joins of more than
one table are not updateable).

(2) The authorization subsys-
tem allows each installation of Sys-
tem R to choose a "fully centralized
policy" in which all tables are cre-
ated and privileges controlled by a
central administrator; or a "fully de-
centralized policy" in which each
user may create tables and control
access to them; or some intermediate
policy.

During the two-year evaluation
of System R, the following sugges-
tions were made by users for im-
provement of the view and authori-
zation subsystems:

642 Communicat ions
of
the ACM

October 1981
Volume 24
Number 10

(1) The authorization subsys-
tem could be augmented by the con-
cept of a "group" of users. Each
group would have a "group admin-
istrator" who controls enrollment of
new members in the group. Privi-
leges could then be granted to the
group as a whole rather than to each
member of the group individually.

(2) A new command could be
added to the SQL language to
change the ownership of a table from
one user to another. This suggestion
is more difficult to implement than
it seems at first glance, because the
owner's name is part of the fully
qualified name of a table (i.e., two
tables owned by Smith and Jones
could be named SMITH. PARTS and
JONES.PARTS). References to the
table SMITH. PARTS might exist in
many places, such as view definitions
and compiled programs. Finding
and changing all these references
would be difficult (perhaps impossi-
ble, as in the case of users' source
programs which are not stored under
System R control).

(3) Occasionally it is necessary
to reload an existing table in the
database (e.g., to change its physical
clustering properties). In System R
this is accomplished by dropping the
old table definition, creating a new
table with the same definition, and
reloading the data into the new table.
Unfortunately, views and authoriza-
tions defined on the table are lost
from the system when the old defi-
nition is dropped, and therefore they
both must be redefined on the new
table. It has been suggested that
views and authorizations defined on
a dropped table might optionally be
held "in abeyance" pending reacti-
vation of the table.

The Recovery Subsystem
The combined "shadow page"

and log mechanism used in System
R proved to be quite successful in
safeguarding the database against
media, system, and transaction fail-
ures. The part of the recovery sub-
system which was observed to have
the greatest impact on system per-
formance was the keeping of a
shadow page for each updated page.

This performance impact is due pri-
marily to the following factors:

(1) Since each updated page is
written out to a new location on disk,
data tends to move about. This limits
the ability of the system to cluster
related pages in secondary storage to
minimize disk arm movement for se-
quential applications.

(2) Since each page can poten-
tially have both an "old" and "new"
version, a directory must be main-
tained to locate both versions of each
page. For large databases, the direc-
tory may be large enough to require
a paging mechanism of its own.

(3) The periodic checkpoints
which exchange the "old" and "new"
page pointers generate I /O activity
and consume a certain amount of
CPU time.

A possible alternative technique
for recovering from system failures
would dispense with the concept of
shadow pages, and simply keep a log
of all database updates. This design
would require that all updates be
written out to the log before the up-
dated page migrates to disk from the
system buffers. Mechanisms could be
developed to minimize I /Os by re-
taining updated pages in the buffers
until several pages are written out at
once, sharing an I /O to the log.

The Locking Subsystem
The locking subsystem of System

R provides each user with a choice
of three levels of isolation from other
users. In order to explain the three
levels, we define "uncommitted
data" as those records which have
been updated by a transaction that is
still in progress (and therefore still
subject to being backed out). Under
no circumstances can a transaction,
at any isolation level, perform up-
dates on the uncommitted data of
another transaction, since this might
lead to lost updates in the event of
transaction backout.

The three levels of isolation in
System R are defined as follows:

Level 1: A transaction running
at Level 1 may read (but not update)
uncommitted data. Therefore, suc-
cessive reads of the same record by

a Level-1 transaction may not give
consistent values. A Level-l trans-
action does not attempt to acquire
any locks on records while reading.

Level 2: A transaction running
at Level 2 is protected against read-
ing uncommitted data. However,
successive reads at Level 2 may still
yield inconsistent values if a second
transaction updates a given record
and then terminates between the first
and second reads by the Level-2
transaction. A Level-2 transaction
locks each record before reading it to
make sure it is committed at the time
of the read, but then releases the lock
immediately after reading.

Level 3: A transaction running
at Level 3 is guaranteed that succes-
sive reads of the same record will
yield the same value. This guarantee
is enforced by acquiring a lock on
each record read by a Level-3 trans-
action and holding the lock until the
end of the transaction. (The lock ac-
quired by a Level-3 reader is a
"share" lock which permits other
users to read but not update the
locked record.)

It was our intention that Isolation
Level 1 provide a means for very
quick scans through the database
when approximate values were ac-
ceptable, since Level-1 readers ac-
quire no locks and should never need
to wait for other users. In practice,
however, it was found that Level-1
readers did have to wait under cer-
tain circumstances while the phys-
ical consistency of the data was
suspended (e.g., while indexes
or pointers were being adjusted).
Therefore, the potential of Level 1
for increasing system concurrency
was not fully realized.

It was our expectation that a
tradeoff would exist between Isola-
tion Levels 2 and 3 in which Level 2
would be "cheaper" and Level 3
"safer." In practice, however, it was
observed that Level 3 actually in-
volved less CPU overhead than
Level 2, since it was simpler to ac-
quire locks and keep them than to
acquire locks and immediately
release them. It is true that Isolation
Level 2 permits a greater degree of

643 Communications
of
the ACM

October 1981
Volume 24
Number 10

COMPUTING
PRACTICES

access to the database by concurrent
readers and updaters than does Level
3. However, this increase in concur-
rency was not observed to have an
important effect in most practical ap-
plications.

As a result of the observations
described above, most System R
users ran their queries and applica-
tion programs at Level 3, which was
the system default.

The Convoy Phenomenon

Experiments with the locking
subsystem of System R identified a
problem which came to be known as
the "convoy phenomenon" [9].
There are certain high-traffic locks
in System R which every process
requests frequently and holds for a
short time. Examples of these are the
locks which control access to the
buffer pool and the system log. In a
"convoy" condition, interaction be-
tween a high-traffic lock and the op-
erating system dispatcher tends to
serialize all processes in the system,
allowing each process to acquire the
lock only once each time it is dis-
patched.

In the VM/370 operating system,
each process in the multiprogram-
ming set receives a series of small
"quanta" of CPU time. Each quan-
tum terminates after a preset amount
of CPU time, or when the process
goes into page, 1/O, or lock wait. At
the end of the series of quanta, the
process drops out of the multipro-
gramming set and must undergo a
longer "time slice wait" before it
once again becomes dispatchable.
Most quanta end when a process
waits for a page, an I /O operation,
or a low-traffic lock. The System R
design ensures that no process will
ever hold a high-traffic lock during
any of these types of wait. There is
a slight probability, however, that a
process might go into a long "time
slice wait" while it is holding a high-
traffic lock. In this event, all other

dispatchable processes will soon re-
quest the same lock and become en-
queued behind the sleeping process.
This phenomenon is called a "con-
voy."

In the original System R design,
convoys are stable because of the
protocol for releasing locks. When a
process P releases a lock, the locking
subsystem grants the lock to the first
waiting process in the queue (thereby
making it unavailable to be reac-
quired by P). After a short time, P
once again requests the lock, and is
forced to go to the end of the convoy.
If the mean time between requests
for the high-traffic lock is 1,000 in-
structions, each process may execute
only 1,000 instructions before it
drops to the end of the convoy. Since
more than 1,000 instructions are typ-
ically used to dispatch a process, the
system goes into a "thrashing" con-
dition in which most of the cycles are
spent on dispatching overhead.

The solution to the convoy prob-
lem involved a change to the lock
release protocol of System R. After
the change, when a process P releases
a lock, all processes which are en-
queued for the lock are made dis-
patchable, but the lock is not granted
to any particular process. Therefore,
the lock may be regranted to process
P if it makes a subsequent request.
Process P may acquire and release
the lock many times before its time
slice is exhausted. It is highly prob-
able that process P will not be hold-
ing the lock when it goes into a long
wait. Therefore, if a convoy should
ever form, it will most likely evapo-
rate as soon as all the members of
the convoy have been dispatched.

Additional Observations

Other observations were made
during the evaluation of System R
and are listed below:

(1) When running in a "canned
transaction" environment, it would
be helpful for the system to include
a data communications front end to
handle terminal interactions, priority
scheduling, and logging and restart
at the message level. This facility was
not included in the System R design.
Also, space would be saved and the

working set reduced if several users
executing the same "canned trans-
action" could share a common access
module. This would require the Sys-
tem R code generator to produce
reentrant code. Approximately half
the space occupied by the multiple
copies of the access module could be
saved by this method, since the other
half consists of working storage
which must be duplicated for each
user.

(2) When the recovery subsys-
tem attempts to take an automatic
checkpoint, it inhibits the processing
of new RSS commands until all users
have completed their current RSS
command; then the checkpoint is
taken and all users are allowed to
proceed. However, certain RSS com-
mands potentially involve long op-
erations, such as sorting a file. I f
these "long" RSS operations were
made interruptible, it would avoid
any delay in performing checkpoints.

(3) The System R design of au-
tomatically maintaining a system
catalog as part of the on-line data-
base was very well liked by users,
since it permitted them to access the
information in the catalog with ex-
actly the same query language they
use for accessing other data.

5. Conclusions
We feel that our experience with

System R has clearly demonstrated
the feasibility of applying a rela-
tional database system to a real pro-
duction environment in which many
concurrent users are performing a
mixture of ad hoc queries and repet-
itive transactions. We believe that
the high-level user interface made
possible by the relational data model
can have a dramatic positive effect
on user productivity in developing
new applications, and on the data
independence of queries and pro-
grams. System R has also demon-
strated the ability to support a highly
dynamic database environment in
which application requirements are
rapidly changing.

In particular, System R has illus-
trated the feasibility of compiling a
very high-level data sublanguage,
SQL, into machine-level code. The

644 Communicat ions
of
the ACM

October 1981
Volume 24
Number 10

result of this compilation technique
is that most of the overhead cost for
implementing the high-level lan-
guage is pushed into a "precompila-
tion" step, and performance for
canned transactions is comparable to
that of a much lower level system.
The compilation approach has also
proved to be applicable to the ad hoc
query environment, with the result
that a unified mechanism can be
used to support both queries and
transactions.

The evaluation of System R has
led to a number of suggested im-
provements. Some of these improve-
ments have already been imple-
mented and others are still under
study. Two major foci of our contin-
uing research program at the San
Jose laboratory are adaptation of
System R to a distributed database
environment, and extension of our
optimizer algorithms to encompass a
broader set of access paths.

Sometimes questions are asked
about how the performance of a re-
lational database system might com-
pare to that of a "navigational" sys-
tem in which a programmer carefully
hand-codes an application to take
advantage of explicit access paths.
Our experiments with the System R
optimizer and compiler suggest that
the relational system will probably
approach but not quite equal the
performance of the navigational sys-
tem for a particular, highly tuned
application, but that the relational
system is more likely to be able to
adapt to a broad spectrum of unan-
ticipated applications with adequate
performance. We believe that the
benefits of relational systems in the
areas of user productivity, data in-
dependence, and adaptability to
changing circumstances will take on
increasing importance in the years
ahead.

A ckno wledgments

From the beginning, System R
was a group effort. Credit for any
success of the project properly be-
longs to the team as a whole rather
than to specific individuals.

The inspiration for constructing
a relational system came primarily

645

from E. F. Codd, whose landmark
paper [22] introduced the relational
model of data. The manager of the
project through most of its existence
was W. F. King.

In addition to the authors of this
paper, the following people were as-
sociated with System R and made
important contributions to its devel-
opment:

M. Adiba
R.F. Boyce

A. Chan
D.M. Choy
K. Eswaran

R. Fagin
P. Fehder

T. Haerder
R.H. Katz

W. Kim
H. Korth

P. McJones
D. McLeod

M. Mresse
J.F. Nilsson

R.L. Obermarck
D. Stott Parker

D. Portal
N. Ramsperger

P. Reisner
P.R. Roever
R. Selinger

H.R. Strong
P. Tiberio
V. Watson

R. Williams

References

1. Adiba, M.E., and Lindsay, B.G. Data-
base snapshots. IBM Res. Rep. RJ2772, San
Jose, Calif., March 1980.

2. Astrahan, M.M., and Chamberlin, D.D.
Implementation of a structured English
query language. Comm. A C M 18, 10 (Oct.
1975), 580-588.

3. Astrahan, M.M., and Lorie, R.A. SE-
QUEL-XRM: A Relational System. Proc.
ACM Pacific Regional Conf., San Francisco,
Calif., April 1975, p. 34.

4. Astrahan, M.M., et al. System R: A rela-
tional approach to database management.
A C M Trans. Database Syst.1, 2 (June 1976)
97-137.

5. Astrahan, M.M., et al. System R: A rela-
tional data base management system. 1EEE
Comptr. 12, 5 (May 1979), 43-48.

6. Astrahan, M.M., Kim, W., and Schkol-
nick, M. Evaluation of the System R access
path selection mechanism. Proc. IFIP Con-
gress, Melbourne, Australia, Sept. 1980, pp.
487-491.

7. Blasgen, M.W., Eswaran, K.P. Storage
and access in relational databases. I B M Syst.
J. 16, 4 (1977), 363-377.

8. Blasgen, M.W., Casey, R.G., and Es-
waran, K.P. An encoding method for multi-
field sorting and indexing. Comm. A CM 20,
11 (Nov. 1977), 874-878.

9. Blasgen, M., Gray, J., Mitoma, M., and
Price, T. The convoy phenomenon. Operat-
ing Syst. Rev. 13, 2 (April 1979), 20-25.

10. Blasgen, M.W., et al. System R: An ar-
chitectural overview. I B M Syst. J. 20, 1
(Feb. 1981), 41-62.

11. Bjorner, D., Codd, E.F., Deckert, K.L.,
and Traiger, I.L. The Gamma Zero N-ary
relational data base interface. IBM Res. Rep.
RJ 1200, San Jose, Calif., April 1973.

Communications
of
the ACM

12. Boyce, R.F., and Chamberlin, D.D. Us-
ing a structured English query language as a
data definition facility. IBM Res. Rep.
RJl318, San Jose, Calif., Dec. 1973.

13. Boyce, R.F., Chamberlin, D.D., King,
W.F., and Hammer, M.M. Specifying queries
as relational expressions: The SQUARE data
sublanguage. Comm. A C M 18, I l (Nov.
1975), 621-628.

14. Chamberlin, D.D., and Boyce, R.F. SE-
QUEL: A structured English query language.
Proc. ACM-SIGMOD Workshop on Data
Description, Access, and Control, Ann Ar-
bor, Mich., May 1974, pp. 249-264.

15. Chamberlin, D.D., Gray, J.N., and
Traiger, I.L. Views, authorization, and lock-
ing in a relational database system. Proc.
1975 Nat. Comptr. Conf., Anaheim, Calif.,
pp. 425-430.

16. Chamberlin, D.D., et al. SEQUEL 2: A
unified approach to data definition, manipu-
lation, and control. I B M J. Res. and Develop.
20, 6 (Nov. 1976), 560-575 (also see errata in
Jan. 1977 issue).

17. Chamberlin, D.D. Relational database
management systems. Comptng. Surv. 8, I
(March 1976), 43-66.

18. Chamberlin, D.D., et al. Data base sys-
tem authorization. In Foundations o f Secure
Computation, R. Demillo, D. Dobkin, A.
Jones, and R. Lipton, Eds., Academic Press,
New York, 1978, pp. 39-56.

19. Chamberlin, D.D. A summary of user
experience with the SQL data sublanguage.
Proc. Internat. Conf. Data Bases, Aberdeen,
Scotland, July 1980, pp. 181-203 (also IBM
Res. Rep. RJ2767, San Jose, Calif., April
1980).

20. Chamberlin, D.D., et al. Support for re-
petitive transactions and ad-hoc queries in
System R. A CM Trans. Database Syst. 6, 1
(March 1981), 70-94.

21. Chamberlin, D.D., Gilbert, A.M., and
Yost, R.A. A history of System R and SQL/
data system (presented at the Internat. Conf.
Very Large Data Bases, Cannes, France,
Sept. 1981).

22. Codd, E.F. A relational model of data
for large shared data banks. Comm. A C M
13, 6 (June 1970), 377-387.

23. Codd, E.F. Further normalization of the
data base relational model. In Courant Com-
puter Science Symposia, Vol. 6: Data Base
Systems, Prentice-Hall, Englewood Cliffs,
N.J., 1971, pp. 33-64.

24. Codd, E.F. Recent investigations in rela-
tional data base systems. Proc. IFIP Con-
gress, Stockholm, Sweden, Aug. 1974.

25. Codd, E.F. Extending the database rela-
tional model to capture more meaning. A C M
Trans. Database Syst. 4, 4 (Dec. 1979), 397-
434.

26. Comer, D. The ubiquitous B-Tree.
Comptng. Surv. 11, 2 (June 1979), 121-137.

27. Date, C.J. An Introduction to Database
Systems. 2nd Ed., Addison-Wesley, New
York, 1977.

October 1981
Volume 24
Number 10

28. Eswaran, K.P., and Chamberlin, D.D.
Functional specifications of a subsystem for
database integrity. Proc. Conf. Very Large
Data Bases, Framingham, Mass., Sept. 1975,
pp. 48-68.

29. Eswaran, K.P., Gray, J.N., Lorie, R.A.,
and Traiger, I.L. On the notions of consis-
tency and predicate locks in a database sys-
tem. Comm. A C M 19, 11 (Nov. 1976), 624-
633.

30. Fagin, R. Multivalued dependencies and
a new normal form for relational databases.
A C M Trans. Database Syst. 2, 3 (Sept. 1977),
262-278.

31. Fagin, R. On an authorization mecha-
nism. A C M Trans. Database Syst. 3, 3 (Sept.
1978), 310-319.

32. Gray, J.N., and Watson, V. A shared
segment and inter-process communication
facility for VM/370. IBM Res. Rep. RJ1579,
San Jose, Calif., Feb. 1975.

33. Gray, J.N., Lorie, R.A., and Putzolu,
G.F. Granularity of locks in a large shared
database. Proc. Conf. Very Large Data
Bases, Framingham, Mass., Sept. 1975, pp.
428-451.

34. Gray, J.N., Lorie, R.A., Putzolu, G.R.,
and Traiger, I.L. Granularity of locks and
degrees of consistency in a shared data base.
Proc. IFIP Working Conf. Modelling of
Database Management Systems, Freuden-
stadt, Germany, Jan. 1976, pp. 695-723 (also
IBM Res. Rep. RJ1654, San Jose, Calif.).

35. Gray, J.N. Notes on database operating
systems. In Operating Systems: An Advanced
Course, Goos and Hartmanis, Eds., Springer-
Verlag, New York, 1978, pp. 393-481 (also
IBM Res. Rep. RJ2188, San Jose, Calif.).

36. Gray, J.N., et al. The recovery manager
of a data management system. IBM Res.
Rep. RJ2623, San Jose, Calif., June 1979.

37. Griffiths, P.P., and Wade, B.W. An au-
thorization mechanism for a relational data-
base system. A C M Trans. Database Syst. 1, 3
(Sept. 1976), 242-255.

38. Katz, R.H., and Selinger, R.D. Internal
comm., IBM Res. Lab., San Jose, Calif.,
Sept. 1978.

39. Kwan, S.C., and Strong, H.R. Index
path length evaluation for the research stor-
age system of System R. IBM Res. Rep.
RJ2736, San Jose, Calif., Jan. 1980.

40. Lorie, R.A. XRM--An extended (N-ary)
relational memory. IBM Tech. Rep. G320-
2096, Cambridge Scientific Ctr., Cambridge,
Mass., Jan. 1974.

41. Lorie, R.A. Physical integrity in a large
segmented database. A CM Trans. Database
Syst. 2, 1 (March 1977), 91-104.

42. Lorie, R.A., and Wade, B.W. The com-
pilation of a high level data language. IBM
Res. Rep. RJ2598, San Jose, Calif., Aug.
1979.

43. Lorie, R.A., and Nilsson, J.F. An access
specification language for a relational data
base system. I B M J. Res. and Develop. 23, 3
(May 1979), 286-298.

44. Reisner, P., Boyce, R.F., and Chamber-
lin, D.D. Human factors evaluation of two
data base query languages: SQUARE and
SEQUEL. Proc. AFIPS Nat. Comptr. Conf.,
Anaheim, Calif., May 1975, pp. 447-452.

45. Reisner, P. Use of psychological experi-
mentation as an aid to development of a
query language. IEEE Trans. Software Eng.
SE-3, 3 (May 1977), 218-229.

46. Schkolnick, M., and Tiberio, P. Consid-
erations in developing a design tool for a
relational DBMS. Proc. IEEE COMPSAC
79, Nov. 1979, pp. 228-235.

47. Selinger, P.G., et al. Access path selec-
tion in a relational database management
system. Proc. ACM SIGMOD Conf., Boston,
Mass., June 1979, pp. 23-34.

48. Stonebraker, M. Implementation of in-
tegrity constraints and views by query modi-
fication. Tech. Memo ERL-M514, College of
Eng., Univ. of Calif. at Berkeley, March
1975.

49. Strong, H.R., Traiger, I.L., and Mar-
kowsky, G. Slide Search. IBM Res. Rep.
RJ2274, San Jose, Calif., June 1978.

50. Traiger, I.L., Gray J.N., Galtieri, C.A.,
and Lindsay, B.G. Transactions and consis-
tency in distributed database systems. IBM
Res. Rep. RJ2555, San Jose, Calif., June
1979.

646 Communications
of
the ACM

October 1981
Volume 24
Number 10

