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1. Introduction 

Throughout the history of infor- 
mation storage in computers, one of 
the most readily observable trends 
has been the focus on data indepen- 
dence. C.J. Date [27] defined data 
independence as "immunity of  ap- 
plications to change in storage struc- 
ture and access strategy." Modern 
database systems offer data indepen- 
dence by providing a high-level user 
interface through which users deal 
with the information content of their 
data, rather than the various bits, 
pointers, arrays, lists, etc. which are 
used to represent that information. 
The system assumes responsibility 
for choosing an appropriate internal 
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SUMMARY: System R, an experimental database system, 
was constructed to demonstrate that the usability advantages 
of the relational data model can be realized in a system with 
the complete function and high performance required for 
everyday production use. This paper describes the three 
principal phases of the System R project and discusses some 
of the lessons learned from System R about the design of 
relational systems and database systems in general. 

representation for the information; 
indeed, the representation of a given 
fact may change over time without 
users being aware of the change. 

The relational data model was 
proposed by E.F. Codd [22] in 1970 
as the next logical step in the trend 
toward data independence. Codd ob- 
served that conventional database 
systems store information in two 
ways: (1) by the contents of records 
stored in the database, and (2) by the 
ways in which these records are con- 
nected together. Different systems 
use various names for the connec- 
tions among records, such as links, 
sets, chains, parents, etc. For exam- 
ple, in Figure l(a), the fact that sup- 
plier Acme supplies bolts is repre- 
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sented by connections between the 
relevant part and supplier records. In 
such a system, a user frames a ques- 
tion, such as "What  is the lowest 
price for bolts?", by writing a pro- 
gram which "navigates" through the 
maze of connections until it arrives 
at the answer to the question. The 
user of  a "navigational" system has 
the burden (or opportunity) to spec- 
ify exactly how the query is to be 
processed; the user's algorithm is 
then embodied in a program which 
is dependent on the data structure 
that existed at the time the program 
was written. 

Relational database systems, as 
proposed by Codd, have two impor- 
tant properties: (1) all information is 
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represented by data values, never by 
any sort of "connections" which are 
visible to the user; (2) the system 
supports a very high-level language 
in which users can frame requests for 
data without specifying algorithms 
for processing the requests. The re- 
lational representation of the data in 
Figure l(a) is shown in Figure l(b). 
Information about parts is kept in a 
PARTS relation in which each record 
has a "key" (unique identifier) called 
PARTNO. Information about suppliers 
is kept in a SUPPLIERS relation keyed 
by SUPPNO. The information which 
was formerly represented by connec- 
tions between records is now con- 
tained in a third relation, PRICES, in 
which parts and suppliers are repre- 
sented by their respective keys. The 
question "What is the lowest price 
for bolts?" can be framed in a high- 
level language like SQL [16] as fol- 
lows: 

SELECT MIN(PRICE) 
FROM PRICES 
WHERE PARTNO IN 

(SELECT PARTNO 
FROM PARTS.  
WHERE NAME = 'BOLT'); 

A relational system can maintain 
whatever pointers, indices, or other 
access aids it finds appropriate for 
processing user requests, but the 
user's request is not framed in terms 
of these access aids and is therefore 
not dependent on them. Therefore, 
the system may change its data rep- 
resentation and access aids periodi- 
cally to adapt to changing require- 
ments without disturbing users' ex- 
isting applications. 

Since Codd's original paper, the 
advantages of the relational data 
model in terms of user productivity 
and data independence have become 
widely recognized. However, as in 
the early days of high-level program- 
ming languages, questions are some- 
times raised about whether or not an 
automatic system can choose as ef- 
ficient an algorithm for processing a 
complex query as a trained program- 
mer would. System R is an experi- 
mental system constructed at the San 
Jose IBM Research Laboratory to 
demonstrate that a relational data- 
base system can incorporate the high 
performance and complete function 
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SUPPLIERS 

Fig. l (a) .  A "Navigational" Database. 

FF 
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required for everyday production 
use .  

The key goals established for Sys- 
tem R were: 

(1) To provide a high-level, 
nonnavigational user interface for 
maximum user productivity and data 
independence. 

(2) To support different types 
of database use including pro- 
grammed transactions, ad hoc que- 
ries, and report generation. 

(3) To support a rapidly chang- 
ing database environment, in which 
tables, indexes, views, transactions, 
and other objects could easily be 
added to and removed from the data- 
base without stopping the system. 

(4) To support a population of 
many concurrent users, with mecha- 

nisms to protect the integrity of the 
database in a concurrent-update en- 
vironment. 

(5) To provide a means of re- 
covering the contents of the database 
to a consistent state after a failure of 
hardware or software. 

(6) To provide a flexible mech- 
anism whereby different views of 
stored data can be defined and var- 
ious users can be authorized to query 
and update these views. 

(7) To support all of the above 
functions with a level of performance 
comparable to existing lower-func- 
tion database systems. 

Throughout the System R project, 
there has been a strong commitment 
to carry the system through to an 
operationally complete prototype 

PARTS SUPPLIERS PRICES 

PARTNO NAME 

P107 Bolt 
P113 Nut 
P125 Screw 
P132 Gear 

SUPPNO NAME 

$51 Acme 
$57 Ajax 
$63 Amco 

Fig. l (b) .  A Relational Database. 
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PARTNO SUPPNO PRICE 

P107 $51 .59 
P107 $57 .65 
P113 $51 .25 
P113 $63 .21 
P125 $63 .15 
P132 $57 5.25 
P132 $63 10.00 
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which could be installed and evalu- 
ated in actual user sites. 

The history of System R can be 
divided into three phases. "Phase 
Zero" of the project, which occurred 
during 1974 and-most of  1975, in- 
volved the development of the SQL 
user interface [14] and a quick im- 
plementation of a subset of SQL for 
one user at a time. The Phase Zero 
prototype, described in [2], provided 
valuable insight in several areas, but 
its code was eventually abandoned. 
"Phase One" of the project, which 
took place throughout most of 1976 
and 1977, involved the design and 
construction of the full-function, 
multiuser version of System R. An 
initial system architecture was pre- 
sented in [4] and subsequent updates 
to the design were described in [10]. 
"Phase Two" was the evaluation of 
System R in actual use. This oc- 
curred during 1978 and 1979 and 
involved experiments at the San Jose 
Research Laboratory and several 
other user sites. The results of some 
of these experiments and user expe- 
riences are described in [19-21]. At 
each user site, System R was installed 
for experimental purposes only, and 
not as a supported commercial prod- 
uct.1 

This paper will describe the de- 
cisions which were made and the 
lessons learned during each of the 
three phases of  the System R project. 

2. Phase Zero: An Initial Proto- 
type 

Phase Zero of the System R proj- 
ect involved the quick implementa- 
tion of  a subset of system functions. 
From the beginning, it was our inten- 
tion to learn what we could from this 
initial prototype, and then scrap the 
Phase Zero code before construction 
of the more complete version of Sys- 
tem R. We decided to use the rela- 

1The System R research prototype later 
evolved into SQL/Data System, a relational 
database management product offered by 
IBM in the DOS/VSE operating system en- 
vironment. 

tional access method called XRM, 
which had been developed by R. 
Lorie at IBM's Cambridge Scientific 
Center [40]. '(XRM was influenced, 
to some extent, by the "Gamma 
Zero" interface defined by E.F. 
Codd and others at San Jose [11].) 
Since XRM is a single-user access 
method without locking or recovery 
capabilities, issues relating to con- 
currency and recovery were excluded 
from consideration in Phase Zero. 

An interpreter program was writ- 
ten in PL/ I  to execute statements 
in the high-level SQL (formerly 
SEQUEL) language [14, 16] on top 
of XRM. The implemented subset 
of the SQL language included que- 
ries and updates of the database, as 
well as the dynamic creation of 
new database relations. The Phase 
Zero implementation supported the 
"subquery" construct of SQL, but 
not its "join" construct. In effect, this 
meant that a query could search 
through several relations in comput- 
ing its result, but the final result 
would be taken from a single rela- 
tion. 

The Phase Zero implementation 
was primarily intended for use as a 
standalone query interface by end 
users at interactive terminals. At the 
time, little emphasis was placed on 
issues of interfacing to host-language 
programs (although Phase Zero 
could be called from a PL/ I  
program). However, considerable 
thought was given to the human fac- 
tors aspects of  the SQL language, 
and an experimental study was con- 
ducted on the learnability and usa- 
bility of SQL [44]. 

One of the basic design decisions 
in the Phase Zero prototype was that 
the system catalog, i.e., the descrip- 
tion of  the content and structure of 
the database, should be stored as a 
set of regular relations in the data- 
base itself. This approach permits the 
system to keep the catalog up to date 
automatically as changes are made 
to the database, and also makes the 
catalog information available to the 
system optimzer for use in access 
path selection. 

The structure of the Phase Zero 
interpreter was strongly influenced 

by the facilities ofXRM. XRM stores 
relations in  the form of "tuples," 
each of which has a unique 32-bit 
"tuple identifier" (TID). Since a TID 
contains a page number, it is possi- 
ble, given a TID, to fetch the asso- 
ciated tuple in one page reference. 
However, rather than actual data 
values, the tuple contains pointers to 
the "domains" where the actual data 
is stored, as shown in Figure 2. Op- 
tionally, each domain may have an 
"inversion," which associates do- 
main values (e.g., "Programmer") 
with the TIDs of tuples in which the 
values appear. Using the inversions, 
XRM makes it easy to find a list of 
TIDs of tuples which contain a given 
value. For example, in Figure 2, if 
inversions exist on  both the JOB and 
LOCATION domains, XRM provides 
commands to create a list of TIDs of 
employees who are programmers, 
and another list of TIDs of employ- 
ees who work in Evanston. If  the 
SQL query calls for programmers 
who work in Evanston, these TID 
lists can be intersected to obtain the 
list of TIDs of tuples which satisfy 
the query, before any tuples are ac- 
tually fetched. 

The most challenging task in con- 
structing the Phase Zero prototype 
was the design of optimizer algo- 
rithms for efficient execution of  SQL 
statements on top of XRM. The de- 
sign of  the Phase Zero optimizer is 
given in [2]. The objective of the 
optimizer was to minimize the num- 
ber of tuples fetched from the data- 
base in processing a query. There- 
fore, the optimizer made extensive 
use of inversions and often manipu- 
lated TID lists before beginning to 
fetch tuples. Since the TID lists were 
potentially large, they were stored as 
temporary objects in the database 
during query processing. 

The results of the Phase Zero 
implementation were mixed. One 
strongly felt conclusion was that it is 
a very good idea, in a project the size 
of System R, to plan to throw away 
the initial implementation. On the 
positive side, Phase Zero demon- 
strated the usability of  the SQL lan- 
guage, the feasibility of creating new 
tables and inversions "on the fly" 
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and relying on an automatic opti- 
mizer for access path selection, and 
the convenience of storing the system 
catalog in the database itself. At the 
same time, Phase Zero taught us a 
number of valuable lessons which 
greatly influenced the design of our 
later implementation. Some of these 
lessons are summarized below. 

(1) The optimizer should take 
into account not just the cost of 
fetching tuples, but the costs of cre- 
ating and manipulating TID lists, 
then fetching tuples, then fetching 
the data pointed to by the tuples. 
When these "hidden costs" are taken 
into account, it will be seen that the 
manipulation of TID lists is quite 
expensive, especially if the TID lists 
are managed in the database rather 
than in main storage. 

(2) Rather than "number of  tu- 
pies fetched," a better measure of 
cost would have been "number of 
I/Os." This improved cost measure 
would have revealed the great im- 
portance of clustering together re- 
lated tuples on physical pages so that 
several related tuples could be 
fetched by a single I/O. Also, an 
I /O measure would have revealed a 
serious drawback of XRM: Storing 
the domains separately from the tu- 
pies causes many extra I /Os to be 
done in retrieving data values. Be- 
cause of this, our later implementa- 
tion stored data values in the actual 
tuples rather than in separate do- 
mains. (In defense of XRM, it should 
be noted that the separation of data 
values from tuples has some advan- 
tages if data values are relatively 
large and if many tuples are proc- 
essed internally compared to the 
number of tuples which are materi- 
alized for output.) 

(3) Because the Phase Zero im- 
plementation was observed to be 
CPU-bound during the processing of 
a typical query, it was decided the 
optimizer cost measure should be a 
weighted sum of CPU time and I /O 
count, with weights adjustable ac- 
cording to the system configuration. 

(4) Observation of some of the 
applications of Phase Zero con- 
vinced us of the importance of the 
"join" formulation of SQL. In our 

Domain #1 : Names 

John Smith 

Domain # 3: Locations 

Evanston 

T'D 1 / I  
~ 2 :  Jobs 

Programmer 

\ 

Fig. 2. XRM Storage Structure. 

subsequent implementation, both 
"joins" and "subqueries" were sup- 
ported. 

(5) The Phase Zero optimizer 
was quite complex and was oriented 
toward complex queries. In our later 
implementation, greater emphasis 
was placed on relatively simple in- 
teractions, and care was taken to 
minimize the "path length" for sim- 
ple SQL statements. 

3. Phase One: Construction of a 
Multiuser Prototype 

After the completion and evalu- 
ation of the Phase Zero prototype, 
work began on the construction of 
the full-function, multiuser version 
of System R. Like Phase Zero, Sys- 
tem R consisted of an access method 
(called RSS, the Research Storage 
System) and an optimizing SQL 
processor (called RDS, the Rela- 
tional Data System) which runs on 
top of the RSS. Separation of the 
RSS and RDS provided a beneficial 
degree of modularity; e.g., all locking 
and logging functions were isolated 
in the RSS, while all authorization 

and access path selection functions 
were isolated in the RDS. Construc- 
tion of the RSS was underway in 
1975 and construction of the RDS 
began in 1976. Unlike XRM, the 
RSS was originally designed to sup- 
port multiple concurrent users. 

The multiuser prototype of Sys- 
tem R contained several important 
subsystems which were not present 
in the earlier Phase Zero prototype. 
In order to prevent conflicts which 
might arise when two concurrent 
users attempt to update the same 
data value, a locking subsystem was 
provided. The locking subsystem en- 
sures that each data value is accessed 
by only one user at a time, that all 
the updates made by a given trans- 
action become effective simultane- 
ously, and that deadlocks between 
users are detected and resolved. The 
security of the system was enhanced 
by view and authorization subsys- 
tems. The view subsystem permits 
users to define alternative views of 
the database (e.g., a view of the em- 
ployee file in which salaries are de- 
leted or aggregated by department). 
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The authorization subsystem ensures 
that each user has access only to 
those views for which he has been 
specifically authorized by their cre- 
ators. Finally, a recovery subsystem 
was provided which allows the data- 
base to be restored to a consistent 
state in the event of  a hardware or 
software failure. 

In order to provide a useful host- 
language capability, it was decided 
that System R should support both 
PL/ I  and Cobol application pro- 
grams as well as a standalone query 
interface, and that the system should 
run under either the VM/CMS or 
MVS/TSO operating system envi- 
ronment. A key goal of  the SQL 
language was to present the same 
capabilities, and a consistent syntax, 
to users of  the PL/ I  and Cobol host 
languages and to ad hoc query users. 
The imbedding of  SQL into PL/ I  is 
described in [16]. Installation of  a 
multiuser database system under 
VM/CMS required certain modifi- 
cations to the operating system in 
support of  communicating virtual 
machines and writable shared virtual 
memory. These modifications are de- 
scribed in [32]. 

The standalone query interface 
of  System R (called UFI,  the User- 
Friendly Interface) is supported by 
a dialog manager program, written 
in PL/I ,  which runs on top of  System 
R like any other application pro- 
gram. Therefore, the UFI support 
program is a cleanly separated com- 
ponent and can be modified inde- 
pendently of  the rest of  the system. 
In fact, several users improved on 
our UFI  by writing interactive dialog 
managers of  their own. 

The Compilation Approach 
Perhaps the most important de- 

cision in the design of  the RDS was 
inspired by R. Lorie's observation, in 
early 1976, that it is possible to com- 
pile very high-level SQL statements 
into compact, efficient routines in 
System/370 machine language [42]. 
Lorie was able to demonstrate that 
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SQL statements of  arbitrary com- 
plexity could be decomposed into a 
relatively small collection of  ma- 
chine-language "fragments," and 
that an optimizing compiler could 
assemble these code fragments from 
a library to form a specially tailored 
routine for processing a given SQL 
statement. This technique had a very 
dramatic effect on our ability to sup- 
port application programs for trans- 
action processing. In System R, a 
PL/ I  or Cobol pi'ogram is run 
through a preprocessor in which its 
SQL statements are examined, opti- 
mized, and compiled into small, ef- 
ficient machine-language routines 
which are packaged into an "access 
module" for the application pro- 
gram. Then, when the program goes 
into execution, the access module is 
invoked to perform all interactions 
with the database by means of  calls 
to the RSS. The process of  creating 
and invoking an access module is 
illustrated in Figures 3 and 4. All the 
overhead of  parsing, validity check- 
ing, and access path selection is re- 
moved from the path of  the execut- 
ing program and placed in a separate 
preprocessor step which need not be 
repeated. Perhaps even more impor- 
tant is the fact that the running pro- 
gram interacts only with its small, 
special-purpose access module rather 
than with a much larger and less 
efficient general-purpose SQL inter- 
preter. Thus, the power and ease of  
use of  the high-level SQL language 
are combined with the execution- 
time efficiency of  the much lower 
level RSS interface. 

Since all access path selection de- 
cisions are made during the prepro- 
cessor step in System R, there is the 
possibility that subsequent changes 
in the database may invalidate the 
decisions which are embodied in an 
access module. For example, an in- 
dex selected by the optimizer may 
later be dropped from the database. 
Therefore, System R records with 
each access module a list of  its "de- 
pendencies" on database objects 
such as tables and indexes. The de- 
pendency list is stored in the form of  
a regular relation in the system cat- 
alog. When the structure of  the data- 
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base changes (e.g., an index is 
dropped), all affected access modules 
are marked "invalid." The next time 
an invalid access module is invoked, 
it is regenerated from its original 
SQL statements, with newly opti- 
mized access paths. This process is 
completely transparent to the System 
R user. 

SQL statements submitted to the 
interactive UFI  dialog manager are 
processed by the same optimizing 
compiler as preprocessed SQL state- 
ments. The UFI  program passes the 
ad hoc SQL statement to System R 
with a special "EXECUTE" call. In re- 
sponse to the EXECUTE call, System R 
parses and optimizes the SQL state- 
ment and translates it into a ma- 
chine-language routine. The routine 
is indistinguishable from an access 
module and is executed immediately. 
This process is described in more 
detail in [20]. 

RSS Access Paths 
Rather than storing data values 

in separate "domains" in the manner 
of  XRM, the RSS chose to store data 
values in the individual rcords of  the 
database. This resulted in records be- 
coming variable in length and 
longer, on the average, than the 
equivalent XRM records. Also, com- 
monly used values are represented 
many times rather than only once as 
in XRM. It was felt, however, that 
these disadvantages were more than 
offset by the following advantage: 
All the data values of  a record could 
be fetched by a single I/O. 

In place of  XRM "inversions," 
the RSS provides "indexes," which 
are associative access aids imple- 
mented in the form of  B-Trees [26]. 
Each table in the database may have 
anywhere from zero indexes up to an 
index on each column (it is also pos- 
sible to create an index on a combi- 
nation of  columns). Indexes make it 
possible to scan the table in order by 
the indexed values, or to directly ac- 
cess the records which match a par- 
ticular value. Indexes are maintained 
automatically by the RSS in the 
event of  updates to the database. 

The RSS also implements 
"links," which are pointers stored 
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P L / I  Source Program 

I 
f 
I 

SELECT NAME INTO $)< 
FROM EMP 
WHERE EMPNO=$Y 

I 
I 
I 

Modified P L / I  Program 

I 
I 

CALL 

I 
I 

SYSTEM R 
PRECOMPILER 

(XPREP) 

Access Module 

Machine code 
ready to run 
on RSS 

Fig. 3. Precompilation Step. 

User's Object 
Program 

call 

Execution-time 
System 
(XRDI) 

Loads, 
then calls 

Fig. 4. Execution Step. 

Access 
Module 

l call 

RSS 

637 

with a record which connect it to 
other related records. The connec- 
tion of  records on links is not per- 
formed automatically by the RSS, 
but must be done by a higher level 
system. 

The access paths made available 
by the RSS include (1) index scans, 
which access a table associatively 
and scan it in value order using an 
index; (2) relation scans, which scan 
over a table as it is laid out in phys- 
ical storage; (3) link scans, which 
traverse from one record to another 
using links. On any of  these types of  
scan, "search arguments" may be 
specified which limit the records re- 
turned to those satisfying a certain 
predicate. Also, the RSS provides a 
built-in sorting mechanism which 
can take records from any of  the scan 
methods and sort them into some 
value order, storing the result in a 
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temporary list in the database. In 
System R, the RDS makes extensive 
use of  index and relation scans and 
sorting. The RDS also utilizes links 
for internal purposes but not as an 
access path to user data. 

The Optimizer 
Building on our Phase Zero ex- 

perience, we designed the System R 
optimizer to minimize the weighted 
sum of  the predicted number of  I /Os 
and RSS calls in processing an SQL 
statement (the relative weights of  
these two terms are adjustable ac- 
cording to system configuration). 
Rather than manipulating TID lists, 
the optimizer chooses to scan each 
table in the SQL query by means of 
only one index (or, if no suitable 
index exists, by means of a relation 
scan). For example, if the query calls 
for programmers who work in Ev- 
anston, the optimizer might choose 
to use the job index to find program- 
mers and then examine their loca- 
tions; it might use the location index 
to find Evanston employees and ex- 
amine their jobs; or it might simply 
scan the relation and examine the 
job and location of  all employees. 
The choice would be based on the 
optimizer's estimate of  both the clus- 
tering and selectivity properties of  
each index, based on statistics stored 
in the system catalog. An index is 
considered highly selective if it has a 
large ratio of  distinct key values to 
total entries. An index is considered 
to have the clustering property if the 
key order of the index corresponds 
closely to the ordering of  records in 
physical storage. The clustering 
property is important because when 
a record is fetched via a clustering 
index, it is likely that other records 
with the same key will be found on 
the same page, thus minimizing the 
number of  page fetches. Because of  
the importance of  clustering, mech- 
anisms were provided for loading 
data in value order and preserving 
the value ordering when new records 
are inserted into the database. 

The techniques of  the System R 
optimizer for performing joins of  two 
or more tables have their origin in a 
study conducted by M. Blasgen and 
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K. Eswaran [7]. Using APL models, 
Blasgen and Eswaran studied ten 
methods of  joining together tables, 
based on the use of  indexes, sorting, 
physical pointers, and TID lists. The 
number of  disk accesses required to 
perform a join was predicted on the 
basis of  various assumptions for the 
ten join methods. Two join methods 
were identified such that one or the 
other was optimal or nearly optimal 
under most circumstances. The two 
methods are as follows: 

Join Method 1: Scan over the 
qualifying rows of  table A. For each 
row, fetch the matching rows of  table 
B (usually, but not always, an index 
on table B is used). 

Join Method 2: (Often used 
when no suitable index exists.) Sort 
the qualifying rows of  tables A and 
B in order by their respective join 
fields. Then scan over the sorted lists 
and merge them by matching values. 

When selecting an access path for 
a join of  several tables, the System R 
optimizer considers the problem to 
be a sequence of  binary joins. It then 
performs a tree search in which each 
level of  the tree consists of  one of  the 
binary joins. The choices to be made 
at each level of  the tree include which 
join method to use and which index, 
if any, to select for scanning. Com- 
parisons are applied at each level of  
the tree to prune away paths which 
achieve the same results as other, less 
costly paths. When all paths have 
been examined, the optimizer selects 
the one of  minimum predicted cost. 
The System R optimizer algorithms 
are described more fully in [47]. 

Views and Authorization 
The major objectives of  the view 

and authorization subsystems of  Sys- 
tem R were power and flexibility. 
We wanted to allow any SQL query 
to be used as the definition of  a view. 
This was accomplished by storing 
each view definition in the form of  

an SQL parse tree. When an SQL 
operation is to be executed against a 
view, the parse tree which defines 
the operation is merged with the 
parse tree which defines the view, 
producing a composite parse tree 
which is then sent to the optimizer 
for access path selection. This ap- 
proach is similar to the "query mod- 
ification" technique proposed by 
Stonebraker [48]. The algorithms de- 
veloped for merging parse trees were 
sufficiently general so that nearly 
any SQL statement could be exe- 
cuted against any view definition, 
with the restriction that a view can 
be updated only if it is derived from 
a single table in the database. The 
reason for this restriction is that some 
updates to views which are derived 
from more than one table are not 
meaningful (an example of  such an 
update is given in [24]). 

The authorization subsystem of  
System R is based on privileges 
which are controlled by the SQL 
statements GRANT and REVOKE. Each 
user of  System R may optionally be 
given a privilege called RESOURCE 
which enables h im/her  to create new 
tables in the database. When a user 
creates a table, he/she receives all 
privileges to access, update, and de- 
stroy that table. The creator of  a 
table can then grant these privileges 
to other individual users, and subse- 
quently can revoke these grants if 
desired. Each granted privilege may 
optionally carry with it the "GRANT 
option," which enables a recipient to 
grant the privilege to yet other users. 
A REVOKE destroys the whole chain 
of granted privileges derived from 
the original grant. The authorization 
subsystem is described in detail in 
[37] and discussed further in [31]. 

The Recovery Subsystem 
The key objective of  the recovery 

subsystem is provision of  a means 
whereby the database may be re- 
covered to a consistent state in the 
event of  a failure. A consistent state 
is defined as one in which the data- 
base does not reflect any updates 
made by transactions which did not 
complete successfully. There are 
three basic types of failure: the disk 

media may fail, the system may fail, 
or an individual transaction may fail. 
Although both the scope of  the fail- 
ure and the time to effect recovery 
may be different, all three types of  
recovery require that an alternate 
copy of  data be available when the 
primary copy is not. 

When a media failure occurs, 
database information on disk is lost. 
When this happens, an image dump 
of  the database plus a log of"before"  
and "after" changes provide the al- 
ternate copy which makes recovery 
possible. System R's use of  "dual 
logs" even permits recovery from 
media failures on the log itself. To 
recover from a media failure, the 
database is restored using the latest 
image dump and the recovery pro- 
cess reapplies all database changes 
as specified on the log for completed 
transactions. 

When a system failure occurs, the 
information in main memory is lost. 
Thus, enough information must al- 
ways be on disk to make recovery 
possible. For  recovery from system 
failures, System R uses the change 
log mentioned above plus something 
called "shadow pages." As each page 
in the database is updated, the page 
is written out in a new place on disk, 
and the original page is retained. A 
directory of  the "old" and "new" 
locations of  each page is maintained. 
Periodically during normal opera- 
tion, a "checkpoint" occurs in which 
all updates are forced out to disk, the 
"old" pages are discarded, and the 
"new" pages become "old." In the 
event of  a system crash, the "new" 
pages on disk may be in an incon- 
sistent state because some updated 
pages may still be in the system 
buffers and not yet reflected on disk. 
To bring the database back to a con- 
sistent state, the system reverts to the 
"old" pages, and then uses the log to 
redo all committed transactions and 
to undo all updates made by incom- 
plete transactions. This aspect of  the 
System R recovery subsystem is de- 
scribed in more detail in [36]. 

When a transaction failure o c -  
curs, all database changes which 
have been made by the failing trans- 
action must be undone. To accom- 
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plish this, System R simply processes 
the change log backwards removing 
all changes made by the transaction. 
Unlike media and system recovery 
which both require that System R be 
reinitialized, transaction recovery 
takes place on-line. 

The Locking Subsystem 
A great deal of thought was given 

to the design of a locking subsystem 
which would prevent interference 
among concurrent users of System 
R. The original design involved the 
concept of "predicate locks," in 
which the lockable unit was a data- 
base property such as "employees 
whose location is Evanston." Note 
that, in this scheme, a lock might be 
held on the predicate LOC = 'EVANS- 
TON', even if no employees currently 
satisfy that predicate. By comparing 
the predicates being processed by 
different users, the locking subsys- 
tem could prevent interference. The 
"predicate lock" design was ulti- 
mately abandoned because: (1) de- 
termining whether two predicates are 
mutually satisfiable is difficult and 
time-consuming; (2) two predicates 
may appear to conflict when, in fact, 
the semantics of the data prevent any 
conflict, as in "PRODUCT = AIR- 
CRAFT" and "MANUFACTURER ---~ 

ACME STATIONERY CO."; a n d  (3) w e  

desired to contain the locking sub- 
system entirely within the RSS, and 
therefore to make it independent of 
any understanding of the predicates 
being processed by various users. 
The original predicate locking 
scheme is described in [29]. 

The locking scheme eventually 
chosen for System R is described in 
[34]. This scheme involves a hierar- 
chy of locks, with several different 
sizes of lockable units, ranging from 
individual records to several tables. 
The locking subsystem is transparent 
to end users, but acquires locks on 
physical objects in the database as 
they are processed by each user. 
When a user accumulates many 
small locks, they may be "traded" 
for a larger lockable unit (e.g., locks 
on many records in a table might be 
traded for a lock on the table). When 
locks are acquired on small objects, 

"intention" locks are simultaneously 
acquired on the larger objects which 
contain them. For example, user A 
and user B may both be updating 
employee records. Each user holds 
an "intention" lock on the employee 
table, and "exclusive" locks on the 
particular records being updated. If  
user A attempts to trade her individ- 
ual record locks for an "exclusive" 
lock at the table level, she must wait 
until user B ends his transaction and 
releases his "intention" lock on the 
table. 

4. Phase Two: Evaluation 

The evaluation phase of the Sys- 
tem R project lasted approximately 
2'/2 years and consisted of two parts: 
(l) experiments performed on the 
system at the San Jose Research Lab- 
oratory, and (2) actual use of the 
system at a number of internal IBM 
sites and at three selected customer 
sites. At all user sites, System R was 
installed on an experimental basis 
for study purposes only, and not as 
a supported commercial product. 
The first installations of System R 
took place in June 1977. 

General User Comments 
In general, user response to Sys- 

tem R has been enthusiastic. The 
system was mostly used in applica- 
tions for which ease of installation, 
a high-level user language, and an 
ability to rapidly reconfigure the 
database were important require- 
ments. Several user sites reported 
that they were able to install the 
system, design and load a database, 
and put into use some application 
programs within a matter of days. 
User sites also reported that it was 
possible to tune the system perform- 
ance after data was loaded by creat- 
ing and dropping indexes without 
impacting end users or application 
programs. Even changes in the data- 
base tables could be made transpar- 
ent to users if the tables were read- 
only, and also in some cases for up- 
dated tables. 

Users found the performance 
characteristics and resource con- 
sumption of System R to be gener- 
ally satisfactory for their experimen- 

tal applications, although no speci- 
fic performance comparisons were 
drawn. In general, the experimental 
databases used with System R were 
smaller than one 3330 disk pack (200 
Megabytes) and were typically ac- 
cessed by fewer than ten concurrent 
users. As might be expected, inter- 
active response slowed down during 
the execution of very complex SQL 
statements involving joins of several 
tables. This performance degrada- 
tion must be traded off against 
the advantages of normalization 
[23, 30], in which large database 
tables are broken into smaller parts 
to avoid redundancy, and then 
joined back together by the view 
mechanism or user applications. 

The SQL Language 
The SQL user interface of System 

R was generally felt to be successful 
in achieving its goals of simplicity, 
power, and data independence. The 
language was simple enough in its 
basic structure so that users without 
prior experience were able to learn a 
usable subset on their first sitting. At 
the same time, when taken as a 
whole, the language provided the 
query power of the first-order pred- 
icate calculus combined with opera- 
tors for grouping, arithmetic, and 
built-in functions such as SUM and 
AVERAGE. 

Users consistently praised the 
uniformity of the SQL syntax across 
the environments of application pro- 
grams, ad hoc query, and data defi- 
nition (i.e., definition of views). 
Users who were formerly required to 
learn inconsistent languages for these 
purposes found it easier to deal with 
the single syntax (e.g., when debug- 
ging an application program by 
querying the database to observe its 

" effects). The single syntax also en- 
hanced communication among dif- 
ferent functional organizations (e.g., 
between database administrators and 
application programmers). 

While developing applications 
using SQL, our experimental users 
made a number of suggestions for 
extensions and improvements to the 
language, most of which were imple- 
mented during the course of the proj- 
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ect. Some of these suggestions are 
summarized below: 

(1) Users requested an easy-to- 
use syntax when testing for the exist- 
ence or nonexistence of a data item, 
such as an employee record whose 
department number matches a given 
department record. This facility was 
implemented in the form of a special 
"EXISTS" predicate. 

(2) Users requested a means of 
seaching for character strings whose 
contents are only partially known, 
such as "all license plates beginning 
with NVK." This facility was imple- 
mented in the form of a special 
"LIKE" predicate which searches for 
"patterns" that are allowed to con- 
tain "don't  care" characters. 

(3) A requirement arose for an 
application program to compute an 
SQL statement dynamically, submit 
the statement to the System R optim- 
izer for access path selection, and 
then execute the statement repeat- 
edly for different data values without 
reinvoking the optimizer. This facil- 
ity was implemented in the form of 
PREPARE and EXECUTE statements 
which were made available in the 
host-language version of SQL. 

(4) In some user applications 
the need arose for an operator which 
Codd has called an "outer join" [25]. 
Suppose that two tables (e.g., suP- 
PLIERS and PROJECTS) are related by 
a common data field (e.g., PARTNO). 

In a conventional join of these tables, 
supplier records which have no 
matching project record (and vice 
versa) would not appear. In an 
"outer join" of these tables, supplier 
records with no matching project rec- 
ord would appear together with a 
"synthetic" project record containing 
only null values (and similarly for 
projects with no matching supplier). 
An "outer-join" facility for SQL is 
currently under study. 

A more complete discussion of 
user experience with SQL and the 
resulting language improvements is 
presented in [19]. 

The Compilation Approach 
The approach of compiling SQL 

statements into machine code was 
one of the most successful parts of 
the System R project. We were able 
to generate a machine-language rou- 
tine to execute any SQL statement of 
arbitrary complexity by selecting 
code fragments from a library of ap- 
proximately 100 fragments. The re- 
sult was a beneficial effect on trans- 
action programs, ad hoc query, and 
system simplicity. 

In an environment of short, re- 
petitive transactions, the benefits of 

compilation are obvious. All the 
overhead of parsing, validity check- 
ing, and access path selection are 
removed from the path of the run- 
ning transaction, and the application 
program interacts with a small, spe- 
cially tailored access module rather 
than with a larger and less efficient 
general-purpose interpreter pro- 
gram. Experiments [38] showed that 
for a typical short transaction, about 
80 percent of the instructions were 
executed by the RSS, with the re- 
maining 20 percent executed by the 
access module and application pro- 

Example 1 : 

SELECT SUPPNO, PRICE 
FROM QUOTES 
WHERE PARTNO = '010002'  
AND MINQ< = 1000 AND MAXQ> = 1000; 

Operation 

Parsing 

Access Path 
Selection 

Code 
Generation 

Fetch 
answer set 
(per record) 

CPU time Number 
(msec on 168) of I /Os 

13.3 0 

40.0 9 

10.1 0 

1.5 0.7 

Example 2: 

SELECT ORDERNO,ORDERS.PARTNO,DESCRIP,DATE,QTY 
FROM ORDERS,PARTS 
WHERE ORDERS.PARTNO = PARTS.PARTNO 
AND DATE BETWEEN '750000'  AND '751231'  
AND SUPPNO = '797';  

CPU time 
Operation 

(msec on 168) 

Parsing 20.7 

Access Path 73.2 
Selection 

Code 19.3 
Generation 

Fetch 8.7 
answer set 
(per record) 

Number 
of I /Os 

0 

9 

0 

10.7 

Fig. 5. Measurements of Cost of Compilation. 
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gram. Thus, the user pays only a 
small cost for the power, flexibility, 
and data independence of the SQL 
language, compared with writing the 
same transaction directly on the 
lower level RSS interface. 

In an ad hoc query environment 
the advantages of compilation are 
less obvious since the compilation 
must take place on-line and the 
query is executed only once. In this 
environment, the cost of  generating 
a machine-language routine for a 
given query must be balanced 
against the increased efficiency of 
this routine as compared with a more 
conventional query interpreter. Fig- 
ure 5 shows some measurements of 
the cost of compiling two typical 
SQL statements (details of  the exper- 
iments are given in [20]). From this 
data we may draw the following con- 
clusions: 

(1) The code generation step 
adds a small amount of CPU time 
and no I /Os to the overhead of pars- 
ing and access path selection. Parsing 
and access path selection must be 
done in any query system, including 
interpretive ones. The additional in- 
structions spent on code generation 
are not likely to be perceptible to an 
end user. 

(2) I f  code generation results in 
a routine which runs more efficiently 
than an interpreter, the cost of  the 
code generation step is paid back 
after fetching only a few records. (In 
Example 1, if the CPU time per rec- 
ord of  the compiled module is half 
that of  an interpretive system, the 
cost of  generating the access module 
is repaid after seven records have 
been fetched.) 

A final advantage of  compilation 
is its simplifying effect on the system 
architecture. With both ad hoc que- 
ries and precanned transactions 
being treated in the same way, most 
of  the code in the system can be 
made to serve a dual purpose. This 
ties in very well with our objective of  
supporting a uniform syntax between 
query users and transaction pro- 
grams. 

Available Access Paths 

As described earlier, the principal 
access path used in System R for 
retrieving data associatively by its 
value is the B-tree index. A typical 
index is illustrated in Figure 6. If  we 
assume a fan-out of  approximately 
200 at each level of  the tree, we can 
index up to 40~000 records by a two- 
level index, and up to 8,000,000 rec- 

] Root 

[ ]  [ ]  [ ]  [ ]  Data 
[ ]  Pages 

Fig. 6. A B-Tree Index. 

Intermediate 
Pages 

Leaf 
Pages 

ords by a three-level index. If  we 
wish to begin an associative scan 
through a large table, three I /Os will 
typically be required (assuming the 
root page is referenced frequently 
enough to remain in the system 
buffers, we need an I /O  for the in- 
termediate-level index page, the 
"leaf"  index page, and the data 
page). If  several records are to be 
fetched using the index scan, the 
three start-up I /Os are relatively in- 
significant. However, if only one rec- 
ord is to be fetched, other access 
techniques might have provided a 
quicker path to the stored data. 

Two common access techniques 
which were not utilized for user data 
in System R are hashing and direct 
links (physical pointers from one rec- 
ord to another). Hashing was not 
used because it does not have the 
convenient ordering property of a B- 
tree index (e.g., a B-tree index on 
SALARY enables a list of  employees 
ordered by SALARY to be retrieved 
very easily). Direct links, although 
they were implemented at the RSS 
level, were not used as an access path 
for user data by the RDS for a two- 
fold reason. Essential links (links 
whose semantics are not known to 
the system but which are connected 
directly by users) were rejected be- 
cause they were inconsistent with the 
nonnavigational user interface of a 
relational system, since they could 
not be used as access paths by an 
automatic optimizer. Nonessential 
links (links which connect records to 
other records with matching data 
values) were not implemented be- 
cause of  the difficulties in automati- 
cally maintaining their connections. 
When a record is updated, its con- 
nections on many links may need to 
be updated as well, and this may 
involve many "subsidiary queries" to 
find the other records which are in- 
volved in these connections. Prob- 
lems also arise relating to records 
which have no matching partner rec- 
ord on the link, and records whose 
link-controlling data value is null. 

In general, our experience 
showed that indexes could be used 
very efficiently in queries and trans- 
actions which access many records, 
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but that hashing and links would 
have enhanced the performance of  
"canned transactions" which access 
only a few records. As an illustration 
of  this problem, consider an inven- 
tory application which has two 
tables: a PRODUCTS table, and a much 
larger PARTS table which contains 
data on the individual parts used for 
each product. Suppose a given trans- 
action needs to find the price of  the 
heating element in a particular 
toaster. To execute this transaction, 
System R might require two I /Os to 
traverse a two-level index to find the 
toaster record, and three more I /Os 
to traverse another three-level index 
to find the heating element record. If 
access paths based on hashing and 
direct links were available, it might 
be possible to find the toaster record 
in one I /O via hashing, and the heat- 
ing element record in one more I /O  
via a link. (Additional I /Os would 
be required in the event of hash col- 
lisions or if the toaster parts records 
occupied more than one page.) Thus, 
for this very simple transaction hash- 
ing and links might reduce the num- 
ber of  I /Os  from five to three, or 
even two. For transactions which re- 
trieve a large set of  records, the ad- 
ditional I /Os caused by indexes com- 
pared to hashing and links are less 
important. 

The Optimizer 

A series of  experiments was con- 
ducted at the San Jose IBM Research 
Laboratory to evaluate the success of  
the System R optimizer in choosing 
among the available access paths for 
typical SQL statements. The results 
of these experiments are reported in 
[6]. For the purpose of  the experi- 
ments, the optimizer was modified in 
order to observe its behavior. Or- 
dinarily, the optimizer searches 
through a tree of  path choices, com- 
puting estimated costs and pruning 
the tree until it arrives at a single 
preferred access path. The optimizer 

was modified in such a way that it 
could be made to generate the com- 
plete tree of  access paths, without 
pruning, and to estimate the cost of  
each path (cost is defined as a 
weighted sum of page fetches and 
RSS calls). Mechanisms were also 
added to the system whereby it could 
be forced to execute an SQL state- 
ment by a particular access path and 
to measure the actual number of 
page fetches and RSS calls incurred. 
In this way, a comparison can be 
made between the optimizer's pre- 
dicted cost and the actual measured 
cost for various alternative paths. 

In [6], an experiment is described 
in which ten SQL statements, includ- 
ing some single-table queries and 
some joins, are run against a test 
database. The database is artificially 
generated to conform to the two 
basic assumptions of  the System R 
optimizer: (1) the values in each col- 
umn are uniformly distributed from 
some minimum to some maximum 
value; and (2) the distribution of  val- 
ues of  the various columns are inde- 
pendent of  each other. For each of  
the ten SQL statements, the ordering 
of  the predicted costs of  the various 
access paths was the same as the 
ordering of the actual measured costs 
(in a few cases the optimizer pre- 
dicted two paths to have the same 
cost when their actual costs were un- 
equal but adjacent in the ordering). 

Although the optimizer was able 
to correctly order the access paths in 
the experiment we have just de- 
scribed, the magnitudes of  the pre- 
dicted costs differed from the mea- 
sured costs in several cases. These 
discrepancies were due to a variety 
of  causes, such as the optimizer's in- 
ability to predict how much data 
would remain in the system buffers 
during sorting. 

The above experiment does not 
address the issue of  whether or not a 
very good access path for a given 
SQL statement might be overlooked 
because it is not part of  the opti- 
mizer's repertoire. One such example 
is known. Suppose that the database 
contains a table T in which each row 
has a unique value for the field 
SEQNO, and suppose that an index 

exists on SEQNO. Consider the follow- 
ing SQL query: 

SELECT * FROM T WHERE SEQNO IN 

(15, 17, 19, 21); 

This query has an answer set of  
(at most) four rows, and an obvious 
method of  processing it is to use the 
SEQNO index repeatedly: first to find 
the row with SEQNO = 15, then SEQNO 
= 17, etc. However, this access path 
would not be chosen by System R, 
because the optimizer is not pres- 
ently structured to consider multiple 
uses of  an index within a single query 
block. As we gain more experience 
with access path selection, the opti- 
mizer may grow to encompass this 
and other access paths which have so 
far been omitted from consideration. 

Views and Authorization 

Users generally found the System 
R mechanisms for defining views 
and controlling authorization to be 
powerful, flexible, and convenient. 
The following features were consid- 
ered to be particularly beneficial: 

(1) The full query power of  
SQL is made available for defining 
new views of  data (i.e., any query 
may be defined as a view). This 
makes it possible to define a rich 
variety of  views, containing joins, 
subqueries, aggregation, etc., without 
having to learn a separate "data def- 
inition language." However, the view 
mechanism is not completely trans- 
parent to the end user, because of  the 
restrictions described earlier (e.g., 
views involving joins of  more than 
one table are not updateable). 

(2) The authorization subsys- 
tem allows each installation of  Sys- 
tem R to choose a "fully centralized 
policy" in which all tables are cre- 
ated and privileges controlled by a 
central administrator; or  a "fully de- 
centralized policy" in which each 
user may create tables and control 
access to them; or some intermediate 
policy. 

During the two-year evaluation 
of  System R, the following sugges- 
tions were made by users for im- 
provement of  the view and authori- 
zation subsystems: 
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(1) The authorization subsys- 
tem could be augmented by the con- 
cept of  a "group" of  users. Each 
group would have a "group admin- 
istrator" who controls enrollment of  
new members in the group. Privi- 
leges could then be granted to the 
group as a whole rather than to each 
member of  the group individually. 

(2) A new command could be 
added to the SQL language to 
change the ownership of a table from 
one user to another. This suggestion 
is more difficult to implement than 
it seems at first glance, because the 
owner's name is part of  the fully 
qualified name of  a table (i.e., two 
tables owned by Smith and Jones 
could be named SMITH. PARTS and 
JONES.PARTS). References to the 
table SMITH. PARTS might exist in 
many places, such as view definitions 
and compiled programs. Finding 
and changing all these references 
would be difficult (perhaps impossi- 
ble, as in the case of users' source 
programs which are not stored under 
System R control). 

(3) Occasionally it is necessary 
to reload an existing table in the 
database (e.g., to change its physical 
clustering properties). In System R 
this is accomplished by dropping the 
old table definition, creating a new 
table with the same definition, and 
reloading the data into the new table. 
Unfortunately, views and authoriza- 
tions defined on the table are lost 
from the system when the old defi- 
nition is dropped, and therefore they 
both must be redefined on the new 
table. It has been suggested that 
views and authorizations defined on 
a dropped table might optionally be 
held "in abeyance" pending reacti- 
vation of the table. 

The Recovery Subsystem 
The combined "shadow page" 

and log mechanism used in System 
R proved to be quite successful in 
safeguarding the database against 
media, system, and transaction fail- 
ures. The part of  the recovery sub- 
system which was observed to have 
the greatest impact on system per- 
formance was the keeping of  a 
shadow page for each updated page. 

This performance impact is due pri- 
marily to the following factors: 

(1) Since each updated page is 
written out to a new location on disk, 
data tends to move about. This limits 
the ability of the system to cluster 
related pages in secondary storage to 
minimize disk arm movement for se- 
quential applications. 

(2) Since each page can poten- 
tially have both an "old" and "new" 
version, a directory must be main- 
tained to locate both versions of each 
page. For large databases, the direc- 
tory may be large enough to require 
a paging mechanism of  its own. 

(3) The periodic checkpoints 
which exchange the "old" and "new" 
page pointers generate I /O activity 
and consume a certain amount of 
CPU time. 

A possible alternative technique 
for recovering from system failures 
would dispense with the concept of  
shadow pages, and simply keep a log 
of all database updates. This design 
would require that all updates be 
written out to the log before the up- 
dated page migrates to disk from the 
system buffers. Mechanisms could be 
developed to minimize I /Os by re- 
taining updated pages in the buffers 
until several pages are written out at 
once, sharing an I /O to the log. 

The Locking Subsystem 
The locking subsystem of System 

R provides each user with a choice 
of  three levels of  isolation from other 
users. In order to explain the three 
levels, we define "uncommitted 
data" as those records which have 
been updated by a transaction that is 
still in progress (and therefore still 
subject to being backed out). Under 
no circumstances can a transaction, 
at any isolation level, perform up- 
dates on the uncommitted data of  
another transaction, since this might 
lead to lost updates in the event of  
transaction backout. 

The three levels of  isolation in 
System R are defined as follows: 

Level 1: A transaction running 
at Level 1 may read (but not update) 
uncommitted data. Therefore, suc- 
cessive reads of  the same record by 

a Level-1 transaction may not give 
consistent values. A Level-l trans- 
action does not attempt to acquire 
any locks on records while reading. 

Level 2: A transaction running 
at Level 2 is protected against read- 
ing uncommitted data. However, 
successive reads at Level 2 may still 
yield inconsistent values if a second 
transaction updates a given record 
and then terminates between the first 
and second reads by the Level-2 
transaction. A Level-2 transaction 
locks each record before reading it to 
make sure it is committed at the time 
of  the read, but then releases the lock 
immediately after reading. 

Level 3: A transaction running 
at Level 3 is guaranteed that succes- 
sive reads of the same record will 
yield the same value. This guarantee 
is enforced by acquiring a lock on 
each record read by a Level-3 trans- 
action and holding the lock until the 
end of  the transaction. (The lock ac- 
quired by a Level-3 reader is a 
"share" lock which permits other 
users to read but not update the 
locked record.) 

It was our intention that Isolation 
Level 1 provide a means for very 
quick scans through the database 
when approximate values were ac- 
ceptable, since Level-1 readers ac- 
quire no locks and should never need 
to wait for other users. In practice, 
however, it was found that Level-1 
readers did have to wait under cer- 
tain circumstances while the phys- 
ical consistency of  the data was 
suspended (e.g., while indexes 
or pointers were being adjusted). 
Therefore, the potential of Level 1 
for increasing system concurrency 
was not fully realized. 

It was our expectation that a 
tradeoff would exist between Isola- 
tion Levels 2 and 3 in which Level 2 
would be "cheaper" and Level 3 
"safer." In practice, however, it was 
observed that Level 3 actually in- 
volved less CPU overhead than 
Level 2, since it was simpler to ac- 
quire locks and keep them than to 
acquire locks and immediately 
release them. It is true that Isolation 
Level 2 permits a greater degree of  
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access to the database by concurrent 
readers and updaters than does Level 
3. However, this increase in concur- 
rency was not observed to have an 
important effect in most practical ap- 
plications. 

As a result of  the observations 
described above, most System R 
users ran their queries and applica- 
tion programs at Level 3, which was 
the system default. 

The Convoy Phenomenon 

Experiments with the locking 
subsystem of  System R identified a 
problem which came to be known as 
the "convoy phenomenon" [9]. 
There are certain high-traffic locks 
in System R which every process 
requests frequently and holds for a 
short time. Examples of  these are the 
locks which control access to the 
buffer pool and the system log. In a 
"convoy" condition, interaction be- 
tween a high-traffic lock and the op- 
erating system dispatcher tends to 
serialize all processes in the system, 
allowing each process to acquire the 
lock only once each time it is dis- 
patched. 

In the VM/370 operating system, 
each process in the multiprogram- 
ming set receives a series of  small 
"quanta" of CPU time. Each quan- 
tum terminates after a preset amount 
of  CPU time, or when the process 
goes into page, 1/O, or lock wait. At 
the end of  the series of  quanta, the 
process drops out of  the multipro- 
gramming set and must undergo a 
longer "time slice wait" before it 
once again becomes dispatchable. 
Most quanta end when a process 
waits for a page, an I /O operation, 
or a low-traffic lock. The System R 
design ensures that no process will 
ever hold a high-traffic lock during 
any of  these types of  wait. There is 
a slight probability, however, that a 
process might go into a long "time 
slice wait" while it is holding a high- 
traffic lock. In this event, all other 

dispatchable processes will soon re- 
quest the same lock and become en- 
queued behind the sleeping process. 
This phenomenon is called a "con- 
voy." 

In the original System R design, 
convoys are stable because of  the 
protocol for releasing locks. When a 
process P releases a lock, the locking 
subsystem grants the lock to the first 
waiting process in the queue (thereby 
making it unavailable to be reac- 
quired by P). After a short time, P 
once again requests the lock, and is 
forced to go to the end of  the convoy. 
If  the mean time between requests 
for the high-traffic lock is 1,000 in- 
structions, each process may execute 
only 1,000 instructions before it 
drops to the end of  the convoy. Since 
more than 1,000 instructions are typ- 
ically used to dispatch a process, the 
system goes into a "thrashing" con- 
dition in which most of  the cycles are 
spent on dispatching overhead. 

The solution to the convoy prob- 
lem involved a change to the lock 
release protocol of  System R. After 
the change, when a process P releases 
a lock, all processes which are en- 
queued for the lock are made dis- 
patchable, but the lock is not granted 
to any particular process. Therefore, 
the lock may be regranted to process 
P if it makes a subsequent request. 
Process P may acquire and release 
the lock many times before its time 
slice is exhausted. It is highly prob- 
able that process P will not be hold- 
ing the lock when it goes into a long 
wait. Therefore, if a convoy should 
ever form, it will most likely evapo- 
rate as soon as all the members of  
the convoy have been dispatched. 

Additional Observations 

Other observations were made 
during the evaluation of  System R 
and are listed below: 

(1) When running in a "canned 
transaction" environment, it would 
be helpful for the system to include 
a data communications front end to 
handle terminal interactions, priority 
scheduling, and logging and restart 
at the message level. This facility was 
not included in the System R design. 
Also, space would be saved and the 

working set reduced if several users 
executing the same "canned trans- 
action" could share a common access 
module. This would require the Sys- 
tem R code generator to produce 
reentrant code. Approximately half 
the space occupied by the multiple 
copies of  the access module could be 
saved by this method, since the other 
half  consists of  working storage 
which must be duplicated for each 
user. 

(2) When the recovery subsys- 
tem attempts to take an automatic 
checkpoint, it inhibits the processing 
of  new RSS commands until all users 
have completed their current RSS 
command; then the checkpoint is 
taken and all users are allowed to 
proceed. However, certain RSS com- 
mands potentially involve long op- 
erations, such as sorting a file. I f  
these "long" RSS operations were 
made interruptible, it would avoid 
any delay in performing checkpoints. 

(3) The System R design of  au- 
tomatically maintaining a system 
catalog as part of  the on-line data- 
base was very well liked by users, 
since it permitted them to access the 
information in the catalog with ex- 
actly the same query language they 
use for accessing other data. 

5. Conclusions 
We feel that our experience with 

System R has clearly demonstrated 
the feasibility of  applying a rela- 
tional database system to a real pro- 
duction environment in which many 
concurrent users are performing a 
mixture of  ad hoc queries and repet- 
itive transactions. We believe that 
the high-level user interface made 
possible by the relational data model 
can have a dramatic positive effect 
on user productivity in developing 
new applications, and on the data 
independence of  queries and pro- 
grams. System R has also demon- 
strated the ability to support a highly 
dynamic database environment in 
which application requirements are 
rapidly changing. 

In particular, System R has illus- 
trated the feasibility of  compiling a 
very high-level data sublanguage, 
SQL, into machine-level code. The 
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result of  this compilation technique 
is that most of  the overhead cost for 
implementing the high-level lan- 
guage is pushed into a "precompila- 
tion" step, and performance for 
canned transactions is comparable to 
that of  a much lower level system. 
The compilation approach has also 
proved to be applicable to the ad hoc 
query environment, with the result 
that a unified mechanism can be 
used to support both queries and 
transactions. 

The evaluation of  System R has 
led to a number of  suggested im- 
provements. Some of these improve- 
ments have already been imple- 
mented and others are still under 
study. Two major foci of  our contin- 
uing research program at the San 
Jose laboratory are adaptation of  
System R to a distributed database 
environment, and extension of  our 
optimizer algorithms to encompass a 
broader set of  access paths. 

Sometimes questions are asked 
about how the performance of a re- 
lational database system might com- 
pare to that of a "navigational" sys- 
tem in which a programmer carefully 
hand-codes an application to take 
advantage of explicit access paths. 
Our experiments with the System R 
optimizer and compiler suggest that 
the relational system will probably 
approach but not quite equal the 
performance of  the navigational sys- 
tem for a particular, highly tuned 
application, but that the relational 
system is more likely to be able to 
adapt to a broad spectrum of unan- 
ticipated applications with adequate 
performance. We believe that the 
benefits of  relational systems in the 
areas of  user productivity, data in- 
dependence, and adaptability to 
changing circumstances will take on 
increasing importance in the years 
ahead. 
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