Review of RC Circuits
EECS 373 Notes
Prabal Dutta

Resistor-capacitor (RC) circuits emerge in a variety of places in everyday embedded systems. This refresher provides several common examples that are, at their root, applications of RC circuits. We'll also see how to apply a few common patterns to solve these problems.

1. Charging a capacitor through a resistor. Consider the circuit shown below that includes battery ($V_{b a t}=15 \mathrm{~V}$), switch (that we will close at time $t=0$), resistor $\mathrm{R}(10 \mathrm{k} \Omega)$ and capacitor $\mathrm{C}(100 \mu \mathrm{~F})$. Assume that the capacitor is initially discharged $\left(V_{c a p}=0 \mathrm{~V}\right)$. Once the switch is closed, how long does it take for the capacitor voltage, $V_{\text {cap }}$, to rise to 80% of $V_{b a t}$?

Solution. The voltage, $V_{c a p}(t)$, across an initially discharged capacitor, C , charged through a resistor, R , from a voltage source, $V_{b a t}$, is described by the following equation $(\tau=\mathrm{RC})$:

$$
V_{c a p}(t)=V_{b a t}\left(1-e^{-t / \tau}\right)
$$

rearranging, we have:

$$
\begin{aligned}
& e^{-t / \tau}=\left(1-\frac{V_{c a p}(t)}{V_{b a t}}\right) \\
& -t / \tau=\ln \left(1-\frac{V_{c a p}(t)}{V_{b a t}}\right) \\
& t=-\tau \ln \left(1-\frac{V_{c a p}(t)}{V_{b a t}}\right)
\end{aligned}
$$

replacing τ with $\mathrm{RC}=10 \mathrm{k} \Omega \cdot 100 \mu \mathrm{~F}=1 \mathrm{~s}, V_{\text {cap }}(t)=(80 \%) \cdot(15 \mathrm{~V})=12 \mathrm{~V}$, and $V_{\text {bat }}=15 \mathrm{~V}$:

$$
t=-(1 \mathrm{sec}) \times \ln \left(1-\frac{12}{15}\right)=-\ln 0.2 \mathrm{sec}=-(-1.61) \mathrm{sec}=1.61 \mathrm{sec}
$$

2. I2C Rise Time. The standard-mode I2C specification uses open-drain logic. Under this scheme, bus devices drive the SCL and SDA bus lines low (to 0 V) but rely on a shared, external pull-up resistor (typically $10 \mathrm{k} \Omega$) to send a high bit (at 3.3 V or 5 V) by "pulling-up" the bus line. How long will a low-to-high transition take, after the SDA line has been at 0 V for a long time, if low is $0 \mathrm{~V}, V_{D D}$ is 3 V , a "high" is 80% of $V_{D D}$ (e.g. 2.4 V), the aggregate bus capacitance is 50 pF , and a $10 \mathrm{k} \Omega$ pull-up resistor is used?

Solution. Note that this problem is very similar to the first example. The only difference here is that the resistor is a $10 \mathrm{k} \Omega$ "pull-up" and the "capacitor" is the sum of all of the bus and gate capacitances (i.e. the aggregate input capacitance of the buffers shown below that are connected to SDA and SCL).

So, we simply use the same approach as before:

$$
t=-\tau \ln \left(1-\frac{80 \% \times V_{D D}}{V_{D D}}\right)
$$

replacing τ with $\mathrm{RC}=10 \mathrm{k} \Omega \cdot 50 \mathrm{pF}=0.5 \mu \mathrm{~s}, V_{D D}=3 \mathrm{~V}$:

$$
t=-(0.5 \mu \mathrm{~s}) \times \ln \left(1-\frac{0.8}{1}\right)=-(0.5 \mu \mathrm{~s}) \times \ln 0.2 \mathrm{sec}=-(0.5 \mu \mathrm{~s}) \times(-1.61)=0.8 \mu \mathrm{~s}
$$

3. Clock Generation. Assume you are designing a CMOS RC oscillator that must generate a 1 MHz clock (VOut) using the circuit shown below. Assume that V_{CC} is 5 V , that the 74 C 14 's valid "high" input is $\geq 80 \%$ of V_{CC} and valid "low" input is $\leq 20 \%$ of V_{CC}, that it outputs 0 V for a "low" and 5 V for a "high," and that it has a negligible propagation delay. Find values for R and C that will result in the following circuit generating the desired output frequency.

Solution. The key to this problem is recognizing that when the inverter's output is driven low (when $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$), the capacitor, C , is being discharged through the resistor, R . And, when the inverter's output is driven high ($\mathrm{V}_{\text {out }}=5 \mathrm{~V}$), the capacitor, C , is being charged through the resistor, R . We've already explored the equation that governs charging a capacitor through a resistor, but what about the equation that governs discharging a charged capacitor through a resistor? It's even simpler! Assuming that a capacitor, C , that was charged to an initial voltage, V_{0}, is discharged through a resistor, R , starting at time $t=0$, the voltage across the capacitor, $V_{\text {cap }}(t)$, is given by:

$$
V_{c a p}(t)=V_{0} \cdot e^{-t / \tau}
$$

rearranging to solve for t :

$$
t=-\tau \ln \left(\frac{V_{c a p}(t)}{V_{0}}\right)
$$

When power is first applied, the capacitor starts off discharged, so the input into the 74 C 14 's is 0 V , and therefore it's output becomes 5 V . At this point, the capacitor, C , begins charging through resistor, R. This charging will continue until $V_{\text {cap }}(t)$ reaches 80% of V_{CC}, at which point the input to the 74 C 14 will reach the threshold for a "high" input, and the output will instantaneously switch to "low" and produce a 0 V output. This will cause the capacitor, C , to begin discharging from a voltage $V_{\text {cap }}=80 \% \cdot \mathrm{~V}_{\mathrm{CC}}=4 \mathrm{~V}$. Once $V_{\text {cap }}$ reaches 20% of V_{CC}, the 74 C 14 's output will again switch "high" and the capacitor will continue charging.

So, the question to answer is how long does it take for a capacitor, C, to discharge from 80% to 20% voltage and how long does it take for a capacitor to charge from 20% to 80% voltage? To answer the first (discharge) question, we can use:

$$
\begin{gathered}
t=-\tau \ln \left(\frac{V_{c a p}(t)}{V_{0}}\right) \\
t=-\tau \ln \left(\frac{20 \%}{80 \%}\right)=-\tau(\ln (0.2)-\ln (0.8))=1.39 \tau=1.39 \cdot R \cdot C
\end{gathered}
$$

And to answer the second (charge) question, we can either work through the following equation for the times that $V_{c a p}(t)$ are at 20% and 80% of $V_{C C}$, and take their difference:

$$
t=-\tau \ln \left(1-\frac{V_{c a p}(t)}{V_{C C}}\right)
$$

Alternately, we can recognize the symmetry in the fall and rise times, and be happy that we can just do the math once! Since t represents a $1 / 2$ cycle of the 1 MHz clock (discharge), or $0.5 \mu \mathrm{~s}$, we have:

$$
\begin{gathered}
0.5 \mu \mathrm{~s}=1.39 \cdot R \cdot C \\
R \cdot C=0.36 \mu \mathrm{~s}
\end{gathered}
$$

Which would be satisfied by $\mathrm{R}=1 \Omega$ and $\mathrm{C}=0.36 \mu \mathrm{~F}$.
4. Anti-Aliasing Filter. Another use for an RC circuit is as a filter that limits the magnitude of spectral components of a signal above a given cutoff frequency. One common use of such a "low-pass filter" is as an anti-aliasing filter placed immediately before an ADC's input. Consider the RC-circuit shown below-a low-pass filter (LPF) - whose magnitude transfer function is given by:

$$
\frac{\left|V_{\text {out }}\right|}{\left|V_{\text {in }}\right|}=\frac{1}{\sqrt{1+\omega^{2} R^{2} C^{2}}}
$$

where ω is the $V_{i n}$'s frequency is radians (and where $\omega=2 \pi f$, and f is the frequency in Hz). If we would like this filter to attenuate the input, $V_{\text {in }}$, by 3 dB (so that $\frac{\left|V_{\text {out }}\right|}{\left|V_{\text {in }}\right|}=\frac{1}{\sqrt{2}}$) at 30 Hz , and we are given a capacitor, C , which has a value of $0.1 \mu \mathrm{~F}$, what value should we choose for the resistor, R ?

Solution. Notice that when $\frac{\left|V_{\text {out }}\right|}{\left|V_{\text {in }}\right|}=\frac{1}{\sqrt{2}}$, the expression $\sqrt{1+\omega^{2} R^{2} C^{2}}$ must be equal to $\sqrt{2}=\sqrt{1+1}$, which means that $\omega^{2} R^{2} C^{2}=1$ and $\omega R C=1$. Now, solving for R, we have:

$$
R=\frac{1}{\omega C}=\frac{1}{2 \pi f C}=\frac{1}{2 \cdot \pi \cdot 30 \cdot 1 \times 10^{-7}}=53 \mathrm{k} \Omega
$$

