EECS 373

Design of Microprocessor-Based Systems

Prabal Dutta

University of Michigan

Lecture 7: Interrupts (2)
January 29, 2015

Some slides prepared by Mark Brehob

High-level review of interrupts

» Why do we need them? Why are the alternatives
unacceptable?
- Convince me!

» What sources of interrupts are there?
- Hardware and software!
« What makes them difficult to deal with?
- Interrupt controllers are complex: there is a lot to do!

« Enable/disable, prioritize, allow premption (nested
interrupts), etc.

- Software issues are non-trivial
« Can’t trash work of task you interrupted
« Need to be able to restore state
« Shared data issues are a real pain

Table 7.1 List of System Exceptions
Exception

Number Exception Type Priority Description

1 Reset -3 (Highest) Reset

2 NM -2 Nonmaskable interrupt (external NMI input)
3 Hard fault -1 Al fault conditions f the corresponding fault

handler is not enabled

4 MemManage fault ~ Programmable Memory management fault; Memory
Protection Unit (MPU) violation or access
to ilegal locations

5 Bus fault Programmable Bus error; occurs when Advanced High-
Performance Bus (AHB) interface receives an
error response from a bus slave (also called
prefetch abort i it is an instruction fetch or
data abort if it is a data access)

6 Usage fauit Programmable Exceptions resuiting from program error or
trying to access coprocessor (the Cortex-M3
does not support a coprocessor)

7-10 Reserved NA —

1 sve Programmable Supenvisor Call

12 Debug monitor Programmable Debug monitor (breakpoints, watchpoints, or
external debug requests)

18 Reserved NA —

14 Pendsv Programmable Pendable Service Call

15 SYSTICK Programmable System Tick Timer

Table 7.2 List of External Interrupts

Exception Number Exception Type Priority

16 External Interrupt #0 Programmable
17 External Interrupt #1 Programmable
255 External Interrupt #2389 Programmable

Configuring the NVIC
3

« Interrupt Set Enable and Clear Enable
- 0xEOOOE100-0xE000E11C, OxEOOOE180-0XEO0OE19C

O0xEOOOE100 SETENAO R/W 0 Enable for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)

bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)
Write 1 to set bit to 1; write 0 has no effect

Read value indicates the current status

OxEOOOE180 CLRENAO R/W 0 Clear enable for external interrupt #0-31
bit[0] for interrupt #0

bit[1] for interrupt #1

bit[31] for interrupt #31
Write 1 to clear bit to 0; write 0 has no effect

Read value indicates the current enable status

Configuring the NVIC (2)

« Set Pending & Clear Pending
- OxE000E200-0xEO00E21C, OXEOOOE280-0xEO00E29C

0xEO00E200 | SETPENDO R/W 0 Pending for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)

bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)
Write 1 to set bit to 1; write 0 has no effect

Read value indicates the current status

0xEO000E280 CLRPENDO R/W 0 Clear pending for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)

bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)

Write 1 to clear bit to 0; write 0 has no effect

Read value indicates the current pending status

Configuring the NVIC (3)

« Interrupt Active Status Register
- OXEO0OE300-0xEO00E31C

Address Name Type Reset Value Description
0xEO00E300 ACTIVEO R 0

Active status for external interrupt #0-31
bit[0] for interrupt #0

bit[1] for interrupt #1

bit[31] for interrupt #31

0xEO00E304 ACTIVET R 0 Active status for external interrupt #32-63

Pending interrupts

f Hardware cleared interrupt request

Interrupt
Request

\
Interrupt
/

Pending Status

Handler Mode

Thread
Processor Mode
Mode

The normal case. Once Interrupt request is seen, processor puts it in
“pending” state even if hardware drops the request.
IPS is cleared by the hardware once we jump to the ISR.

This figure and those following are from The Definitive Guide to the ARM Cortex-M3, Section 7.4

New Interrupt Request after Pending Cleared

Interrupt request
pulsed again

Interrupt

Request \

Interrupt

Pending Status

Interrupt °

Active Status

Handler Mode

Thread
Processor Mode
Mode

Interrupt Priority -V

| michican |
hViTh

» What do we do if several interrupts arrive at the same time?
* NVIC allows to set priorities for (almost) every interrupt

« 3 fixed highest priorities, up to 256 programmable priorities
- 128 preemption levels
- Not all priorities have to be implemented by a vendor!

Bit 7 ‘Bité ‘BitS Bit 4 ‘Bit3 ‘BitZ ‘Bit1 ‘Bito

Implemented Not implemented, read as zero

- SmartFusion has 32 priority levels, i.e., 0x00, 0x08, ..., OxF8
« Higher priority interrupts can pre-empt lower priorities
« Priority can be sub-divided into priority groups
- splits priority register into two halves, preempt priority and subpriority
- preempt priority: indicates if an interrupt can preempt another
- subpriority: used if two interrupts of same group arrive concurrently

Interrupt Priority (2) T

* Interrupt Priority Level Registers
- 0XEO0OE400-0xEOOOE4EF

Address Name Type Reset Value Description

0xEO00E400 PRI_O R/W 0 (8-bir) Priority-level external interrupt #0

0xEO00E401 PRI_1 R/W 0 (8-bir) Priority-level external interrupt #1

0xEO00E41F PRI_31 R/W 0 (8-bir) Priority-level external interrupt #31

Preemption Priority and Subpriority

Priority Group Preempt Priority Field Subpriority Field
0 Bit [7:1] Bit [0]

1 Bit [7:2] Bit [1:0]

2 Bit[7:3] Bit [2:0]

3 Bit [7:4] Bit [3:0]

4 Bit [7:5] Bic [4:0]

5 Bit [7:6] Bit [5:0]

6 Bit [7] Bit [6:0]

7 None Bit [7:0]

Application Interrupt and Reset Control Register (Address OxEOOOEDOC)

Bits | Name Type | Reset | Description
Value
31:16 | VECTKEY RW |- Access key; 0x0SFA must be written to this field to write
to this register, otherwise the write will be ignored; the
read-back value of the upper half word is 0<FA0S

15 ENDIANNESS R - Indicates endianness for data: 1 for big endian (BE8)
and 0 for lircle endian; this can only change after a reset

108 PRIGROUP R/W 0 Priority group

2 | svsreserreq w - Requests chip control logic to generate a reset

1 VECTCLRACTIVE w - Clears all active state information for exceptions;

typically used in debug or OS to allow system to recover
from system error (Reset is safer)

0 VECTRESET w - Resets the Cortex-M3 processor (except debug logic),
but this will not reset circuits outside the processor

PRIMASK, FAULTMASK, and BASEPRI

» What if we quickly want to disable all interrupts?

* Write 1 into PRIMASK to disable all interrupt except NMI
- MOV RO, #1
- MSR PRIMASK, RO

» Write 0 into PRIMASK to enable all interrupts

o FAULTMASK is the same as PRIMASK, but also blocks hard
fault (priority -1)

» What if we want to disable all interrupts below a certain
priority?

» Write priority into BASEPRI
- MOV RO, #0x60
- MSR BASEPRI, RO

Masking

B1.4.3 The special-purpose mask registers

There are three special-purpose registers which are used for the purpose of priority boosting. Their function
is explained in detail in Execution priority and priority boosting within the core on page B1-18:

the exception mask register (PRIMASK) which has a 1-bit value
the base priority mask (BASEPRI) which has an 8-bit value
the fault mask (FAULTMASK) which has a 1-bit value.

All mask registers are cleared on reset. All unprivileged writes are ignored

The formats of the mask registers are illustrated in Table B1-4

Table B1-4 The special-purpose mask registers

31 8 7 1 0
PRIMASK RESERVED PM|
[FAULTMASK| RESERVED FM
BASEPRI RESERVED BASEPRI

Interrupt Service Routines

» Automatic saving of registers upon exception
- PC, PSR, RO-R3, R12, LR
- This occurs over data buss

» While data bus busy, fetch exception vector
- i.e. target address of exception handler
- This occurs over instruction bus

« Update SP to new location

» Update IPSR (low part of xPSR) with exception new #

» Set PC to vector handler

» Update LR to special value EXC_RETURN

» Several other NVIC registers gets updated

» Latency can be as short as 12 cycles (w/o mem delays)

The xPSR register layout

The APSR, IPSR and EPSR registers are allocated as mutually exclusive bitfields within a 32-bit register.
The combination of the APSR, IPSR and EPSR registers is referred to as the xPSR register.

Table B1-2 The xPSR register layout

31 30 29 28 27 26 25 24 23 16 15 10 9 8 0

APSR]\" z|Cc|v

?

IPSR 0 or Exception Number

[EPSR| ICTIT| T

‘ ICTIT

ARM interrupt summary

1. We’ve got a bunch of memory-mapped registers
that control things (NVIC)
- Enable/disable individual interrupts
- Set/clear pending
- Interrupt priority and preemption

2. We’ve got to understand how the hardware
interrupt lines interact with the NVIC

3. And how we figure out where to set the PC to
point to for a given interrupt source.

1. NVIC registers (example)

» Set Pending & Clear Pending
- 0xEO00E200-0xEO00E21C, OxEOOOE280-0xEO00E29C

0xEO00E200 SETPENDO R/W 0 Pending for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)
bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)
Write 1 to set bit to 1; write 0 has no effect

Read value indicates the current status

0xEO00E280 CLRPENDO R/W 0 Clear pending for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)
bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)

Write 1 to clear bit to 0; write 0 has no effect

Read value indicates the current pending status

1. More registers (example)

* Interrupt Priority Level Registers
- 0XEO0OE400-0xEOOOE4EF

Address Name Type Reset Value Description

0xEO00E400 PRI_O R/W 0 (8-bir) Priority-level external interrupt #0

0xEO00E401 PRI_1 R/W 0 (8-bir) Priority-level external interrupt #1

0xEO00E41F PRI_31 R/W 0 (8-bir) Priority-level external interrupt #31

1. Yet another part of the NVIC registers!

Priority Group Preempt Priority Field Subpriority Field
0 Bic [7:1] Bit [0]

1 Bit [7:2] Bit [1:0]

2 Bic [7:3] Bit [2:0]

3 Bic [7:4] Bit [3:0]

4 Bic [7:5] Bit [4:0]

5 Bit [7:6] Bit [5:0]

6 Bic[7] Bic [6:0]

7 None Bit [7:0]

Application Interrupt and Reset Control Register (Address OxEOOOEDOC)

Bits | Name Type | Reset | Description
Value
31:16 | VECTKEY RW |- Access key; 0x0SFA must be written to this field to write
to this register, otherwise the write will be ignored; the
read-back value of the upper half word is 0sFA0S

15 ENDIANNESS. R - Indicates endianness for data: 1 for big endian (BES)
and 0 for licle endian; this can only change afcer a reset

10:8 | PRIGROUP rRW |0 Priority group

2 | sysRESETREQ | W - Requests chip control logic to generate a reset

1 VECTCLRACTIVE w - Clears all active state information for exceptions;

typically used in debug or OS to allow system to recover
from system error (Reset is safer)

0 VECTRESET w - Resets the Cortex-M3 processor (except debug logic),
but this will not reset circuits outside the processor

2. How external lines interact with the NVIC

f Hardware cleared interrupt request

Interrupt
Request

\
Interrupt
/

Pending Status

Handler Mode

Thread
Processor Mode
Mode

The normal case. Once Interrupt request is seen, processor puts it in
“pending” state even if hardware drops the request.
IPS is cleared by the hardware once we jump to the ISR.

This figure and those following are from The Definitive Guide to the ARM Cortex-M3, Section 7.4

3. How the hardware figures out what to set the PC to

Table 7.1 Listof Sstem Exceptions
g_pfnvectors: e Excopton Type
.word _estack 1 ‘

.word Reset_ Handler 5
.word NMI_Handler B
.word HardFault_ Handler
.word MemManage_Handler
.word BusFault_Handler
.word UsageFault Handler

Doscription

s Busfau

B Usaga faut

.word O e T
.word O = °
.word 0 " :
~word 0 s svsmek
.word SVC_Handler
— Table 7.2 List of Extermal Interupt=
.word DebugMon_Handler Exception Number Exception Type Priorty
word O ® Prgannae

b

.word PendSV_Handler

235 Extemalinternupt 2259

.word SysTick Handler

.word WdogWakeup_IRQHandler

.word BrownOut_1_ 5V_IRQHandler

.word BrownOut_3_3V_IRQHandler
.............. (they continue)

Discussion: So let’s say a GPIO pin goes high
- When will we get an interrupt?
- What happens if the interrupt is allowed to proceed?

What happens when we return from an ISR?

« Interrupt exiting process
- System restoration needed (different from branch)
- Special LR value could be stored (OxFFFFFFFx)
» Tail chaining
- When new exception occurs
- But CPU handling another exception of same/higher priority
- New exception will enter pending state
- But will be executed before register unstacking
- Saving unnecessary unstacking/stacking operations
- Can reenter hander in as little as 6 cycles
« Late arrivals (ok, so this is actually on entry)
- When one exception occurs and stacking commences
- Then another exception occurs before stacking completes
- And second exception of higher preempt priority arrives
- The later exception will be processed first

Other stuff: The xPSR register layout

The APSR. IPSR and EPSR registers are allocated as mutually exclusive bitfields within a 32-bit register.
The combination of the APSR., IPSR and EPSR registers is referred to as the xPSR register.

Table B1-2 The xPSR register layout

313029282726252423 16 15 109 8 0

5

SRIN

sz Q

PSR 0 or Exception Number

ICL]T‘ T

[EPSR]

‘ ICIIT

Example of Complexity: The Reset Interrupt

veencoop | MSS BROWNOUTS_3VINT,
BGPSVENABLE
ABPOWERON L2

[veessoon | oot SROWNOUTI VI
e [veeTs vecisu)
Derect s000 X

100 s delay before PSM is turned on to allow for BG to power up.
20 s delay for NVM t

1) No power
2) System is held in RESET as long as VCC15 < 0.8V
a) In reset: registers forced to default
b) RC-Osc begins to oscillate
c) MSS_CCC drives RC-Osc/4 into FCLK
d) PORESET_N is held low
3) Once VCC15GO0D, PORESET_N goes high
a) MSS reads from eNVM address 0x0 and 0x4

Interrupt types

« Two main types
- Level-triggered
- Edge-triggered

Level-triggered interrupts

Signaled by asserting a line low or high

Interrupting device drives line low or high and holds it
there until it is serviced

Device deasserts when directed to or after serviced

Can share the line among multiple devices (w/ OD+PU)
Active devices assert the line

Inactive devices let the line float

Easy to share line w/o losing interrupts

But servicing increases CPU load - example

And requires CPU to keep cycling through to check
Different ISR costs suggests careful ordering of ISR checks
Can’t detect a new interrupt when one is already asserted

Edge-triggered interrupts

Signaled by a level *transition* (e.g. rising/falling edge)
Interrupting device drive a pulse (train) onto INT line
What if the pulse is too short? Need a pulse extender!
Sharing *is* possible...under some circumstances

INT line has a pull up and all devices are OC/0D.
Devices *pulse* lines

Could we miss an interrupt? Maybe...if close in time
What happens if interrupts merge? Need one more ISR pass
Must check trailing edge of interrupt

Easy to detect "new interrupts”

Benefits: more immune to unserviceable interrupts
Pitfalls: spurious edges, missed edges

Source of "lockups” in early computers

