EECS 373

Design of Microprocessor-Based Systems

Prabal Dutta

University of Michigan

Lecture 6: Interrupts
January 27, 2015

Slides developed in part by Mark Brehob

Announcements

« Additional GSI/IA office hours (OH)
- Pat Pannuto 10-11am MW in EECS Learning Center
« (Glass rooms between BBB and Dow)

Interrupts, traps, exceptions, and faults

traps &
exceptlons

rC
EECS 370 i = Assembly
Software t 7 sver Central Machine Code

A 1 :
Pi
1S Hardware ——-s! rocessing

Unijt
faul | 1dr (read)
N INT# str (write)
¥ 7

2 System Buses
v AHB/APB

Minterrupts 4 4 A
M'T: v 1 y 1 v 1 v T

interrupts-

Interrupts

Merriam-Webster:
- “to break the uniformity or continuity of”

» Informs a program of some external events
» Breaks execution flow

! Key questions:
I Internal & .
I
GPIO/|N'I1 Timers || USART || DAC/ADC || External * Where do interrupts come from?
Memory « How do we save state for later continuation?

él ni-é é&% é"% ‘% « How can we ignore interrupts?
Internal o ees .
Extornal . » How can we prioritize interrupts?

R o N K .

\&Q&;« 0 Y °§‘ & S & » How can we share interrupts?
O

Interrupts Two basic types of interrupts

Interrupt (a.k.a. exception or trap):
* An event that causes the CPU to stop executing current program
* Begin executing a special piece of code
« Called an interrupt handler or interrupt service routine (ISR)
« Typically, the ISR does some work
« Then resumes the interrupted program

Interrupts are really glorified procedure calls, except that they:
« can occur between any two instructions
« are “transparent” to the running program (usually)
« are not explicitly requested by the program (typically)
« call a procedure at an address determined by the type of
interrupt, not the program

(172)

» Those caused by an instruction
- Examples:
e TLB miss
« lllegal/unimplemented instruction
e divby 0
« SVC (supervisor call, e.g.: SVC #3)
- Names:
« Trap, exception

Two basic types of interrupts
(2/2)
» Those caused by the external world
- External device
- Reset button
- Timer expires
- Power failure
- System error

» Names:
- interrupt, external interrupt

Why are interrupts useful? Example: I/0 Data Transfer

Two key questions to determine how data is
transferred to/from a non-trivial 1/0 device:

1. How does the CPU know when data is available?
a. Polling
b. Interrupts

2. How is data transferred into and out of the
device?
a. Programmed I/0
b. Direct Memory Access (DMA)

How it works

« Something tells the processor core there is an
interrupt

o Core transfers control to code that needs to be
executed
» Said code “returns” to old program
¢ Much harder then it looks.
- Why?

Devil is in the details
» How do you figure out where to branch to?

« How to you ensure that you can get back to
where you started?

» Don’t we have a pipeline? What about partially
executed instructions?

« What if we get an interrupt while we are
processing our interrupt?

« What if we are in a “critical section?”

Where

« If you know what caused the interrupt
then you want to jump to the code that
handles that interrupt.

- If you number the possible interrupt cases,
and an interrupt comes in, you can just
branch to a location, using that number as an
offset (this is a branch table)

- If you don’t have the number, you need to
poll all possible sources of the interrupt to
see who caused it.

» Then you branch to the right code

Get back to where you once belonged

» Need to store the return address somewhere.
- Stack might be a scary place.
» That would involve a load/store and might cause an
interrupt (page fault)!
- So a dedicated register seems like a good choice
« But that might cause problems later...
» What happens if another interrupt happens?

Modern architectures

* A modern processor has many (often 50+)
instructions in-flight at once.
- What do we do with them?

« Drain the pipeline?
- What if one of them causes an exception?

e Punt all that work
- Slows us down

« What if the instruction that caused the exception
was executed before some other instruction?
- What if that other instruction caused an interrupt?

Nested interrupts

« If we get one interrupt while handling
another what to do?
- Just handle it
« But what about that dedicated register?
« What if I’m doing something that can’t be stopped?
- Ignore it
« But what if it is important?
- Prioritize
« Take those interrupts you care about. Ignore the
rest
« Still have dedicated register problems.

Critical section

« We probably need to ignore some interrupts but
take others.

- Probably should be sure our code can’t cause an
exception.

- Use same prioritization as before.
« What about instructions that shouldn’t be
interrupted?
- Disable interrupts while processing an interrupt?

Our processor

« Over 100 interrupt sources
- Power on reset, bus errors, 1/0 pins changing state, data in
on a serial bus etc.
« Need a great deal of control
- Ability to enable and disable interrupt sources
- Ability to control where to branch to for each interrupt
- Ability to set interrupt priorities
» Who wins in case of a tie
« Can interrupt A interrupt the ISR for interrupt B?
- If so, A can “preempt” B.
« All that control will involve memory mapped 1/0.
- And given the number of interrupts that’s going to be a pain

SmartFusion interrupt sources

Table 15+ Smartruson terupt Sourcss

ED o e ReE o Fxca W
o WoosmESTT S wircoos) RO ARG R A
i) WooGAYER e W0 o [Ty e
W OOV 72 e R ARG Ao
e OB -5) e v G
s oG R e v ace e et
i i e s Ace e AGE W e
T B e) AR A
] W I3) et v rnca
T R [e ez e
Lo Ean s et s xca wa
st EG s Aet 2 Fxs W
s Va0 m R RCE A0 DA 7 A
s VR i RCE ROE BATAAD R
W RO sl e A0 paAvAD
T m et Rck 3000 SO 1)
s o sl AGE A0 GO R A
s s oA T s AGE 2602 GO T ne
T o svoss w0) R RO TR G A
e R] e ot A G
G A) Ace 300 AR)
s e e sl Ace comPr LR s
s T e s A oML W e
R ot L) e o LR o
el oo AT) e cont ALy
s o o v s ol ace conrs i v
e g T R o LW A
e] e o LR o
e G e conm
[] e con R
wrspor = e

ET o ific i

e N 54 more ACE specific interrupts
s woma

GPIO_3_IRQ to GPIO_31_IRQ cut

Table 7.1 List of System Exceptions

Exception

Number Exception Type Priority Description

1 Reset -3 (Highest) Reset

2 NM -2 Nonmaskable interrupt (external NMI input)

3 Hard fauit -1 Al fault conditions f the corresponding fault
handler is not enabled

4 MemManage fault Programmable Memory management fault; Memory

Protection Unit (MPU) violation or access
to ilegal locations

5 Bus fault Programmable Bus error; occurs when Advanced High-
Performance Bus (AHB) interface receives an
error response from a bus slave (also called
prefetch abort i it is an instruction fetch or
data abort if it is a data access)

6 Usage fauit Programmable Exceptions resuiting from program error or
trying to access coprocessor (the Cortex-M3
does not support a coprocessor)

7-10 Reserved NA —

1 sve Programmable Supenvisor Call

12 Debug monitor Programmable Debug monitor (breakpoints, watchpoints, or
external debug requests)

18 Reserved NA —

14 Pendsv Programmable Pendable Service Call

15 SYSTICK Programmable System Tick Timer

Table 7.2 List of External Interrupts

Exception Number Exception Type Priority

16 External Interrupt #0 Programmable
17 External Interrupt #1 Programmable
255 External Interrupt #2389 Programmable

And the interrupt vectors
(in startup_a2fxxxm3.s found in CMSIS, startup_gcc)

Table 7.1 Listof System Exceptions

g_pfnVectors: Nmpor” Gxcopton o praty Dosaripton
.word _estack 1 Focet
.word Reset Handler . et
.word NMI_Handler . Memanage fauk

.word HardFault_ Handler
.word MemManage_Handler
.word BusFault_Handler
.word UsageFault Handler

s Busfau

.word O o T
.word O 2 Deoug mens oints, watchpots, o
.word O

.word O

.word SVC_Handler

.word DebugMon_Handler Exception Number Exoeption Type Pty

.word O .

.word PendSV_Handler

Extamal interupt 2230

.word SysTick Handler

.word WdogWakeup_IRQHandler

.word BrownOut_1_ 5V_IRQHandler

.word BrownOut_3_3V_IRQHandler
.............. (they continue)

How to change where to go on an interrupt?
Answer: edit the interrupt vector table [IVT]

2 .word _estack
25 .word Reset_Handler
6 .word NMI_Handler

.word 0O

.global Reset_Handler
.type Reset]
7TReset_Handler:
2_start:

andler, %function

Enabling and disabling interrupt sources

« Interrupt Set Enable and Clear Enable
- OxEO0OE100-0xEO00E11C, OXEOOOE180-0xEQ00E19C

O0xEOOOE100 SETENAO R/W 0 Enable for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)

bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)

Write 1 to set bit to 1; write 0 has no effect

Read value indicates the current status

0xEO00E180 CLRENAO R/W 0 Clear enable for external interrupt #0-31
bit[0] for interrupt #0

bit[1] for interrupt #1

bit[31] for interrupt #31
Write 1 to clear bit to 0; write 0 has no effect

Read value indicates the current enable status

Configuring the NVIC (2)

« Set Pending & Clear Pending
- 0xE000E200-0xEO00E21C, OXEOOOE280-0xEO00E29C

0xEO00E200 | SETPENDO R/W 0 Pending for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)

bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)
Write 1 to set bit to 1; write 0 has no effect

Read value indicates the current status

0xEO000E280 CLRPENDO R/W 0 Clear pending for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)

bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)
Write 1 to clear bit to 0; write 0 has no effect

Read value indicates the current pending status

Configuring the NVIC (3)

« Interrupt Active Status Register
- OXEO0OE300-0xEO00E31C

Address Name Type Reset Value Description
0xEO00E300 ACTIVEO R 0

Active status for external interrupt #0-31
bit[0] for interrupt #0

bit[1] for interrupt #1

bit[31] for interrupt #31

0xEO00E304 ACTIVET R 0 Active status for external interrupt #32-63

Interrupt types

« Two main types
- Level-triggered
- Edge-triggered

Level-triggered interrupts

« Signaled by asserting a line low or high

« Interrupting device drives line low or high and holds it
there until it is serviced

« Device deasserts when directed to or after serviced

o Can share the line among multiple devices (w/ OD+PU)

« Active devices assert the line

« Inactive devices let the line float

« Easy to share line w/o losing interrupts

« But servicing increases CPU load > example

« And requires CPU to keep cycling through to check

« Different ISR costs suggests careful ordering of ISR checks
« Can’t detect a new interrupt when one is already asserted

Edge-triggered interrupts

« Signaled by a level *transition* (e.g. rising/falling edge)
« Interrupting device drive a pulse (train) onto INT line

* What if the pulse is too short? Need a pulse extender!
« Sharing *is* possible...under some circumstances

« INT line has a pull up and all devices are OC/OD.

« Devices *pulse* lines

« Could we miss an interrupt? Maybe...if close in time

« What happens if interrupts merge? Need one more ISR pass
« Must check trailing edge of interrupt

o Easy to detect "new interrupts”

« Benefits: more immune to unserviceable interrupts

« Pitfalls: spurious edges, missed edges

« Source of "lockups” in early computers

Pending interrupts

r Hardware cleared interrupt request

Interrupt
Request

\
Interrupt
/

Pending Status

Handler Mode

Thread
Processor Mode
Mode

The normal case. Once Interrupt request is seen, processor puts it in
“pending” state even if hardware drops the request.
IPS is cleared by the hardware once we jump to the ISR.

This figure and those following are from The Definitive Guide to the ARM Cortex-M3, Section 7.4

Interrupt
Request

[
\
Interrupt 4,—%

Pending Status

Pending status
cleared by software

Thread
Processor Mode
Mode

In this case, the processor never took the interrupt because we cleared the
IPS by hand (via a memory-mapped |/0 register)

Active Status set during handler execution

Interrupt request

x~~ Cleared by software
Interrupt

Request \

Interrupt

Pending Status

Interrupt
Active Status
I

Handler Mode o nterrupt returned

Processor Thread
Mode Mode

Interrupt Request not Cleared

Interrupt request stays active

Interrupt

Request \

Interrupt
Pending Status

Interrupt
Active Status

Handler Mode

Processor Thread
Mode Mode

Answer

Interrupt Interrupt request stay active

request

Interrupt [
pending status

Interrupt
active statfs Interrupt return /’U
Handler mode \y

Processor Thread
mode mode Interrupt reentered

Interrupt pulses before entering ISR

Multiple interrupt pulses
before entering ISR

Interrupt

Request

Interrupt
Pending Status

Interrupt
Active Status

~J

Processor
Mode

Answer

Multiple interrupt pulses
Interrupt ~ before entering ISR

request

Interrupt

pending status

Interrupt

active status
Handler mode

Processor Thread
mode _mode Interrupt return

New Interrupt Request after Pending Cleared

Interrupt request
pulsed again

Interrupt

Request \

Interrupt

Pending Status

Interrupt

Active Status

Handler Mode

Thread
Processor Mode
Mode

