EECS 373

Design of Microprocessor-Based Systems

Prabal Dutta

University of Michigan

Lecture 4: Memory-Mapped I/0, Bus Architectures
January 20, 2015

Slides developed in part by
Mark Brehob & Prabal Dutta

Today...

Memory-Mapped I/0

Course Roadmap

{ EECS 370 N L
I L] Assembly
1 Software Central I | Machine Code
IISA Hard Processing Fe=====
. ardware _ L — — — — — — ~ Unit X
L BT T e 7
| y ldr (read) gystem Buses |
J StE rite) TAHB/APB
T InterruptsT ,\ - -—- 1_ -~ _'1"
i g e T e
1 | 1
1 \ Internal & |}
1 GPIO/INT Timers USART fl DAC/ADC External 1
1 f Memory 1
1 | 1
1 1 1
External} & & n u@ Cas &1 (, 1] \§., |
e &Qzé it &S N n e 1
O @ u A ¥ /

Memory-mapped I/0

» Microcontrollers have many interesting
peripherals
- But how do you interact with them?

» Need to:
- Send commands
- Configure device
- Receive data

» But we don’t want new processor instructions for
everything
- Actually, it would be great if the processor didn’t know
anything weird was going on at all

Memory-mapped I/0

« Instead of real memory, some addresses map to
1/0 devices instead

Example:
« Address 0x80000004 is a General Purpose |/0 (GPIO) Pin
- Writing a 1 to that address would turn it on
- Writing a 0 to that address would turn it off
- Reading at that address would return the value (1 or 0)

Smartfusion
Memory Map

|
pr—

Figwre 24+ P With 64 Kbyies of SRAM

Memory-mapped I/0

« Instead of real memory, some addresses map to
1/0 devices instead

« But how do you make this happen?
MAGIC isn’ t a bad guess, but not very helpful

Let’ s start by looking at how a memory bus works

Today...

Example Bus with Memory-Mapped 1/0

Bus terminology

« Any given transaction have an “initiator” and
“target”

« Any device capable of being an initiator is said to
be a “bus master”

- In many cases there is only one bus master (single
master vs. multi-master).

« A device that can only be a target is said to be a
slave device.

Basic example
Let’ s demonstrate a hypothetical example bus

«Characteristics
- Asynchronous (no clock)
- One Initiator and One Target

«Signals
- Addr[7:0], Data[7:0], CMD, REQ#, ACK#
o CMD=0 is read, CMD=1 is write.
« REQ# low means initiator is requesting something.
« ACK# low means target has done its job.

Read transaction

Initiator wants to read location 0x24

Addr[7:0] 22 0x24 9

CMD r

Data[7:0] ?? 0x55 2?

REQ#

ACK#

ABCD E F G HI

A read transaction

« Say initiator wants to read location 0x24
Initiator sets Addr=0x24, CMD=0

Initiator then sets REQ# to low

Target sees read request

. Target drives data onto data bus

Target then sets ACK# to low

Initiator grabs the data from the data bus

. Initiator sets REQ# to high, stops driving Addr and
CMD

H. Target stops driving data, sets ACK# to high
terminating the transaction

I. Bus is seen to be idle

omMmUNw>

A write transaction

« Say initiator wants to write OxF4 location 0x31
. Initiator sets Addr=0x24, CMD=1, Data=0xF4

. Initiator then sets REQ# to low

. Target sees write request

. Target reads data from data bus

(only needs to store in register, not write all the way to
memory)

. Target then sets ACK# to low.

Initiator sets REQ# to high, stops driving other lines
. Target sets ACK# to high, terminating the transaction
. Bus is seen to be idle.

N w>

Tomm

Returning to memory-mapped 1/0

Now that we have an example bus, how would
memory-mapped /0 work on it?

Example peripherals
0x00000004: Push Button - Read-Only
Pushed -> 1
Not Pushed -> 0
0x00000005: LED Driver - Write-Only
On ->1
Ooff -> 0

The push-button
(if Addr=0x04 write 0 or 1 depending on

The push-button
(if Addr=0x04 write 0 or 1 depending on

button) button)
Addr[7]
Addr[6]
Addr(5] ACK# ACK#
Addr[4]
s s
Addr|]
Addr[1] Addr[1]
Addr{0] Addr[0] Data[7]
REQ# REQ#
CMD Data[7] CMD
Data[6] Data[6]
Data[5]
Data[4] Data[5]
L.;I% Data[4] \CNI\I}I?; about
atal
Data[0] Data[3] .
Data[2]
Data[1]
Button (0 or 1) Button (0 or 1) Data[0]
The LED The LED
(1 bit reg written by LSB of address (1 bit reg written by LSB of address
0x05) 0x05)
Addr[7] Addr(7]
Addr[6] Addr[6]
Addr(5] Addr(5]
Add:[:] ACK# Add:[:] ’. ACK#
Ada2) Ada2)
Addr[1] Addr[1]
Addr[0] Addr[0] |
REQ# REQ#
CMD LED CMD LED
DATA[7] DATA[7]
DATA[6] DATA[6]
DATA[5] DATA[5]
DATA[4] DATA[4]
DATA[3] DATA[3]
DATA[2] DATA[2]
DATA[1] DATA[1]
DATA[0] DATA[) f———————————————

Let’s write a simple assembly program
Light on if button is pressed.
Peripheral Details

0x00000004: Push Button - Read-Only
Pushed -> 1
Not Pushed -> 0

0x00000005: LED Driver - Write-Only
On -> 1
Ooff ->0

Today...

Bus Architectures

Driving shared wires

« It is commonly the case that some shared wires
might have more than one potential device that
needs to drive them.

- For example there might be a shared data bus that is
used by the targets and the initiator. We saw this in
the simple bus.

In that case, we need a way to allow one device to

control the wires while the others “stay out of the

way”
» Most common solutions are:
- using tri-state drivers (so only one device is
driving the bus at a time)
- using open-collector connections (so if any
device drives a 0 there is a 0 on the bus
otherwise there is a 1)

Or just say no to shared wires.

» Another option is to not share wires that could
be driven by more than one device...

- This can be really expensive.

« Each target device would need its own
data bus.

» That’s a LOT of wires!

- Not doable when connecting chips on a PCB as you are

paying for each pin.
- Quite doable (though not pretty) inside of a chip.

Wire count

» Say you have a single-master bus with 5 other
devices connected and a 32-bit data bus.
- If we share the data bus using tri-state connections,
each device has “only” 32-pins.
- If each device that could drive data has it’s own bus...

« Each slave would need pins for data
» The master would need pins for
data

« Again, recall pins==$$$5$5.

What happens when this “instruction” executes?

#include <stdio.h>
#include <inttypes.h>

#define REG_FOO 0x40000140

main () {
uint32_t *reg = (uint32_t *)(REG_FO00);
*reg += 3;

printf(“ex%x\n”, *reg); // Prints out new value

“*reg += 3” is turned into a ld, add, str sequence

e Load instruction

- A bus read operation commences

- The CPU drives the address “reg” onto the address bus

- The CPU indicated a read operation is in process (e.g. R/W#)

- Some “handshaking” occurs

- The target drives the contents of “reg” onto the data lines

- The contents of “reg” is loaded into a CPU register (e.g. r0)
e Add instruction

- Animmediate add (e.g. add r0, #3) adds three to this value
» Store instruction

- A bus write operation commences

- The CPU drives the address “reg” onto the address bus

- The CPU indicated a write operation is in process (e.g. R/W#)

- Some “handshaking” occurs

- The CPU drives the contents of “r0” onto the data lines

- The target stores the data value into address “reg”

Details of the bus “handshaking” depend
on the particular memory/peripherals involved

« SoC memory/peripherals
- AMBA AHB/APB

« NAND Flash
- Open NAND Flash Interface (ONFI)

« DDR SDRAM
- JEDEC JESD79, JESD79-2F, etc.

HEEE

Why use a standardized bus?

» Downsides
- Have to follow the specification
- Probably has actions that are unnecessary

« Upside
- Generic systems
- Allows modules to be reused on different systems

Today...

AMBA APB

Modern embedded systems have multiple busses

Ky
5
&

| 4 Atmel SAM3U

Votage =]
Roguiator

AN Fas
Con

v

v

commromm]!
S i

=

oD P
—]
wooumu:
o 1 1 1 1 1 1
Expanded [Fow | [Ferpnerr | [Ferotera | [oot
373 focus o]l o 1500 | o || o
gz —p] O s ¥ 3+ e
POC POC.

SRAMD
a2 Keyies|
16 Kyios|

5 e

FLas SR
2128 Ksyes 16 Kayias|
6 Keyos|

oUT2 € 2K

i
sesr el [o
e | e :
e e

USARTD To0
user| | usarTs o [|er| | o
usanr2 T2

A OSERGR R [
SN
:

Historical
373 focus

naNDROY

Actel SmartFusion system/bus architecture

+ me ' we ls;(w.

ARM Cortex=ma .A.wl SmaRTFUSION®

T

wm __| Microcontroller Subsystem
1 ﬁav ‘m m —I _| Programmabie Analog

scB
Tero. | Vot
Nor.

v
[|
o | Corgastor || | B i.'"
Ele= S—
. Toe

scB

o | Wt

]| S T ——

=) o
pe—

cur.

Sar | compaator

s

VersaTies

aa " P a iy

Questions?

Comments?

Discussion?

