
Abstract
The EECS 373 “Design of Microprocessor-based

Systems” course at the University of Michigan ties
hardware and software together by providing a modern
platform on which students simultaneously develop
both hardware and software components of simple sys-
tems. Our semi-custom target platform combines a
highly integrated 32-bit embedded Motorola PowerPC
processor and two high-density Xilinx FPGAs, allow-
ing plenty of headroom for follow-on student projects
and future course expansion. Versions of the develop-
ment tools we employ in the lab are also available, with
simulation capabilities, on public workstations and stu-
dents’ personal PCs, enabling students to work outside
the lab and maximizing the leverage of finite lab space
in the face of growing enrollments.

1. Introduction
Many (if not most) undergraduate computer sci-

ence/engineering programs fork very early into “hard-
ware” and “software” tracks. As a result, opportunities
to combine hardware and software concepts in signifi-
cant ways are limited. However, as microprocessor-
based systems become ever more widespread, the abil-
ity to view a hardware/software system as an integrated
whole is a crucial part of an engineering education. At
the University of Michigan, we have developed a lab
course on microprocessor-based system design (EECS
373) that addresses this need. The key feature of EECS
373 is the integration of a modern, 32-bit microproces-
sor platform with FPGA devices, allowing simulta-
neous design of hardware and software components in
a real-world environment.

The official ABET objectives for the course are
that students will:

• learn how the hardware and software compo-
nents of a microprocessor-based system work
together to implement system-level features;

• learn both hardware and software aspects of
integrating digital devices (such as memory
and I/O interfaces) into microprocessor-based
systems;

• learn the operating principles of, and gain
hands-on experience with, common micropro-
cessor peripherals such as UARTs, timers, and
analog-to-digital and digital-to-analog convert-
ers;

• gain practical experience in applied digital
logic design and assembly-language program-
ming; and

• be exposed to the tools and techniques used by
practicing engineers to design, implement, and
debug microprocessor-based systems. 

This paper outlines the history and motivation
behind the current course, describes the lab infrastruc-
ture and current lab sequence, and concludes with a
look at possible future directions.

2. History and Goals
EECS 373 at Michigan was originated in 1990 by

Prof. Janice Jenkins. In its original incarnation, stu-
dents constructed simple systems on a solderless bread-
board combining an Intel 80186, SRAM, EPROM, an
8251 UART, an 8255 parallel I/O chip, and an analog-
to-digital converter. Although the functions of the sys-
tem were very limited, students generally enjoyed the
course and derived much satisfaction and experience
from putting the system together and making it work.
However, the lab component of the course had very lit-
tle software design content and no hardware design
content. A wiring diagram was provided for each lab;
students simply wired up their breadboards as indicated

Integrating Hardware and Software Concepts in a 
Microprocessor-Based System Design Lab

Steven K. Reinhardt
EECS Department

The University of Michigan
1301 Beal Ave.

Ann Arbor, MI 48109-2122
stever@eecs.umich.edu



and wrote a small program to exercise the relevant
hardware component(s).

By the fall of 1997, it was clear that a wholesale
update of the lab was necessary. The Intel in-circuit
emulators for the 80186 on which the students relied
were no longer being manufactured, and as these emu-
lators broke, we were forced to reduce the number of
available lab stations. This situation was particularly
painful in the face of steadily increasing enrollments.
We also had a desire to increase the design content of
the course, but the infrastructure was not capable of
supporting this change. The noise and reliability prob-
lems inherent to solderless breadboards caused great
frustration in merely interfacing RAM and ROM
dependably enough to boot the processor. Developing
and debugging more significant logic circuits was out
of the question.

Our priorities for the new lab infrastructure were to
support:
1. the ability to teach concepts that relate to both 

embedded and general-purpose systems
2. labs that focused on system design (hardware and 

software) rather than debugging of physical con-
nections

3. a “real world” (relevant and non-artificial) environ-
ment that would engage students without being 
overwhelming

4. a development environment that could be extended 
outside the lab, so that a limited number of lab sta-
tions could be leveraged to support a large number 
of students
To satisfy goals 1 and 3, we wanted a 32-bit pro-

cessor that had a reasonable market presence in both
the embedded and general-purpose markets. This con-
sideration eliminated any of the 8- or 16-bit microcon-
trollers (such as the Motorola 68HC11 or Intel 8051)
commonly used in undergraduate labs. As EECS 373 is
typically the first course in which students do a signifi-
cant amount of assembly-language programming, we
also wanted a processor with a fairly regular instruction
set so that learning the ISA would not be an obstacle.
We had found in the previous semesters that the irregu-
larities of the Intel x86 architecture often created diffi-
culty for students with no assembly language
background, or whose only exposure to assembly was
the use of DLX in the undergraduate computer organi-
zation course.

We chose the PowerPC architecture because it has
a presence in the general-purpose market in the Apple
Macintosh product line, as well as a significant and

growing share of the embedded market. In particular,
the PowerPC architecture has also been adopted by
Ford, a major local employer, for many of its automo-
tive embedded applications. As a result, embedded-sys-
tem development tools for PowerPC devices are widely
available.

To satisfy goal 3, we required development and
debugging technology that allowed students to focus on
design correctness rather than physical implementation
idiosyncrasies. FPGAs were the obvious choice to
replace breadboards for hardware implementation. For
software debugging, we sought a processor that sup-
ported on-chip emulation (aka background debug
mode, or BDM), where the CPU itself has the ability to
act as an “in-circuit emulator” under the control of a
debugger running on another machine. This technology
provides the power of in-circuit emulation without the
expense or physical interconnection issues.

To satisfy goal 4 (enabling students to work outside
the lab), we had originally hoped to develop a target
platform that would be inexpensive enough to provide
to each lab group. However, we found that the develop-
ment tools we selected (Xilinx Foundation and SDS
SingleStep) both provided simulation environments,
allowing students to develop and even test both hard-
ware and software components outside of the lab. Both
of these tools run under Microsoft Windows, so they
were easily deployed on the numerous public Windows
NT workstations supported by the College of Engineer-
ing. Students who wish to work on their personal PCs
can take advantage of a free demo version of SDS Sin-
gleStep (which is functional enough to support nearly
all of the course needs) and an inexpensive student ver-
sion of Xilinx Foundation. By making these develop-
ment and simulation tools widely available, we felt
comfortable supporting a large class (up to 100 stu-
dents per term) on a limited number of physical lab sta-
tions, allowing us to focus more resources on each
individual hardware platform.

3. Lab infrastructure
At the time of lab development, we were unable to

find a commercially available platform that combined a
32-bit processor with FPGAs on a single board. The
only readily available platforms that integrated FPGAs
and processors were focused on FPGA development,
using only a simple microcontroller (e.g. an Intel 8051)
for the CPU. We thus reluctantly concluded that some
custom development would be necessary. To minimize



the amount of effort, we added a custom FPGA-based
expansion board to an existing processor development
kit.

Our specific target platform is the Motorola
MPC823ADS application development system, which
uses the Motorola MPC823 embedded PowerPC pro-
cessor. The MPC823 is a highly integrated device,
including the usual embedded controller peripherals
(timers, interrupt controller, memory controller, etc.)
along with a communications coprocessor, video con-
troller, Ethernet, USB, and PCMCIA interfaces. It is
used in the Kodak DC260 and DC280 digital cameras.
The MPC823ADS system consists of two boards, a
motherboard that supports the entire MPC8xx family
and a daughterboard with the MPC823 itself. The
motherboard provides 4 MB of DRAM and 2 MB of
flash memory, plus buffering logic and physical con-
nectors for most of the MPC823’s I/O interfaces. The
daughtercard includes a video encoder chip, video con-
nectors, USB connectors, and high-density Mictor con-
nectors for HP logic analyzer probes, in addition to the
processor itself. Our custom expansion board sand-
wiches between the motherboard and daughterboard,
with connectors on both sides. Figure 1 presents a
block diagram of the target platform, and Figure 2 is a
photograph of an assembled system.

The expansion board holds the FPGAs and several
simple I/O devices used in the basic lab sequence,
including a two-digit seven-segment LED display, a
10-element LED bar graph display, DIP and pushbut-
ton switches, A/D and D/A converters, and a 64Kx8
SRAM chip. One of the FPGAs interfaces the proces-
sor bus to the simple peripherals, while the other con-
nects the bus to a 40-pin header for further expansion.

Because we wanted to connect the FPGAs to the
full processor bus as well as peripheral devices, we
were primarily constrained by pinout rather than den-
sity. We selected Xilinx XC4010E FPGAs because
they were available in 191-pin ceramic PGA packages.
Although higher-pinout devices were available in sur-
face-mount packages, we wanted to stay with socket-
able devices with the expectation that student use
would require occasional replacement of burned-out
chips.

Students use the Xilinx Foundation tools to
develop their hardware designs. Currently we use sche-
matic capture for design entry, though HDL synthesis
is also available. The Xilinx tools also include a logic
simulator that allows students to debug their hardware
designs outside of the lab. For in-lab debugging, we

have HP/Agilent 16600A 136-channel logic analyzers
that connect to the processor bus for a full display of
processor activity. Additional analyzer channels can
connect to test pins on the expansion boards; students
can route internal FPGA signals to the test pins to aid
in debugging their designs.

Software development is done using SDS Sing-
leStep, an application that runs on a Microsoft Win-
dows PC and provides an integrated graphical
debugger, editor, C compiler, assembler, and linker.
SingleStep communicates with the MPC823 processor
via its BDM (debugging) port to provide full visibility
of CPU and memory state as well as single-step and
breakpoint control over execution. 

In addition to the target platform and the HP logic
analyzer, each lab station has a 333 MHz Intel Pentium
II PC running Windows NT to run the Xilinx and SDS
tools and a basic oscilloscope and analog function gen-
erator for use with the A/D and D/A converters.

4. Lab sequence
The current lab sequence starts with two introduc-

tory labs, one hardware and one software. In addition
to familiarizing students with the development and
debugging tools, these labs provide time to present nec-
essary background material in lecture. The real design
labs start with the third lab exercise. These labs build
on each other to the point where students have
designed and constructed the software and glue logic
for a system with polled serial I/O and multiple inter-
rupt sources. The sequence is capped with a simple
mini-project that allows the students to explore or
expand on facets of the system that are not covered in
the standard labs. As time progresses, we plan to incor-
porate the more successful and exciting mini-projects
from previous semesters into updated standard labs in
later semesters.

Lab 1: Introduction to Xilinx FPGAs and the 
EECS 373 Expansion Board

This lab serves to introduce the students to the dig-
ital hardware side of the lab equipment, including the
Xilinx design tools. Students implement a simple cir-
cuit that takes a binary value input via DIP switches
and displays it in hexadecimal on a seven-segment dis-
play. The processor is not used in this lab. The lab is
intentionally simple so that students can complete it in
their first lab session without additional preparation.



Lab 2: Introduction to PowerPC Assembly 
Language and the SingleStep Simulator

The second lab introduces the students to the soft-
ware tool chain. Before coming to lab, the students are
exposed to the assembler, linker, and debugger by

observing and modifying a simple program using the
SDS CPU simulation environment outside the lab. In
the lab session itself, we present the students with
another program that contains both syntactic and logi-

Motorola
MPC823

Xilinx
XC4010E

Simple devices, including:
• Seven-segment display
• DIP and pushbutton switches
• A/D and D/A converters
• 64Kx8 SRAM

Connectors for:
• Ethernet
• PCMCIA card
• Infrared (IrDA)
• Serial (RS-232)

Xilinx
XC4010E

P
ro

ce
ss

o
r 

B
u

s

Xilinx
Download
Controller

Video
Encoder Video out

USB connectors

BDM (debug) connection to PC
(via parallel port)

High-density Mictor connectors
for logic analyzer probes

40-pin header for
general expansion

32-bit inter-chip bus
(accessible via header
for test points)

Xilinx download
from PC (RS-232)

DRAM

Flash

M
P

C
82

3A
D

S
 p

ro
ce

ss
or

da
ug

ht
er

ca
rd

E
E

C
S

 3
73

ex
pa

ns
io

n 
bo

ar
d

M
P

C
8x

xF
A

D
S

m
ot

he
rb

oa
rd

Figure 1. Block diagram of target platform.



Figure 2. Photograph of target platform. The processor daughtercard is at the top (with the MPC823 in the large
ZIF socket). The motherboard is underneath at the top. The expansion board is sandwiched in the middle, but
extends below the daughtercard to expose the FPGAs and I/O devices.



cal errors. The students must use the tools to debug this
program, solidifying their familiarity.

Lab 3: Basic Bus Interfacing for I/O Devices
The first “real” lab involves designing the glue

logic to interface simple input and output devices
(switches and LEDs) on the expansion board to the
MPC823 bus. The software component involves poll-
ing the switches and writing to the LED registers to
implement a simple specification (e.g., one pushbutton
initializes the display based on DIP switch positions,
while another pushbutton complements the displayed
value).

Lab 4: Bus Interfacing for Byte-Addressable 
Memory

This lab reinforces the concepts of transfer size and
alignment by having the students build a 256-byte (32-
word), 32-bit wide, byte-addressable memory on the
Xilinx device. This memory is constructed from 32x8
RAM modules available in the standard Xilinx library.
The students’ designs must handle byte, halfword, and
word reads and writes. The simple I/O from lab 3 is
carried over as well, and the software component is
enhanced to allow the use of the DIP switches, push-
buttons, and LED displays to read and write locations
in the memory (a la the front-panel switches of yester-
year).

Lab 5: Simple Serial Communication
In this lab, the students develop a simple calculator

program that communicates via an RS-232 serial link.
Unlike labs 3 and 4, which emphasized hardware, lab 5
is purely a software lab. However, it serves several use-
ful purposes:

• The program is complex enough that students
are forced to decompose it into functions. This
reinforces assembly-language procedure call-
ing, a prerequisite for managing interrupts in
the succeeding lab.

• We introduce the concept of a device driver as
a module that hides implementation-specific
device details behind a standard procedural
interface. This concept came of necessity, since
the simulated UART model available with the
processor simulator is completely different
from the actual serial interface available on the
MPC823. We turned necessity into a virtue by
defining a serial device-driver interface and
having the students implement the driver for
the simulated UART. We then provide the (sig-

nificantly more complex) driver for the
MPC823 serial port.

• The terminal-handling program provides the
basis for richer interaction with the target plat-
form than switches and LEDs allow. We take
advantage of this in lab 7, where the program is
enhanced with commands to control an inter-
rupt-driven LED display.

Lab 6: Basic Interrupts
In lab 6, students use interrupts to add a simple

timer function to their lab 5 system. The seven-segment
display indicates elapsed seconds (using periodic inter-
rupts from the MPC823’s real-time clock), while the
pushbuttons generate interrupts to start/stop and clear
the timer. In addition to writing the appropriate inter-
rupt service routines, the students must design the hard-
ware to generate a shared level-sensitive interrupt from
the pushbuttons, including the capability to poll and
reset the interrupt status via software. Meanwhile, the
polling-based serial calculator from lab 5 must con-
tinue to work unmodified. To catch stack overruns
more quickly, the students use their 256-byte memory
from lab 4 for the stack.

Lab 7: Timers
Lab 7 builds on the lab 6 system, using timer inter-

rupts to generate a “chaser” display on the expansion
board’s bar-graph LEDs. Unlike lab 6’s timer interrupt,
which is a simple once-per-second interrupt provided
by the MPC823, lab 7 uses the MPC823’s programma-
ble interval timers. The “calculator” program is
expanded to support two more terminal commands that
modify the frequency and direction of the chaser dis-
play, respectively. This lab introduces students to pro-
grammable timers, including the derivation of timer
configuration settings to provide interrupts at various
frequencies, and also provides additional experience
with interrupts.

Lab 8: Analog-to-Digital Conversion
The final structured lab exercise has the students

interface the simple analog-to-digital converter found
on the expansion board (a National Semiconductor
ADC0808) to the CPU. The students must decipher the
appropriate timing constraints from the ADC data
sheet, and convert these into a hardware bus interface.
This task is not entirely trivial as the CPU bus runs at
20 MHz and many of the minimum input pulse widths
of the ADC are measured in microseconds. The soft-
ware component of this lab uses the pushbuttons to



trigger data collection at multiple sample rates. The
students set up the programmable timers from lab 7 to
initiate individual sample conversions at the desired
rate, while the end-of-conversion signal from the ADC
triggers a separate interrupt to read and store the sam-
ple. Students save their digitized samples of various-
frequency sine waves and do some simple post-lab
analysis of the recorded signal using a spreadsheet or
Matlab.

Lab 9: Mini-Project
The final exercise of the semester allows the stu-

dents to explore the capabilities of the lab system by
defining their own (mini-)project. In recent semesters,
students have experimented with the video controller,
infrared port, and ethernet port, and have interfaced
various other sensors and output devices as well. Our
goal is to let the students build on projects and knowl-
edge gained from previous semesters, leading to a
library of interesting software and hardware compo-
nents which students can integrate to build interesting
systems.

5. Conclusion and future work
By combining a highly integrated 32-bit embedded

processor with high-density FPGAs, we have devel-
oped a flexible, powerful lab platform with plenty of
headroom for follow-on student projects and future
course expansion. FPGAs allow students to design
interface circuits for a 32-bit bus without the wiring
complexity, noise, or reliability issues of the bread-
boards they replace. Forcing the students to design
interacting hardware and software components gives a
tangible appreciation for the way in which these com-
ponents cooperate. Students also appreciate the oppor-
tunity to work with state-of-the-art components that
have real-world significance and compare with what
many of them will find in industry; the challenge is for
the instructor to avoid overwhelming the student with
the complexity that is inherent in these modern devices.
We leverage our investment in a limited number of
physical lab stations by making versions of the devel-
opment tools with simulation capabilities widely avail-
able outside the lab.

Although the basic lab infrastructure is stable, we
are continually seeking to improve and enhance the
curriculum to take fuller advantage of this equipment.
The greatest challenge to improving this course lies in

avoiding the temptation to throw more material at the
students than most can absorb in a single semester. Pos-
sibilities that we have considered include:

• expanding the range of hardware devices that
can be interfaced

• interfacing assembly with C or C++ to allow
more significant software efforts

• letting students burn their code into the devel-
opment system’s on-board flash memory to
create a stand-alone bootable system

• providing TCP/IP support over the ethernet
port (eventually building up to an embedded
web server)

Fitting more topics into the current course would
require raising the level of detail (e.g., by providing
Xilinx macros for selected bus interface circuits)
and/or replacing some existing labs (e.g., the timer or
ADC labs). We can also provide further opportunities
to interested students by offering additional courses
using the same or similar lab equipment. For example,
Prof. Jim Freudenberg is developing an embedded con-
trol systems course with EECS 373 as the only prereq-
uisite. Motivated students are also encouraged to do
independent-study design projects for course credit.

For more information, including detailed lab
descriptions and expansion board schematics, see
http://www.eecs.umich.edu/courses/eecs373.

Acknowledgments
Steve Raasch provided invaluable assistance, par-

ticularly in designing and managing the construction of
the EECS 373 expansion boards. Steve Raasch, Nathan
Binkert, Erik Hallnor, and Chau Doan also played cru-
cial roles as teaching assistants for the first offering of
the revised course. Ghassan Shahine and Trevor Mudge
taught the course subsequent to the revision and con-
tributed many improvements.

The new lab was made possible by generous corpo-
rate support from Software Development Systems, Inc.
(SDS, now a part of Wind River Systems), Hewlett-
Packard/Agilent Technologies, Intel, and Motorola. We
particularly acknowledge Manny Hatz, Mike O’Don-
nell, and Bill Wasserman. This work was also sup-
ported by NSF CAREER Award CCR-9734026, a
Curriculum 2000 grant from the UM College of Engi-
neering, and the UM EECS Department.


