
1
Confidential

11

ARM Architecture
Overview

222

Development of the ARM Architecture

4T

ARM7TDMI
ARM922T

Thumb
instruction set

ARM926EJ-S
ARM946E-S
ARM966E-S

Improved
ARM/Thumb
Interworking

DSP instructions

Extensions:

Jazelle (5TEJ)

5TE 6

ARM1136JF-S
ARM1176JZF-S
ARM11 MPCore

SIMD Instructions

Unaligned data support

Extensions:

Thumb-2 (6T2)

TrustZone (6Z)

Multicore (6K)

7

§ Note: Implementations of the same architecture can be very different

§ ARM7TDMI - architecture v4T. Von Neuman core with 3 stage pipeline

§ ARM920T - architecture v4T. Harvard core with 5 stage pipeline and MMU

Cortex-A8/R4/M3/M1

Thumb-2

Extensions:

v7A (applications) – NEON

v7R (real time) – HW Divide

V7M (microcontroller) – HW
Divide and Thumb-2 only

§ Processor Architecture = Instruction Set + Programmer’s model

2
Confidential

333

ARM Architecture profiles
§ Application profile (ARMv7-A à e.g. Cortex-A8)
§ Memory management support (MMU)

§ Highest performance at low power
§ Influenced by multi-tasking OS system requirements

§ TrustZone and Jazelle-RCT for a safe, extensible system

§ Real-time profile (ARMv7-R à e.g. Cortex-R4)
§ Protected memory (MPU)
§ Low latency and predictability ‘real-time’ needs

§ Evolutionary path for traditional embedded business

§ Microcontroller profile (ARMv7-M à e.g. Cortex-M3)
§ Lowest gate count entry point
§ Deterministic and predictable behavior a key priority
§ Deeply embedded use

444

Programmer’s Model

3
Confidential

555

Data Sizes and Instruction Sets
§ When used in relation to the ARM:
§ Halfword means 16 bits (two bytes)

§ Word means 32 bits (four bytes)

§ Doubleword means 64 bits (eight bytes)

§ Most ARMs implement two instruction sets
§ 32-bit ARM Instruction Set

§ 16-bit Thumb Instruction Set

§ Latest ARM cores introduce a new instruction set Thumb-2
§ Provides a mixture of 32-bit and 16-bit instructions

§ Maintains code density with increased flexibility

§ Jazelle-DBX cores can also execute Java bytecode

666

§ The ARM has seven basic operating modes:

§ Each mode has access to own stack and a different subset of registers

§ Some operations can only be carried out in a privileged mode

Processor Modes

Entered when a high priority (fast) interrupt is
raisedFIQ

Entered when a low priority (normal) interrupt
is raisedIRQ

Used to handle memory access violationsAbort

Used to handle undefined instructionsUndef

Privileged mode using the same registers as
User mode

System

Unprivileged
mode

Mode under which most Applications / OS
tasks run

User

Privileged
modes

Entered on reset and when a Software Interrupt
instruction (SWI) is executed

Supervisor

(SVC)

DescriptionMode

E
xc

ep
ti

o
n

 m
o

d
es

4
Confidential

777

The ARM Register Set

r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12

r15 (pc)

cpsr

r13 (sp)
r14 (lr)

User mode

spsr

r13 (sp)
r14 (lr)

IRQ FIQ

r8
r9
r10
r11
r12

r13 (sp)
r14 (lr)

spsr spsr

r13 (sp)
r14 (lr)

Undef

spsr

r13 (sp)
r14 (lr)

Abort

spsr

r13 (sp)
r14 (lr)

SVC

Current mode Banked out registers

ARM has 37 registers, all 32-bits long

A subset of these registers is accessible
in each mode

888

Program Status Registers

§ Condition code flags
§ N = Negative result from ALU
§ Z = Zero result from ALU

§ C = ALU operation Carried out
§ V = ALU operation oVerflowed

§ Sticky Overflow flag - Q flag
§ Architecture 5TE and later only
§ Indicates if saturation has occurred

§ J bit
§ Architecture 5TEJ and later only
§ J = 1: Processor in Jazelle state

§ Interrupt Disable bits
§ I = 1: Disables IRQ
§ F = 1: Disables FIQ

§ T Bit
§ T = 0: Processor in ARM state
§ T = 1: Processor in Thumb state
§ Introduced in Architecture 4T

§ Mode bits
§ Specify the processor mode

f s x c

2731

N Z C V Q

28 67

I F T mode

1623 15 5 4 024

U n d e f i n e dJ

§ New bits in V6
§ GE[3:0] used by some SIMD

instructions

§ E bit controls load/store endianness

§ A bit disables imprecise data aborts

§ IT [abcde] IF THEN conditional
execution of Thumb2 instruction
groups

10 8919

GE[3:0] E AIT cond_abcde

5
Confidential

999

Data alignment
§ Prior to architecture v6 data accesses must be appropriately aligned for

access size

§ Unaligned addresses will produce unexpected/undefined results

§ Unaligned data can be accessed using multiple aligned accesses
combined with shift/mask operations

Byte access
(byte aligned)

Halfword access
(halfword aligned)

Word access
(word aligned)

3 2 1 0

7 6 5 4

02

46

8a

ce

0

89ab

cdef

4

8

c

101010

Vector Table

Exception Handling
§ When an exception occurs, the core:

§ Copies CPSR into SPSR_<mode>

§ Sets appropriate CPSR bits

§ Change to ARM state

§ Change to exception mode

§ Disable interrupts (if appropriate)

§ Stores the return address in LR_<mode>

§ Sets PC to vector address

§ To return, exception handler needs to:

§ Restore CPSR from SPSR_<mode>

§ Restore PC from LR_<mode>

§ Must be done in ARM state in most cores, but...

...Thumb-2 capable cores can do this in Thumb state

Vector table can also be at
0xFFFF0000 on most cores

FIQ
IRQ

(Reserved)
Data Abort

Prefetch Abort
Software Interrupt

Undefined Instruction

Reset

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

6
Confidential

111111

Introduction to
Instruction Sets

121212

ARM Instruction Set
§ All instructions are 32 bits long / many execute in a single cycle

§ Instructions are conditionally executed

§ A load / store architecture

§ Example data processing instructions
SUB r0,r1,#5
ADD r2,r3,r3,LSL #2
ADDEQ r5,r5,r6

§ Example branching instruction
B <Label>

§ Example memory access instructions
LDR r0,[r1]
STRNEB r2,[r3,r4]
STMFD sp!,{r4-r8,lr}

r0 = r1 - 5

r2 = r3 + (r3 * 4)

IF EQ condition true r5 = r5 + r6

Branch forwards or backwards relative to
current PC (+/- 32MB range)

Load word at address r1 into r0

IF NE condition true, store bottom byte
of r2 to address r3+r4

Store registers r4 to r8 and lr on
stack. Then update stack pointer

7
Confidential

131313

Thumb Instruction Set

§ Thumb is a 16-bit instruction set

§ Optimized for code density from C code (~65% of ARM code size)

§ Improved performance from narrow memory

§ Subset of the functionality of the ARM instruction set

§ Thumb is not a “regular” instruction set!

§ Constraints are not generally consistent

§ Targeted at compiler generation, not hand coding

141414

Thumb-2 Instruction Set

§ Thumb-2 is a major extension to the Thumb ISA

§ Adds 32-bit instructions to implement almost all of the ARM ISA functionality

§ Retains the complete 16-bit Thumb instruction set

§ Design objective: ARM performance with Thumb code density

§ No switching between ARM-Thumb states

§ Compiler automatically selects mix of 16 and 32 bit instructions

8
Confidential

151515

Thumb 2 Performance / Density

P
er

fo
rm

an
ce

Code density

100% ARM code

100% Thumb code

Random mix ‘Profiled’ mix

Thumb-2

161616

Processor Cores

9
Confidential

171717

ARM7TDMI Processor

§ Architecture v4T

§ 3-stage pipeline

§ Single interface to memory

181818

ARM926EJ-S Processor

ARM926EJ-S

§ Architecture v5TE

§ 5-stage pipeline

§ Single-cycle 32x16 multiplier

§ Caches and TCMs

§ Memory management unit (MMU)

§ 2 AHB memory interfaces

§ Jazelle technology

10
Confidential

191919

ARM1176JZ(F)-S Processor Core

§ TrustZone

§ 8-stage pipeline
§ Branch prediction

§ Four AXI memory ports
§ IEM (Intelligent Energy

Management)
§ Integrated VFP coprocessor

202020

ARM11 MPCore Processor

§ 1 – 4 MP11 processors
§ Cache coherency
§ Distributed interrupt controller

MP11 MP11 MP11 MP11

11
Confidential

212121

ARM Cortex-M3 Processor
§ Architecture v7-M (Thumb-2 only) à

Very different from previous ARM
processors
§ No CPSR register
§ Vector table contains addresses, not

instructions
§ Processor automatically saves/restores

state in exceptions
§ Only 2 processor modes (Thread/Handler)
§ No Coprocessor 15 3-stage pipeline with

static branch prediction

§ Atypical Implementation
§ Fixed memory map
§ Integrated interrupt controller
§ Serial-Wire Debug

222222

ARM Cortex-A8 Processor

§ Architecture v7-A

§ 14 stage pipeline

§ NEON media processor

12
Confidential

232323

The Instruction Pipeline

242424

The Instruction Pipeline
§ The ARM7TDMI uses a 3-stage pipeline in order to increase the

speed of the flow of instructions to the processor

§ Allows several operations to be performed simultaneously, rather than
serially

§ The PC points to the instruction being fetched, not executed

§ Debug tools will hide this from you

§ This is now part of the ARM Architecture and applies to all processors

FETCH

DECODE

EXECUTE

Instruction fetched from memory

Decoding of registers used in instruction

Register(s) read from Register Bank
Shift and ALU operation
Write register(s) back to Register Bank

PC PC

PC - 4 PC-2

PC - 8 PC - 4

ARM Thumb

13
Confidential

252525

Cycle

Operation

ADD

SUB

ORR

AND

EOR

ORR

Optimal Pipelining

§ All operations here are on registers (single cycle execution)

§ In this example it takes 6 clock cycles to execute 6 instructions

§ Clock cycles per Instruction (CPI) = 1

1 2 3 4 5 6 7 8 9

F D E

F D E

F E

F D E

F D E

D

F D E W

F - Fetch D - Decode E - Execute

M

262626

§ Breaking the pipeline

§ Note that the core is executing in ARM state

Cycle

Address Operation

0x8000 BL 0x8FEC

0x8004 SUB

0x8FF0 ORR

0x8FEC AND

0x8FF4 EOR

0x8008 ORR

1 2 3 4 5 6 7 8 9

F D E

F D

F E

F D E

F

D

F D E W

F - Fetch D - Decode E – Execute L – Linkret A - Adjust

M

EL EA

Branch Pipeline Example

14
Confidential

272727

Cortex-A8 Integer Pipeline

Instruction Execute / Load Store

Instruction Fetch

F1 F2F0

Instruction Decode

Replay Penalty

D0 D1 D2 D3 D4 E0 E1 E2 E3 E4 E5

Branch Mispredict Penalty

AGU
QueueRAM

TLB

Branch

Pred.

Early
DEC DEC

Queue

DEC

SEQ Regfile
Remap

Score
board

& Issue
Logic

Shift SATALU WBBP
Update

Reg
File

Early
DEC

DEC

Pending
Replay
Queue

Route MUL2MUL1 WBADD

Shift SATALU WBBP
Update

AGU Format
Fwd

RAM +
TLB

WB

ALU

MUL
PIPE0

ALU

PIPE1

LOAD

STORE
BP

Update

§ Optimising code to make use of the processor pipeline is very difficult

§ Leave it to the compiler!!

282828

Reference Slides

15
Confidential

292929

Reference Material

§ ARM ARM(“Architecture Reference Manual”)
§ ARM DDI 0100E covers v5TE DSP extensions
§ Can be purchased from booksellers - ISBN 0-201-737191 (Addison-Wesley)
§ Available for download from ARM’s website

§ ARM v7-M ARM available for download from ARM’s website
§ Contact ARM if you need a different version (v6, v7-AR, etc.)

§ Steve Furber “ARM system-on-chip architecture” - 2nd edition
§ ISBN 0-201-67519-6 (Addison-Wesley)

§ Sloss, Symes & Wright – “ARM System Developer's Guide”
§ ISBN: 1-55860-874-5 (Morgan Kaufman)

§ RVCT Assembler Guide
§ Available for download from ARM’s website

§ Technical Reference Manuals for processor core being used
§ Available for download from ARM’s website

303030

Naming Conventions

§ ARMx1z (e.g. ARM710T) indicates cache & full MMU

§ ARMx2z (e.g. ARM720T) indicates cache, MMU & Process ID support

§ ARMx3z (e.g. ARM1136J-S) indicates physically mapped caches and MMU

§ ARMx4z (e.g. ARM740T) indicates cache and MPU

§ ARMx5z (e.g. ARM1156T2-S) indicates cache, MPU and error correcting memory

§ ARMx6z (e.g. ARM966E-S) indicates write buffer but no caches

§ ARMx7z (e.g. ARM1176JZ-S) indicates AXI bus, & physically mapped caches and
MMU

§ ARMxy6 (e.g. ARM946E-S) indicates TCMs

16
Confidential

313131

Which architecture is my processor?
Processor core Architecture

§ ARM7TDMI family v4T
§ ARM720T, ARM740T

§ ARM9TDMI family v4T
§ ARM920T,ARM922T,ARM940T

§ ARM9E family v5TE, v5TEJ
§ ARM946E-S, ARM966E-S, ARM926EJ-S

§ ARM10E family v5TE, v5TEJ
§ ARM1020E, ARM1022E, ARM1026EJ -S

§ ARM11 family v6
§ ARM1136J(F)-S v6
§ ARM1156T2(F)-S v6T2
§ ARM1176JZ(F)-S v6Z
§ ARM11 MPCore v6

§ Cortex family
§ ARM Cortex -A8 v7-A
§ ARM Cortex -R4(F) v7-R
§ ARM Cortex -M3 v7-M
§ ARM Cortex -M1 v6-M

§ For ARM processor naming conventions and features, please see the Appendix

323232

ARMv4T Cores:

No

N/A

No

None

None

N/A

N/A

No

N/A

None

von Neumann

7TDMI

Yes

Yes

Yes

MMU

16 Words
4 Addresses

Write Through
Write Back

Random
Round Robin

No

64- way

16K Instr +
16K Data
8 words/line

Harvard

920T

YesYesNoNoStandby
Mode

YesYesYesYesStreaming

YesYesNoYesHi Vectors

MMUMPUMPUMMUMMU/MPU

8 Words
4 Addresses

8 Words
4 Addresses

8 Words
4 Addresses

8 Words
4 AddressesWrite Buffer

Write Back
Write Through
Write Back

Write ThroughWrite ThroughWrite
Strategy

Round RobinRandomRandomRandomReplacement

NoNoNoNoTCM

32- way64- way4-way4-wayAssociativity

16K Instr +
16K Data
4 words/line

4K Instr + 4K
Data
4 words/line

8K Unified
4 words/line

8K Unified
4 words/lineCache

HarvardHarvardvon Neumannvon NeumannArchitecture

SA1100940T740T720T

17
Confidential

333333

ARMv5 Cores:

Yes

Yes

Yes

MMU or MPU

8 Words
Data or
Address

Write Through
Write Back

Random
Round Robin

0-1024K Instr
0-1024K Data

4-way

0-128K Instr
0-128K Data
8 words/line

Harvard

1026EJ-S

Yes

N/A

Yes

None

12 Words
Data or
Address

N/A

N/A

0-64M Instr
0-64M Data

N/A

None

Harvard

966E-S

YesYesYesYesStandby
Mode

YesN/AYesYesStreaming

YesYesYesYesHi Vectors

MMU
With
extensions

NoneMPUMMUMMU/MPU

8 x 16 Bytes
Coalescing

12 Words
Data or
Address

16 Words
Data or
Address

16 Words
4 AddressesWrite Buffer

Write Through
Write Back

Write Through
Write Back

Write Through
Write Back

Write Through
Write Back

Write
Strategy

Random
Round Robin

N/A
Random
Round Robin

Random
Round RobinReplacement

No0-64M Instr
0-64M Data

0-1024K Instr
0-1024K Data

0-1024K Instr
0-1024K DataTCM

32- wayN/A4-way4-wayAssociativity

32K Instr
32K Data
8 words/line

None0-1024K Instr
0-1024K Data
8 words/line

4-128K Instr
4-128K Data
8 words/line

Cache

HarvardHarvardHarvardHarvardArchitecture

XScale968E-S946E-S926EJ-S

343434

ARMv6 Cores:

AXIAXIAXIAHB/APBBus

YesYesYesYesStandby
Mode

YesYesYesYesVFP Support

N/A

Yes

MMU

Write Through
Write Back

Random
Round Robin

0-64K Instr
0-64K Data

4-way

4-64K Instr
4-64K Data
8 words/line

Harvard

1176JZ(F)-
S

YesYesYesStreaming

YesYesYesHi Vectors

MMUMPUMMUMMU/MPU

Write Through
Write Back

Write Through
Write Back

Write Through
Write Back

Write
Strategy

Random
Round Robin

Random
Round Robin

Random
Round Robin

Replacemen
t

None
0-256K Instr
0-256K Data

0-64K Instr
0-64K DataTCM

4-way4-way4-wayAssociativity

16-64K Instr
16-64K Data
8 words/line

0-64K Instr
0-64K Data
8 words/line

4-64K Instr
4-64K Data
8 words/line

Cache

HarvardHarvardHarvardArchitecture

MPCore11
1156T2(F)-
S

1136EJ(F)-
S

18
Confidential

353535

Cortex Cores:

AXIAXIAHB Lite/APBAHB Lite/APBBus

YesYesYesYesStandby
Mode

Yes YesNo No VFP Support

Yes

Yes

MPU
(optional)

Write Through
Write Back

Random

0-8M Instr
0-8M Data

4-way

4-64K Instr
4-64K Data
8 words/line

Harvard

Cortex-R4

YesN/AN/AStreaming

YesNoNoHi Vectors

MMUNoneMPUMMU/MPU

Write Through
Write Back

N/AN/AWrite
Strategy

RandomN/AN/AReplacemen
t

None
0-1M Instr
0-1M Data

NoneTCM

4-wayN/AN/AAssociativity

16 or 32 Instr
16 or 32 Data
16 words/line

NoneNone
Cache

HarvardHarvardHarvardArchitecture

Cortex-A8Cortex-M1Cortex-M3

363636

TrustZone Computing

§ New Secure Monitor Mode:
gate-keeper for secure state

§ New S-bit in CP15 to indicate when
the processor is running in a
secured state

§ Security state exposed on external
bus accesses to permit security-
aware memory and peripherals

§ Ability to restrict debug to non-
secure state

§ TrustZone adds a “parallel world” to allow trusted programs and data to
be safely separated from the OS and applications

§ Introduced for ARM1176, standard for ARMv7-A Cores

§ Features:

19
Confidential

373737

NEON Media Processor Features

§ Single Instruction Multiple Data (SIMD) Media Processor

§ Targets audio and video codecs, image and speech
processing, graphics, baseband processing, and general
signal processing

§ 3 Processing pipelines: Integer/fixed point, single precision
floating point, IEEE vector floating point

§ Efficient data handling
§ Best use of available memory bandwidth
§ Eliminates data arrangement overhead
§ Operates on separate register file
§ SIMD Framework excellent target for compilers

3838

End

