
EECS 373: Design of Microprocessor-Based Systems Fall 2012

Homework 1
Instructor: Prabal Dutta Due: Oct 4, 2012 – 10:40 AM

Note: Unless otherwise specified, all of the problems assume: (i) an ARM Cortex-M3 processor operating in
little endian mode; (ii) the ARM EABI application binary interface; and (iii) the GNU GCC toolchain.

Problem 1: ARM Assembly and Addressing Modes (30 points).

(a) Assume that memory is initialized to zero and the code shown below executes.

mov r2, #100

movw r1, #255

movt r1, #15

strb r1, [r2, 2]!

str r1, [r2], 1

strh r2, [r2, -3]

Fill out the following table with the memory contents in hex after executing the prior lines of code. Show
how you arrived at your solution by annotating what each line of code does. Note that each memory location
is shown as a single byte.

Address Value

100

101

102

103

104

105

106

107

(b) Assume r3=0x<YOUR-UMID>, r1=0x00001000, and all other registers and memory locations are initialized
to zero. After executing the following code:

str r3, [r1, 1]

ldrb r5, [r1], #2

orr r5, r5, #0x0f

strh r3, [r1, #-4]!

ldr r3, [r1]

What are the values of registers r1, r3, and r5? Show how you arrived at your solution.

UMID =

r1 =

r3 =

r5 =

1-1

1-2

Problem 2: Assembly and C (10 pts). Write C code that does the same thing as the following ARM
assembly language code. Your C code must not be longer than three lines.

movw r0, #0030

movt r0, #2008

ldr r1, [r0]

add r1, r1

str r1, [r0]

Problem 3: Assembly, C, the EABI, and Toolchains (30 pts). Consider the following C program
that computes and prints out factorials for 0-9:

#include <stdio.h>

int factorial(int n) {

if (n == 0)

return 1;

return n * factorial (n - 1);

}

int main () {

int i;

int n;

for (i = 0; i < 10; ++i) {

n = factorial (i);

printf ("factorial(%d) = %d\n", i, n);

}

return 0;

}

(a) Rewrite the factorial function in ARM EABI-compliant assembly language, including parameter pass-
ing and return values. Annotate your assembly language to show how it works. Ensure that the assembly
code you provide can be directly entered into a .s file, assembled, and linked with a C file that calls the
factorial routine to create an executable.

(b) Provide the exact set of commands needed to assemble the assembly language code, compile the C code,
and link the two together to create an executable.

1-3

Problem 4: Memory Access from C (10 pts). Assume that memory is initialized to zero and the
following code executes:

BASE_EMC = 0x74000000;

uint32_t *x = (uint32_t*)BASE_EMC;

*x = 0x01234567;

*(x-1) = 0x89abcdef;

Fill out the following table with the memory contents in hex after executing the prior lines of code:

Base Addr 00 01 02 03

0x74000004

0x74000000

0x73FFFFFC

0x73FFFFF8

Problem 5: Memory Bus (20 pts). Draw a timing diagram that shows the AHB-Lite memory write
cycle associated with the C instructions shown below. Assume that x is of type int32 t*, x = 0x74000000,
and that the first of the two instructions experiences a single wait state. Annotate the timing diagram in
hex with the values being transferred on the bus.

*x = 0x01234567;

*(x-1) = 0x89abcdef;

_____ _____ _____ _____ _____ _____

FCLK | |_____^ |_____^ |_____^ |_____^ |_____^

HADDR[31:0] |

HWRITE |

HWDATA |

HREADY (OUT) |

