
In 1995, Advanced RISC Machines
released its Advanced Microcontroller
Bus Architecture in response to input

from key semiconductor licensees. AMBA’s
goal is to help designers of embedded CPU
systems meet challenges like design for low
power consumption and test access. Because
input for AMBA came from designers of
ARM-based microprocessors, ARM was also
able to develop a solid design rationale and
evolve an architectural design that would
address the most common problems.

In this article, I describe some of AMBA’s
design methodology and provide a set of
specifications that will aid designers in mak-
ing detailed comparisons with other buses.

AMBA defines both a bus specification
and a technology-independent methodolo-
gy for designing, implementing, and testing
customized, high-integration embedded
controllers. The first range of cached cores
with native AMBA system bus interfaces are
due for release in late 1997.

Design rationale
AMBA is ARM’s response to the problems

and difficulties first-time customers have
reported when designing around the ARM
processor bus. Feedback from technical
experts, semiconductor licensees, lead engi-
neers, developers from key customers, and
representatives of design groups helped
identify the underlying issues, which con-
tinue to show up in design reviews:

• Ad hoc design. Designs tend to end up
with ad hoc bus and control logic.
Designers relish the opportunity to cre-
ate custom on-chip systems, but they
often create bottlenecks, especially
when the semiconductor licensee is
new. Because the bus interface on the
ARM6 and ARM7 cores is extremely flex-
ible, designers unfamiliar with the

processor may inadvertently create inef-
ficient or unworkable designs.

• Design portability and reusability. A side
effect of ad hoc design is its lack of porta-
bility and reusability. DMA controllers for
video or audio subsystems, for example,
are not easily ported because the main
state machines are inextricably merged
with the processor bus controller.
Similarly, the external memory interfaces
that support narrow memory tend to
expose the complex byte packing and
unpacking to the central system’s con-
troller state machine. This makes
reusability very difficult. If the designer
does not separate the memory interface
from the system design, it becomes hard-
er to partition memory resources to min-
imize system cost.

• System reset and clocking. Designers
are responsible for implementing
contention-free, on-chip tristate buses
and safe, low-power, gated clocking
schemes. However, they seldom have
time to review their designs in depth for
potential pitfalls. The critical paths tend
to revolve around the decoding of
address ranges, and many designers fall
into the trap of squeezing out wait
states at the expense of reduced over-
all CPU clock frequency.

• Power consumption. The ARM CPU’s
low power consumption often drives
the decision to design in an ARM core.
However in the face of time-to-market
pressure, designers of new product
families often make decisions that sac-
rifice power elsewhere. The problems
are both on chip, with many peripher-
als attached to the processor bus, and at
the all-important off-chip external
memory interface.

• Test support for CPU macrocells with
many I/Os. It is no longer desirable or

20 IEEE Micro 0272-1732/97/$10.00 © 1997 IEEE

AMBA helps designers

of embedded

microcontrollers

achieve first-time-right

designs that maximize

reusability.

AMBA: ENABLING
REUSABLE ON-CHIP DESIGNS

David Flynn

Advanced RISC Machines

feasible to mandate a test mode
that takes either a serial-scan-
based or a multiplexed core iso-
lation approach. Designs with
only 22 visible address lines and
a 16-bit data bus cannot justify
the cost of developing a special
test-pattern set for the core in
each new device.

• Infrastructure portability. The
porting of third-party real-time
operating systems requires a
more modular and defined sys-
tem infrastructure for ARM-based
microcontrollers. To port a micro-
kernel, for example, the designer
must target both the processor
instruction set and the interrupt
controller environment, as well as
the basic counter/timer functionality.

Figure 1 shows typical aspects of an ad hoc ARM design.
In such designs, the state machine tends to be complex and
customized around the external and internal bus sequencing
and control.

Goals. AMBA addresses the issues just listed by incorpo-
rating several important features:

• Partitioning for modular design. Its methodology for
embedded processor design encourages both a modu-
lar and first-time-right system design and accelerates
product migration by supporting module reuse.

• Interface protocol, clocking, and reset. AMBA specifies
a flexible, low-overhead bus interface and clocking
structure to the core CPU macrocells. This simplifies sys-
tem design because interface protocols are clearly
defined to have one or more bus masters—components
that initiate bus transactions while enabled. The AMBA
Terminology and Specification box on p. 22 explains
bus masters in more detail.

• Support for low-power designs. By partitioning high- and
low-bandwidth devices within the system, AMBA
ensures energy-efficient designs, which fit well with
low-power CPU cores.

• On-chip test access. AMBA integrates an optional on-chip
test access methodology that reuses the basic bus infra-
structure. This helps make the external test of embedded
CPU and peripheral macrocells more efficient.

• Support of multiple development platforms. This allows
cycle-accurate benchmarking and hardware prototyp-
ing. It also features a set of generic reference peripher-
als that make it easier to port real-time kernel software.

Motivations. Before starting work on a new bus design,
the technical marketing group at ARM examined existing buses.
We concentrate on off-chip buses such as PCI, generally suit-
able for open systems; on-chip buses, such as Motorola’s
InterModule Bus, generally suitable for closed systems with a
particular microprocessor; and emerging standards, primarily

in Europe, to support multiple microprocessor families.
Off-chip bus standards, including S-Bus, MicroChannel, and

PCI, make it easier to create board-level and backplane (moth-
erboard) modular systems.1 However, because the clocking
strategies in such buses (synchronous or asynchronous) are
typically tuned for interchip communication, the bus specifi-
cation must deal with handshaking and physical and electri-
cal characteristics. It must accommodate the worst-case
manufacturing skews and tolerances for the spread of best-
and worst-case components (typically different silicon process-
es and technologies). In such open system buses, the over-
head of variable wait states and time-outs is generally high.

With on-chip buses the manufacturing and process varia-
tions apply to the entire system and bus components.
Motorola’s InterModule Bus, or IMB, was derived from the
68000 bus interface, so the interrupts and CPU-specific sig-
nals effectively become the system bus signals. Such a bus
standard is well suited to basic uniprocessor microcontroller
designs.

However, neither the off-chip bus standards nor micro-
processor-specific, on-chip derivatives apply RISC principles
to the bus protocol and infrastructure required at each bus
module (especially slaves). These principles are important
to enforce a design that minimizes logic and emphasizes
speed and efficiency. Relative to PCI, for example, AMBA
requires no distributed time-out support at every node and
no parity support on the data bus.

AMBA targets battery-powered, low-cost embedded appli-
cations—an application area not specifically addressed in
the 1991 Open Microprocessor Initiative standards activities.2

It also supports built-in manufacturing test access for deeply
embedded processor cores. ARM essentially cut the main
system bus to the basic clocking, reset, and memory bus
interface functions that generic processors and DMA con-
trollers require. AMBA treats processor-specific interrupts
and configuration signals as orthogonal to the bus specifi-
cation. Such signals connect directly to the appropriate I/O
subsystem rather than via the system bus. AMBA also treats
the arbiter request and grant signals as point-to-point signals
between individual bus masters and the arbitration unit itself.

July/August 1997 21

State machine
UART

Timer

PIO

RTC
Decoder

XXXXMemory

ARM

External
bus

interface

DMA
32-/16-/8-
bit data 32-bit data bus

Figure 1. A typical first design of an ARM microcontroller using an ad hoc approach.
The common disadvantages that affect design quality and reusability are the result
of coupling all peripherals to the processor bus, and of using a centralized state
machine. Manufacturing test access may use either multiplexer block isolation or
scan and built-in self-test techniques.

Modular design
AMBA evolved from ARM’s internal bus development

work. We generated an initial bus specification from the basic
ARM6 RISC core and the cached macrocells (ARM610 fami-
ly with cache, MMU, and write buffer).

We then formalized a basic synchronous master/slave bus
protocol, in which bus masters (typically CPUs, DSPs, or
DMA controllers) request the bus and a bus-arbitration unit
grants access to a single bus master. The master can initiate
read or write transactions with an address-mapped slave
(such as memory or peripheral I/O registers).

The address-space decoding and arbitration priorities are
not constrained in ARM embedded controller designs (apart
from the basic requirement to have ROM-resident vectors at
reset). The decoder and arbiter functions require well-
defined interface protocols, but designers should be able to
modify and extend them to suit specific applications.

In the bus infrastructure, we wanted to retain features that
complement the ARM CPU designs with minimal hardware
and complexity, but still support high-bandwidth, multiword
burst transactions. The infrastructure emphasizes the need for
a simple slave interface and a low gate count, in particular.

Figure 2 shows an AMBA-based implementation of a micro-
controller that is functionally similar to the one in Figure 1.
The test interface controller (TIC) and bridge between system
(ASB) and peripheral (APB) buses are described in detail later.

The ARM6 and ARM7 bus families use a 32-bit-wide system
memory bus, which can transfer data on every clock cycle
from a memory subsystem. They internally generate address-
es and control signals in the half clock cycle preceding the
memory access. In addition, two “next transaction” burst
access signaling flags indicate whether the next address is
related (sequential) or unrelated (nonsequential) to the cur-
rent access, or unused (corresponding to an idle bus cycle).

22 IEEE Micro

Advanced Microcontroller Bus Architecture

Bus cycle. The basic unit of one bus clock period; for
protocol description, the bus cycle is a falling edge to
falling edge transition. Bus signal timing references the
bus cycle clock.

Bus transaction. A read or write transfer of a data
object of given size, which may take one or more bus
cycles, terminated by a completion cycle from an
addressed device. System reset also terminates transac-
tions to guarantee that the bus is initialized.

A bus master asserts a LOCK signal to the bus arbiter to
make multiple transactions indivisible. In a nonmultiplexed
implementation, the address and control information is
broadcast in parallel with the data read or write operation.
A multiplexed implementation requires the broadcast of
an address cycle at the start of each new burst transaction
that precedes the data transfer.

Bus burst operation. An address transaction plus one
or more data transactions. Bursts may be of arbitrary length
and may be broken down into smaller packets by

• the arbiter, which may constrain burst lengths to meet
critical interrupt or DMA timing latencies; or

• the slave, which may be able to handle only short
bursts.

Bursts must use sequential incremental addresses and fixed
direction and size throughout.

Bus master. Component that initiates bus transactions
while it is enabled (see the multiple-master support sec-
tion). The master generates address and control informa-
tion, including the direction and size of data transfers, plus
burst indication when multiple sequential data transac-
tions are required.

The transactions initiated by the master are completed by
acknowledgment from the addressed target device. A slave
device may request the master to rebroadcast the next
address. This feature allows page boundaries, for example,
to be handled to prevent burst address wrapping.

In multiplexed bus implementations, addresses are
resynthesized externally to the bus master in a shared-
address incrementer. In nonmultiplexed implementations,
the address is broadcast for every burst access from the
bus master on a full 32-bit parallel address bus.

Examples of bus masters are

• CPU,
• dedicated digital signal processor unit,
• DMA (multichannel) controller(s),
• test interface controller for external test access (see

main text), and
• diagnostic controller (for remote debugging).

Bus slaves. Components that respond to addresses
within a decoded region of the address map and perform
bursts of read or write cycles on demand. A slave may
assert a WAIT signal to delay access using a synchronous
bus transfer protocol. A slave module may communicate
at the bus interface only when selected. The selection
process depends on the system decoding (described later);
typically only one slave is selected at a time. The bus pro-
tocol defines the basic module selection timing; a slave
response must then be generated by, or on behalf of, the
addressed slave. Slave devices typically require only a sub-
set of the 32-bit address bus; these addresses may be from
a parallel address bus, the system bus master, or a shared-
address latch/incrementer.

Examples of slave devices are

• memory banks,
• external bus interface (which typically supports 16-

or 8-bit-wide external memories),
• basic memory-mapped peripherals, and
• customer-developed macrocells.

A bus transaction, initiated by a bus master, must be ter-
minated by a response when the slave device has com-

AMBA terminology and specification

Memory subsystems unable to
complete the bus transaction in a sin-
gle clock cycle either stretch the
clock phases or add a synchronous
wait state. As always, the designer
handles the bus driver enables to
cope with back-to-back processor
read and write accesses.

To support a multiple-master bus,
we added a basic state machine to the
CPU core. Its role is to manage the
interface for the arbitration request/
grant handshake. This addition makes
it easier to support the natural con-
currency of bus masters that can con-
tinue processing until they need to
communicate on the system bus.

July/August 1997 23

pleted the data transfer. The slave must provide the
response when selected by the decoder.

As mentioned in the bus master section, the bus trans-
action protocol allows slave devices to break up bursts of
transactions over page or peripheral address boundaries.

The centralized decoder is typically responsible for gen-
erating an ERROR response when no valid transaction
slave device is addressed, or when an access violates pro-
tection or permission restrictions. In the bus protocol, this
appears simply as a default null slave that always causes
a bus error when selected.

System decoder. Slaves are essentially memory
mapped within a global 32-bit address space. The system
decoder provides

• address decoding,
• global control of the bus that acknowledges the slave

response transaction,
• top-level memory decoding (in hierarchical decoding

schemes),
• generation of system bus transaction responses,
• management of burst-length address boundaries, and
• (optional) basic memory protection for control of

supervisor/user mode access.

Distributed address decoders typically handle the decod-
ing of external memory and internal peripheral registers,
which gives the map a finer granularity.

The critical path in many systems is the address decoding
from a (new) address to the selection of the module. AMBA
supports early signaling of sequential burst-mode activity.
Designers can then bypass the address-decoding path if they
do not cross system-dependent address boundaries.

In systems with a low clock frequency (many pagers,
current mobile phones), there is sufficient time to decode
and select slave modules without adding wait states for
nonsequential accesses. In higher bandwidth applications,
it pays to add a wait state for nonsequential addresses to

maximize the sequential burst-mode data bandwidth.
Delegating this function to the system’s top-level

decoder lets designers create both bus master and slave
modules with the same bus interface, regardless of
whether they are to be used in fast or slow designs.

Multiple bus master support. The bus supports mul-
tiple bus masters, all of which communicate in a unified
manner with slave devices.

The arbitration scheme is centralized. Masters must
request the bus using a centralized arbiter; the arbitration
protocol for each master is strictly defined, but the arbi-
tration priority is left to the designer.

By specifying the arbitration protocol rather than the
arbitration scheme itself, all decisions about priorities and
DMA latencies rightly become a system design issue to suit
the application constraints. Designers may implement a
fixed-priority scheme or a more complex round-robin or
adaptive arbitration mechanism, depending on the real-
time requirements.

The arbitration is pipelined by one clock cycle to allow
changes in bus mastership without incurring dead bus
cycles in handover phases. Request and acknowledge
handshake signals support the arbitration signaling for
each bus master. The arbiter must observe the state of the
LOCK signal from the currently active bus master before
granting access to another bus master.

Data transfer width. The processors replicate byte-
write information across all four bytes and halfwords
across both high and low halves of the 32-bit bus. A two-
bit size encoding supports the 8-bit bytes, 32-bit words,
and 16-bit halfwords and reserves an extra code for future
64-bit or multiword extensions.

The bus master indicates the size of data transactions at
the start of a burst; slaves decode appropriate byte enables
as required.

The byte alignment is natural—an addressed byte or
halfword must be provided on the appropriate byte lanes.
Word accesses disregard the low two address bits; half-

AMBA terminology and specification (continued)

Arbiter
UART

Timer

PIO

RTC
Decoder

APB slaveRAM

ARM

External
bus

interface

TIC
(master)

DMA
External

bus ASB APB

B
rid

ge

Figure 2. AMBA-based design of a microcontroller with functionality similar to
that of the microcontroller in Figure 1. An AMBA-based microcontroller encour-
ages modularity and design reusability by distributing the control state machines
into independent bus masters and partitioning high- and low-bandwidth compo-
nents on independent buses.

.

Interface protocol, clocking, and reset
Reset and clocking strategies are fundamental to guaran-

teeing that all levels of bus protocol are free of contention
and lockup. This is especially important in low-power
designs, in which, typically, an ARM processor may have

both on-chip clock synthesizers for voltage control oscilla-
tors and clock-gating power-down modes.

To guarantee contention-free power-up, the bus master’s
state machine has a defined reset protocol and autonomous-
ly controls the shared-signal tristate bus drivers. This guar-

24 IEEE Micro

Advanced Microcontroller Bus Architecture

word accesses disregard the lowest address bit.
ARM systems may be configured for either little-endian

or big-endian byte addressing. The choice of configura-
tion is left to the designer; the CPU macrocells provide a
configuration input or coprocessor control flag.

Data transfer handshake. Data transfers require an
explicit acknowledge to complete transactions: the bus
master initiates the access by driving the direction, size,
and start address of a burst. The slave must acknowledge
with success (operation complete), failure (bus access ter-
minated after some error), or busy-wait (transaction not
complete).

The three-bit response field encodes

• Done—transfer successfully completed,
• Wait—transfer not completed,
• Error—access violation or nonexistent slave, or
• Retract—slave unable to complete, so master must retry.

To handle clean protocol reset without building watch-
dog timers into every slave device, an orthogonal reset
mechanism clears both the active master and slave with-
out overdriving the status bus signals.

The retract mechanism simply allows a slave that can-
not complete to release the bus for a cycle so the bus
arbiter can rearbitrate for any higher priority bus masters
requesting the bus.

Designers implement the retract support only in a complex
slave device that may suffer from arbitrary wait-state activi-
ty—such as PCMCIA card interfaces—and simply allow the
bus to be rearbitrated. To build fully generic, deadlock-free
systems, the basic mechanism must be extended to observe
which shared resource slaves block which bus masters.

Burst transfers. Both the bus masters and bus slaves
handle burst transfer signaling. The master indicates
whether a burst is to be continued or terminated; the slave
indicates whether a burst can be continued or not. The
signals are pipelined; they are broadcast in the cycle pre-
ceding the transaction to which they apply. The bus mas-
ter indicates if the next cycle is

• an address cycle, address broadcast next cycle;
• a nonsequential transaction, new address, potential-

ly new direction and size; or
• a sequential transaction, the address is incremental to

the last transaction address.

The bus slave interface indicates if the slave can con-
tinue burst access in the next cycle, or the slave requests
to break up burst access in the next cycle.

There is also a signal from the currently selected mas-
ter to the arbitration unit (BLOK, described in the signals
section, next).

Signals. The advanced system bus (see main text), or
ASB, has 77 signals, all of which have a “B” prefix. These
are grouped into common signals that all modules, all bus
masters, and all bus slaves share. Global signals are

• Clock (BCLK) and
• Reset (BnRES).

Bus master signals are

• Burst transaction indicators (BTRAN[1:0]),
• 32-bit Address (BA[31:0]),
• Control (BWRITE, BSIZE[1:0]—the direction and 32-

/16-/8-bit width),
• Protection (BPROT[1:0]—User/Privileged, Opcode/

Data access), and
• arbiter LOCK request (BLOK).

The master/slave data transaction bus is a 32-bit data
bus (BD[31:0]). The slave response is a 3-bit response
(BWAIT, BLAST, BERROR).

The system decoder monitors the bus master signals and
provides the slave module selection, typically in a central-
ized implementation to minimize gate count. This generates
a DSELxxx point-to-point signal for each slave module.

When AMBA test is present, each master also includes
a slave interface that supports the response bus handshake
signals. The address and control signals then become
inputs where required.

The advanced peripheral bus (see main text), or APB,
signals have a “P” prefix:

• Address (PA[a:0], where a is typically less than 31),
• Access strobe (PSTRB, active enable referenced to

BCLK),
• Access control (PWRITE—high for write, low for

read),and
• Bidirectional data (PD[d:0], where d is typically 7, 15,

or 31).

The APB signals are generated by an APB bridge, which
is simply a slave module on the ASB. The global clock and
reset signals (BCLK, BnRES) provide timing synchroniza-
tion and initialization references.

Peripheral decoding is provided by a local distributed
decoder function that transmits a point-to-point PSELxxx
signal to each peripheral.

AMBA terminology and specification (continued)

..

antee is particularly important in the period before system
clock oscillators are stable.

A response handshake bus provides for slave modules
when protocols are shared. An address decoder protocol
guarantees that there is only one driver at any given time.

The address decoder assumes the role of default slave
device when no active slave has been addressed or select-
ed, or more important, when the new address decoding is
not yet resolved (when no valid slave module yet owns the
response handshake bus).

ARM has filed a key patent application to cover the basic
bus master-slave protocol.

Low-power designs
As we worked with leading low-power customers and

OEMs (Psion on the design of the ARM7100, for example),
we were motivated to define a layered approach to system
bus design. The goal was to address the critical-path prob-
lems introduced by connecting every peripheral and mem-
ory subsystem to the main CPU bus. The solution was to
minimize bus loading on critical bus components.

AMBA covers two distinct buses:

• Advanced system bus. The ASB is the main system bus. It
has a 32-bit data bus that supports burst-mode signaling
and multiple bus masters and allows high-bandwidth
communication between the masters and the most sig-
nificant slave devices, such as the external memory con-
troller.

• Advanced peripheral bus. The APB is a minimalist periph-
eral I/O bus (typically 8, 16, or 32 data bits) that empha-
sizes a low-gate-count implementation for each peripheral.
The APB is static except when an I/O access takes place.
Thus, the high-bandwidth bus activity between the proces-
sor, any on-chip memory, and the external bus interface
is decoupled from the peripheral bus.

On-chip test support
As Figure 3 shows, AMBA supports on-chip test through

the test interface controller module, an integrated bus mas-
ter. The TIC provides a 32-bit parallel access port suitable
for manufacturing and in-circuit test by controlling the
embedded system’s external memory interface. As a result,
designers can implement the TIC with minimal gate count
to provide the control sequencing of the external bus data
path. This bus master is given highest priority with the bus
arbiter so that it can always gain access to the system bus.

ARM has filed a key patent application to cover test access
to embedded cores and peripherals. The system infrastruc-
ture supports the direct testing of individual modules using
the normal ASB transactions.3

Reconfiguring for test mode. In test mode, the TIC
reconfigures the application-specific external bus interface to
provide a high-speed, 32-bit, parallel vector interface. It uses
a minimal three-wire handshake with the tester, optimized for
intermodule bus transactions.

The only requirements for test reconfiguration are to pro-
vide a 32-bit bidirectional port for test vector access and pro-
vide a way to control the system clock. For a system with a

32-bit external data bus interface, the test port is trivial; how-
ever, for 16-bit and 8-bit data bus designs, the designer or
tester must reconfigure 16 or 24 address lines as bidirectional
test port signals for test mode access.

As Figure 3 shows, the TIC has two dedicated inputs.
TRQA is the test bus request input (request external bus).
TRQB is the test control input (test vector mode). The TIC
also has one output signal, TACK, test acknowledge (exter-
nal test request is granted). These signals support the
sequencing of the reused external interface for reading and
writing 32-bit test vectors. They also provide an external bus
enable/disable interface in normal operation, so it is easy to
interface with external DMA controllers and do production
IC testing.

To let the external tester clock the bus for TIC access, an
external clock pin is required. In low-power designs with
phase-locked loops and voltage-controlled oscillators, testers
use the normal phase-locked loop bypass mode typically
provided for analog subsystem testing.

When TRQA (active high) is asserted in normal system
mode, it requests that the bus arbiter grant the bus access to
the TIC’s external bus interface. The arbiter conventionally
gives the TIC the highest priority. By asserting the TACK sig-
nal, the TIC informs the external tester that the bus is guar-
anteed to be undriven.

Test mode cycle. In test mode, TRQA and TRQB encode

• Address vector—next cycle is burst transfer start address.
• Write data vector—next cycle is write data access.
• Read data vector—next cycle is read data access.
• Exit test mode—return the external bus to normal

operating mode.

We built a bus-turnaround protocol into the test bus
sequencing to ensure a contention-free tristate bus handover
between the IC and tester.

In test mode, the TACK signal provides the wait-state hand-
shake of the addressed module under test.

Test harness. To test on-chip bus masters, we created a
test harness that decouples all inputs and outputs from sys-
tem configuration. The harness also fully exercises core I/O
as if the core were fully multiplexed with all pins visible to

July/August 1997 25

External
bus

interface

TIC
(master)

32-bit
vector bus

TACK

TRQB

TRQA Arbiter

Figure 3. The test interface controller and external bus
interface, which provide the 32-bit test access port.

.

the tester. Each master device simply becomes a normal bus
slave during test, using the ASB handshake response.

Figure 4 depicts the test harness. We wrote a test language,
TICTalk, in simple C macros and compiled them to produce
the stimulus and expected test vectors for simulation or pro-
duction test. The external bus interface (EBI) is typically appli-
cation specific but is reused for test in a standardized manner.

The test access primitives to read and write data provide
the mechanism for testing basic peripheral modules up to
complex cached CPU macrocells. Designers can then apply
vector test sets developed for cache memories and CPUs effi-
ciently with high fault coverage.

Once the test harness is in place for a design, system
design and diagnostic accesses become unified across appli-
cation-specific microcontroller designs.

Several product designs have used this test harness suc-
cessfully. Generally, designers developed the hardware using
a simple uncached ARM7 core and substituted a custom
cached core transparently at the last minute. The test har-
ness requires no change; the designers run the more com-
plex validation software with cache and MMU page table
initialization only on the simulation of the final chip—when
the rest of the peripherals and memory have already been
validated. The ARM7100 design, for example, was developed
using an ARM7TDMI bus master simulation model before
the cached core was designed and ready.

Multiple development environments
As an aid to developing AMBA-based systems, we have

developed both a microcontroller design kit and a proto-
typing platform for design evaluation and software and hard-
ware development. The design kit, MicroPack, provides
VHDL and Verilog sample designs. The prototyping platform,
PID7T, permits the modeling of both on-chip and off-chip
memory subsystems. Designers can conduct what-if exper-
imentation and comparisons when trading off on-chip area
and external commodity memory. The PID7T also integrates
seamlessly with the ARM software development toolkits.

Figure 5 shows the PID7T. The card implements an entire,
discrete AMBA microcontroller, memory, and peripheral
environment in programmable logic devices (PLDs), to pro-
vide a full 32-bit ASB (top) and APB (bottom). The decoder,

arbiter, and reset controller are implemented discretely, as
is support for the TIC.

Specific features of the PID7T include:

• Zero-wait-state RAM. Designers can emulate on-chip
memory (modeled using fast synchronous SRAM cache
devices) or on-chip RAM from 4 to 128 Kbytes.

• External static memory emulation bank. The bank is
512 Kbytes, user-programmable, and split into two
banks of emulated SRAM or ROM, each with DIP switch
configuration of 32-, 16-, and 8-bit-wide memory with
one to four wait states.

• Two DRAM SIMM slots. These support 16 or 32 Mbytes
of bulk DRAM for large program development.

• FPGA-modeled subsystem of reference peripherals. This
includes interrupt controller and counter-timer func-
tionality for operating system development.

• CPU daughter card. The card in (top left, Figure 5) acts
as a test chip with the ARM macrocell plus basic I/O
pad ring and a bus master state machine PLD. The card
interfaces with 5-V level shifters to permit implementa-
tion of the system motherboard with higher speed stan-
dard voltage PLDs and FPGAs. Designers can thus
upgrade cached CPUs and in-circuit emulation.

• Support for interfaces to the development toolkits.
Support is for standard serial, parallel, and Ethernet (via
the PCMCIA card) host interfaces.

Building full on-chip bus systems with discrete devices
and standard programmable logic naturally limits the bus
clock frequency to the tens of MHz range. For many telecom-
munications applications, however, this is quite sufficient for
at-speed real-time prototyping and software validation. Some
developers still require real-time hardware prototypes so that
they can develop the software and ASIC concurrently.

The development cards provide a platform that third-party
tool developers can use as an interface to ARM processors. A
commercial in-circuit emulator developed by Lauterbach
GmBH (http://www.lauterbach.com) connects to the proces-
sor-daughter card interface. External connectors allow access
suitable for logic analysis connection or add-on prototype
hardware subsystems.

With our modular approach to the
CPU header card design, designers
can directly plug in upgrades of the
CPU test chips to support cached
standard parts and new test chips.

AS ORGANIZATIONS continue to
emphasize design reuse, on-chip
buses such as AMBA will become
increasingly important. We have
opened access to the AMBA specifi-

26 IEEE Micro

Advanced Microcontroller Bus Architecture

Test
interface

driver

TIC

EBI

Test point file

C compiler

Source file
(TICTalk

commands)

Figure 4. AMBA test harness. The harness supports the testing of an on-chip mod-
ule using canned vectors. Because test patterns for individual blocks are modular,
having a common test harness makes it easier to reuse the blocks.

.

cation to encourage design-ins and the development of
peripheral library components.4 We are also licensing
MicroPack to existing ARM licensees to support the develop-
ment of AMBA-based microcontrollers and let them use the
test access and burst-mode protocol patents royalty-free when
developing ARM-based designs.

ARM continues to work with leading semiconductor
licensees and integrators. We have already identified sever-
al possible areas of extension to accommodate products that
integrate on-chip DRAM and have higher bandwidth exter-
nal memory addresses.

• Bidirectional and unidirectional bus implementations.
We plan to carefully define bus protocols to work with
bidirectional tristate buses. The bus communication
layer would then let designers substitute separate uni-
directional read and write buses, leaving the protocol
unchanged. Multiplexers would route the selected mas-
ter and slave transaction ports.

• Split bus transactions. The retract mechanism in the cur-
rent AMBA specification (see the AMBA Terminology
and Specification box) does not allow generalized mul-
tiple outstanding transactions between bus masters
unless the slave device tracks the bus master grant sig-
nals to prevent deadlock. Adding split transaction sup-
port would let the bus master separate or split the request
for a read or write transaction from the subsequent
acknowledgment of the addressed slave. A declaration
of the full transaction length at the start of the transfer
would ensure that adequate buffer or first-in, first-out
space is available to handle the full burst transaction.

• Higher bus clock rates. Most handheld telecommunica-
tions products for pagers or mobile phones currently
run with bus clock frequencies between 4 and 27 MHz.
However, new multimedia product designs demand
higher performance, with the system bus speed typi-
cally tuned to optimally use off-chip memory band-
width. Decoupling the peripheral bus (or multiple APB
stubs) from the system bus offers designers a path to
higher bandwidth system buses without redesigning
peripheral subsystems. Cached processor cores may
then run at a higher multiple of the bus clock.

• Wide on-chip DRAM. Several ARM semiconductor
licensees use embedded DRAM technology. Merging
modular test techniques will allow them to exploit both
the CPU and memory in a range of smart-phone and orga-
nizer products.5 DRAM is inherently built as a row/col-
umn accessed array, in which the width of a row has
always been multiplexed down heavily for cost-effective
standard-part memory device packages. Once the DRAM,
processor, DMA, and DSP functions are integrated in the
same device, electromagnetic emissions from an interchip
memory bus decrease. Widening the on-chip system bus
then becomes a very attractive option, allowing designers
to tune the system for 64- or 128-bit widths. This provides
ideal access for cache line fills and video DMA for LCD dis-
play, for example. Again, the complexity of wide bus
widths is isolated from peripherals in the hierarchical bus
partitioning adopted in AMBA.

References
1. J. Hennessey and D. Patterson, Computer Architecture—A

Quantitative Approach, 2nd ed., Morgan Kaufmann, San
Mateo, Calif., 1996.

2. OMI-324 specification: http://www.omimo.be/public/data/
_indstan.htm.

3. D. W. Flynn, “Modular Bus Supports On-Chip Testability,” IEE
Colloquium: Systems Design for Testability, No. 1995/083,
paper 2.

4. I. Phillips and T. Dent, “The Development and Debug of
Microsystem Controllers,” http://www.isdmag.com/ic_uP/
Development.html.

5. D. Bursky, “Combo RISC CPU and DRAM Solves Data
Bandwidth Issues,” Electronic Design, Mar. 4, 1996.

David Flynn is the engineering manag-
er for the Systems Technology Group at
Advanced RISC Machines, Ltd. He holds
patents in low-power, on-chip bus and
video/audio system applications. Previ-
ously, he was responsible for both sys-
tems and software design in the

Advanced Research and Development Group at Acorn Com-
puters, Cambridge, which developed the original ARM
processor chip set.

Flynn received a BSc in computer science from Hatfield
Polytechnic.

Direct questions about this article to Flynn at Advanced
RISC Machines, Ltd., 90 Fulbourn Rd., Cherry Hinton,
Cambridge, CB1 4JN UK; david.flynn@arm.com.

Reader Interest Survey
Indicate your interest in this article by circling the appropriate
number on the Reader Service Card.

Low 156 Medium 157 High 158

July/August 1997 27

ASB system eASB system expansion connectorsxpansion connectors

APB perAPB peripheripherals eals expansion connectorsxpansion connectors

On-chip RAMOn-chip RAM
simsimulationulation

ConfigurConfigurabablele
AMBA locAMBA locksks

Off-chipOff-chip
static static

memormemoryy
ememulationulation

AMBAAMBA
TICTIC

interfinterfaceace

HostHost
serserialial
and and

parparallelallel
interfinterfacesaces

B
ul

k
D

R
A

M
B

ul
k

D
R

A
M

RefReferenceerence
APBAPB

perperipheripheralsalsEtherEthernetnet
hosthost

interfinterfaceace

AMBA CPUAMBA CPU
bbus masterus master

ARM7ARM7

ASB system expansion connectors

APB peripherals expansion connectors

On-chip RAM
simulation

Configurable
AMBA locks

Off-chip
static

memory
emulation

AMBA
TIC

interface

Host
serial
and

parallel
interfaces

B
ul

k
D

R
A

M

Reference
APB

peripheralsEthernet
host

interface

AMBA CPU
bus master

ARM7

Figure 5. PID7T, the AMBA-based development card for
the ARM7 processor family.

