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Minute Quiz...
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Recap of the last lecture

• Why is Reset Vector +1?
– It’s an ARM specific thing. The least significant bit in jump 

instructions indicates the type of instruction at that location (0: 
for ARM, 1: for Thumb). Since the Cortex-M3 can only execute 
Thumb2, this will always 
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The SAT instruction
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When you do a data write followed immediately by a read on a dual-port memory, if the 
memory write is buffered, the DMB instruction can be used to ensure the read gets the 
updated value.

The DSB and ISB instructions can be important for self-modifying code. For example, if a 
program changes its own program code, the next executed instruction should be based on the 
updated program. However, since the processor is pipelined, the modifi ed instruction location 
might have already been fetched. Using DSB and then ISB can ensure that the modifi ed 
program code is fetched again.

More detail about memory barriers can be found in the ARM v7-M Architecture Application 
Level Reference Manual (Ref 2).

Assembly Language: Saturation Operations

The Cortex-M3 supports two instructions that provide signed and unsigned saturation 
operations: SSAT and USAT (for signed data type and unsigned data type, respectively). 
Saturation is commonly used in signal processing—for example, in signal amplifi cation. 
When an input signal is amplifi ed, there is a chance that the output will be larger than the 
allowed output range. If the value is adjusted simply by removing the unused MSB, an 
overfl owed result will cause the signal waveform to be completely deformed (see Figure 4.3).
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Saturating at 32-bit signed value to a 16-bit
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The saturation operation does not prevent the distortion of the signal, but at least the amount 
of distortion is greatly reduced in the signal waveform.

The instruction syntax of the SSAT and USAT instructions is outlined here and in Table 4.28:

• Rn: Input value

• Shift: Shift operation for input value before saturation; optional, can be #LSL N or 
#ASR N

• Immed: Bit position where the saturation is carried out

• Rd: Destination register

Besides the destination register, the Q-bit in the APSR can also be affected by the result. The 
Q fl ag is set if saturation takes place in the operation, and it can be cleared by writing to the 
APSR (see Table 4.29). For example, if a 32-bit signed value is to be saturated into a 16-bit 
signed value, the following instruction can be used:

 SSAT.W R1, #16, R0

Similarly, if a 32-bit signed value is to saturate into a 16-bit unsigned value, the following 
instruction can be used:

 USAT.W R1, #16, R0

This will provide a saturation feature that has the properties shown in Figure 4.4.

Table 4.29 Examples of Signed Saturation Results

Input (R0) Output (R1) Q Bit
0x00020000 0x00007FFF Set

0x00008000 0x00007FFF Set

0x00007FFF 0x00007FFF Unchanged

0x00000000 0x00000000 Unchanged

0xFFFF8000 0xFFFF8000 Unchanged

0xFFFF8001 0xFFFF8000 Set

0xFFFE0000 0xFFFF8000 Set

Instruction Description
SSAT.W <Rd>, #<immed>, <Rn>, {,<shift>} Saturation for signed value

USAT.W <Rd>, #<immed>, <Rn>, {,<shift>} Saturation for a signed value into an unsigned value

Table 4.28 Saturation Instructions
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Generalization of Interrupts

• Merriam-Webster: 
“to break the uniformity or continuity of”

• Informs a program of some external events
• Breaks execution flow

• Where do interrupts come from?
• How do we save state for later continuation?
• How can we ignore interrupts?
• How can we prioritize interrupts?
• How can we share interrupts?

9

How does an embedded system boot?

10



The Reset Interrupt

1.No power
2. System is held in RESET as long as VCC15 < 0.8V

a. In reset: registers forced to default
b. RC-Osc begins to oscillate
c. MSS_CCC drives RC-Osc/4 into FSCK
d. PORESET_N is held low

3.Once VCC15GOOD, PORESET_N goes high
a. MSS reads from eNVM address 0x0 and 0x4 11

Voltage Regulator (VR), Power Supply Monitor (PSM), and Power Modes

154 Revision 1

• Turning the Analog block off by clearing the ABPOWERON bit in the ANA_COMM_CTRL
register

• Clearing the bit BGPSMENABLE in the VRPSM_CR

PSM Block Diagram

Power-Up Sequence
1. No power applied to chip
2. Regardless of which supply comes up first, all digital logic will be held in reset state until the

VCC detect circuit (VCC15UP signal) reaches the trip point (approximately 0.8 V). 
 In the reset state (VCC < 0.8V):
a. All registers are forced to their default state.
b. The RC-Osc begins oscillating.
c. The MSS_CCC drives RC-Osc / 4 into the MSS clock pin FCLK.
d. PORESET_N into the MSS is held low

3. Once VCC15GOOD is high (from the PSM) at around 1.3 V, the MSS reset is removed
(PORESET_N goes high). The MSS will then initiate a read from eNVM at logical address zero.
The eNVM will hold off response (by deasserting HREADY) until the eNVM is functional
(approximately 20 µS). The MSS starts executing factory boot code then jumps to the system
boot code to continue with low-level device initialization. 

Power-Down Sequence
If VCC33A drops first: 
If VCC33A (3.3 V supply to PSM) falls below  approximately 2 V, the BGGOOD signal will go to logic
0 and the eNVM will be reset.  The MSS will stop operating, since any eNVM access will not
complete.
If VCC drops first:
PORESET_N into MSS remains high until VCC15UP goes low (when VCC < ~ 0.65 V).  PORESET_N
goes high based on the VCC15GOOD signal (VCC > ~1.3 V) but goes low based on the VCC15UP
signal (VCC < ~0.65 V). This helps prevent transient supply noise from resetting the MSS.  If desired,
an interrupt can be generated to the Cortex-M3 when the VCC15GOOD signal falls below 1.3 V.
This interrupt is called BROWNOUT1_5VINT and is connected to INTISR[1] of the Cortex-M3 NVIC.

Figure 10-4 • Power Supply Monitor
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The Reset Interrupt (2)

• The Reset Interrupt is Non-Maskable!
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9 – Reset Controller

The reset controller manages the SmartFusion™ on-chip reset resources. On power-up, the signal
PORESET_N is used to bring the SmartFusion device to a known power-up state. PORESET_N is
sourced by the voltage regulator and power supply monitor (VR/PSM) block. A block diagram is
shown in Figure 9-1. There are two external pads that interface to the reset controller:
MSS_RESET_N and TRSTB. MSS_RESET_N can be used as an external reset and can also be used as a
system level reset under control of the ARM® Cortex™-M3. TRSTB is used to reset the SWJ-DP logic
within the Cortex-M3 and to reset the main JTAG TAP controller. All other inputs to and outputs
from the reset controller originate on-chip. Note that the SOFT_RESETS signals sourced from
Figure 9-1 place the respective peripheral in a low-power state. For example, if the user asserts
I2C_0_SR (logic 1) in the SOFT_RST_CR register, all flip-flops in that block are automatically clock
gated.

Functional Description
PORESET_N is a hard (cold) reset signal. Its assertion causes everything in the MSS except for the
SWJ-DP in the Cortex-M3 to be reset. All the other functional reset sources (those other than
NTRST) are soft (warm) resets. The signals BROWNOUT3_3VINT and BROWNOUT1_5VINT are
sourced from the VR/PSM block and provide interrupt capability when these supplies fall below
2.5 V and 1.3 V, respectively. These signals are also readable as status bits from the MSS_SR, located
at address 0xE004201C. Note that INTISR[1] and INTISR[2] must be enabled after the analog block is
turned on. The analog block can be turned on by setting the ABPOWERON bit in the
ANA_COMM_CTRL register to a 1. The ANA_COMM_CTRL register is located at address 0x4002000C
in the memory map.

Figure 9-1 • Reset Controller Block Diagram
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Interrupt Handling

• On the Cortex-M3
– Source: Software, Peripheral
– Controller: Nested Vectored Interrupt Controller (NVIC)
– MPU: Cortex-M3 Core

13

Source Controlle MPU! !

Sources of Interrupts
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Types of Interrupts

• Physical interrupts
– Level-triggered
– Edge-triggered (positive, negative)
– Hybrid

• Look for edges, but signal must stay for a while
• Often used for non-maskable interrupts to avoid glitches

• Non-maskable interrupts
• Interrupt priorities
• Software interrupts

15

The Nested Vectored Interrupt Controller (NVIC) 
on the Cortex-M3

• Control registers are memory mapped
• Contains control logic for interrupt processing
• Also contains MPU, SYSTICK Timer, and Debug

• 15 internal interrupts (defined by ARM)
• Supports up to 240 external interrupts (vendor specific)
• Accessed at 0xE000E000 on any Cortex-M3!

• Register definitions can be found at:
– ARM Cortex-M3 Technical Reference Manual v2.1, Chapter 6
– The Definitive Guide to the ARM Cortex-M3

16

System Exceptions
NVIC Interrupts 1-15

17

Chapter 7
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number might not match the interrupt input number on the NVIC. For example, some of the 
fi rst few interrupt inputs might be assigned to internal peripherals, and external interrupt pins 
could be assigned to the next couple of interrupt inputs. Therefore, you need to check the chip 
manufacturer’s datasheets to determine the numbering of the interrupts.

When an enabled exception occurs but cannot be carried out immediately (for instance, if a 
higher-priority interrupt service routine is running or if the interrupt mask register is set), it 

Exception Exception Type Priority Description
Number
1 Reset !3 (Highest) Reset

2 NMI !2 Nonmaskable interrupt (external NMI input)

3 Hard Fault !1  All fault conditions, if the corresponding fault 
handler is not enabled

4 MemManage Fault Programmable  Memory management fault; MPU violation or access 
to illegal locations

5 Bus Fault Programmable  Bus error; occurs when AHB interface receives an 
error response from a bus slave (also called prefetch 
abort if it is an instruction fetch or data abort if it is a 
data access)

6 Usage Fault Programmable  Exceptions due to program error or trying to access 
coprocessor (the Cortex-M3 does not support a 
coprocessor)

7–10 Reserved NA –

11 SVCall Programmable System Service call

12 Debug Monitor Programmable  Debug monitor (breakpoints, watchpoints, or 
external debug requests)

13 Reserved NA –

14 PendSV Programmable Pendable request for system device

15 SYSTICK Programmable System Tick Timer

Table 7.1 List of System Exceptions

Exception Number Exception Type Priority
16 External Interrupt #0 Programmable

17 External Interrupt #1 Programmable

… … …

255 External Interrupt #239 Programmable

Table 7.2 List of External Interrupts
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SYSTICK_CR at address 0xE0042038 can be read and written by user firmware. The NOREF, SKEW,
and TENMS fields in SYSTICK_CR map directly to the same fields in the SysTick Calibration Value
register, located at 0xE000E01C, although at different bit locations. Specifically, NOREF of
SYSTICK_CR (bit 25) is mapped to NOREF of STCVR (bit 31) and SKEW of SYSTICK_CR (bit 24) is
mapped to SKEW of STCVR (bit 30).
An application note describing the configuration of the SysTick Timer is available at the ARM
Infocenter at the time of this writing.

Interrupts
Table 1-5 lists the interrupt numbers (corresponding to the NVIC input pins of the Cortex-M3), their
sources, and which functions assert the interrupt for the SmartFusion family of mixed-signal flash-
based FPGAs. Details for each specific interrupt are located in the relevant section of the
SmartFusion Intelligent Mixed-Signal FPGAs datasheet where the interrupt is sourced. A description
of exceptions 0–15 can be found in the Cortex-M3 Technical Reference Manual. The Watchdog
Timer interrupt is mapped to the Non-Maskable interrupt of the NVIC. All other SmartFusion
interrupts are mapped to the external interrupt pins of the Cortex-M3 (NVIC), starting at
INTISR[0].

Table 1-5 • SmartFusion Interrupt Sources 

Cortex-M3 NVIC Input IRQ Label IRQ Source

NMI WDOGTIMEOUT_IRQ WATCHDOG

INTISR[0] WDOGWAKEUP_IRQ WATCHDOG

INTISR[1] BROWNOUT1_5V_IRQ VR/PSM

INTISR[2] BROWNOUT3_3V_IRQ VR/PSM

INTISR[3] RTCMATCHEVENT_IRQ RTC

INTISR[4] PU_N_IRQ RTC

INTISR[5] EMAC_IRQ Ethernet MAC

INTISR[6] M3_IAP_IRQ IAP

INTISR[7] ENVM_0_IRQ ENVM Controller

INTISR[8] ENVM_1_IRQ ENVM Controller

INTISR[9] DMA_IRQ Peripheral DMA

INTISR[10] UART_0_IRQ UART_0

INTISR[11] UART_1_IRQ UART_1

INTISR[12] SPI_0_IRQ SPI_0

INTISR[13] SPI_1_IRQ SPI_1

INTISR[14] I2C_0_IRQ I2C_0

INTISR[15] I2C_0_SMBALERT_IRQ I2C_0

INTISR[16] I2C_0_SMBSUS_IRQ I2C_0

INTISR[17] I2C_1_IRQ I2C_1

INTISR[18] I2C_1_SMBALERT_IRQ I2C_1

INTISR[19] I2C_1_SMBSUS_IRQ I2C_1

INTISR[20] TIMER_1_IRQ TIMER

INTISR[21] TIMER_2_IRQ TIMER

Actel SmartFusion Microcontroller Subsystem User’s Guide
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INTISR[22] PLLLOCK_IRQ MSS_CCC

INTISR[23] PLLLOCKLOST_IRQ MSS_CCC

INTISR[24] ABM_ERROR_IRQ AHB BUS MATRIX

INTISR[25] Reserved Reserved

INTISR[26] Reserved Reserved

INTISR[27] Reserved Reserved

INTISR[28] Reserved Reserved

INTISR[29] Reserved Reserved

INTISR[30] Reserved Reserved

INTISR[31] FAB_IRQ FABRIC INTERFACE

INTISR[32] GPIO_0_IRQ GPIO

INTISR[33] GPIO_1_IRQ GPIO

INTISR[34] GPIO_2_IRQ GPIO

INTISR[35] GPIO_3_IRQ GPIO

INTISR[36] GPIO_4_IRQ GPIO

INTISR[37] GPIO_5_IRQ GPIO

INTISR[38] GPIO_6_IRQ GPIO

INTISR[39] GPIO_7_IRQ GPIO

INTISR[40] GPIO_8_IRQ GPIO

INTISR[41] GPIO_9_IRQ GPIO

INTISR[42] GPIO_10_IRQ GPIO

INTISR[43] GPIO_11_IRQ GPIO

INTISR[44] GPIO_12_IRQ GPIO

INTISR[45] GPIO_13_IRQ GPIO

INTISR[46] GPIO_14_IRQ GPIO

INTISR[47] GPIO_15_IRQ GPIO

INTISR[48] GPIO_16_IRQ GPIO

INTISR[49] GPIO_17_IRQ GPIO

INTISR[50] GPIO_18_IRQ GPIO

INTISR[51] GPIO_19_IRQ GPIO

INTISR[52] GPIO_20_IRQ GPIO

INTISR[53] GPIO_21_IRQ GPIO

INTISR[54] GPIO_22_IRQ GPIO

INTISR[55] GPIO_23_IRQ GPIO

INTISR[56] GPIO_24_IRQ GPIO

INTISR[57] GPIO_25_IRQ GPIO

INTISR[58] GPIO_26_IRQ GPIO

Table 1-5 • SmartFusion Interrupt Sources  (continued)

GPIO_3_IRQ to GPIO_31_IRQ cut

ARM Cortex-M3 Microcontroller

12 Revision 1

INTISR[59] GPIO_27_IRQ GPIO

INTISR[60] GPIO_28_IRQ GPIO

INTISR[61] GPIO_29_IRQ GPIO

INTISR[62] GPIO_30_IRQ GPIO

INTISR[63] GPIO_31_IRQ GPIO

INTISR[64] ACE_PC0_FLAG0_IRQ ACE

INTISR[65] ACE_PC0_FLAG1_IRQ ACE

INTISR[66] ACE_PC0_FLAG2_IRQ ACE

INTISR[67] ACE_PC0_FLAG3_IRQ ACE

INTISR[68] ACE_PC1_FLAG0_IRQ ACE

INTISR[69] ACE_PC1_FLAG1_IRQ ACE

INTISR[70] ACE_PC1_FLAG2_IRQ ACE

INTISR[71] ACE_PC1_FLAG3_IRQ ACE

INTISR[72] ACE_PC2_FLAG0_IRQ ACE

INTISR[73] ACE_PC2_FLAG1_IRQ ACE

INTISR[74] ACE_PC2_FLAG2_IRQ ACE

INTISR[75] ACE_PC2_FLAG3_IRQ ACE

INTISR[76] ACE_ADC0_DATAVALID_IRQ ACE

INTISR[77] ACE_ADC1_DATAVALID_IRQ ACE

INTISR[78] ACE_ADC2_DATAVALID_IRQ ACE

INTISR[79] ACE_ADC0_CALDONE_IRQ ACE

INTISR[80] ACE_ADC1_CALDONE_IRQ ACE

INTISR[81] ACE_ADC2_CALDONE_IRQ ACE

INTISR[82] ACE_ADC0_CALSTART_IRQ ACE

INTISR[83] ACE_ADC1_CALSTART_IRQ ACE

INTISR[84] ACE_ADC2_CALSTART_IRQ ACE

INTISR[85] ACE_COMP0_FALL_IRQ ACE

INTISR[86] ACE_COMP1_FALL_IRQ ACE

INTISR[87] ACE_COMP2_FALL_IRQ ACE

INTISR[88] ACE_COMP3_FALL_IRQ ACE

INTISR[89] ACE_COMP4_FALL_IRQ ACE

INTISR[90] ACE_COMP5_FALL_IRQ ACE

INTISR[91] ACE_COMP6_FALL_IRQ ACE

INTISR[92] ACE_COMP7_FALL_IRQ ACE

INTISR[93] ACE_COMP8_FALL_IRQ ACE

INTISR[94] ACE_COMP9_FALL_IRQ ACE

INTISR[95] ACE_COMP10_FALL_IRQ ACE

Table 1-5 • SmartFusion Interrupt Sources  (continued)

54 more ACE specific interrupts



Pending Interrupts
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• NMI vector

• Hard fault vector

These are required because the NMI and hard fault can potentially occur during your boot 
process. Other exceptions cannot take place until they are enabled.

When the booting process is done, you can defi ne a part of your SRAM as the new vector 
table and relocate the vector table to the new one, which is writable.

Interrupt Inputs and Pending Behavior

This section describes the behavior of IRQ inputs and pending behavior. It also applies to 
NMI input, except that an NMI will be executed immediately in most cases, unless the core 
is already executing an NMI handler, halted by a debugger, or locked up due to some serious 
system error.

When an interrupt input is asserted, it will be pended. Even if the interrupt source de-asserts 
the interrupt, the pended interrupt status will still cause the interrupt handler to be executed 
when the priority is allowed.

However, if the pending status is cleared before the processor starts responding to the 
pended interrupt (for example, because pending status register is cleared while PRIMASK/
FAULTMASK is set to 1), the interrupt can be canceled (Figure 7.9). The pending status of 
the interrupt can be accessed in the NVIC and is writable, so you can clear a pending interrupt 
or use software to pend a new interrupt by setting the pending register.

When the processor starts to execute an interrupt, the interrupt becomes active and the 
pending bit will be cleared automatically (Figure 7.10). When an interrupt is active, you 
cannot start processing the same interrupt again until the interrupt service routine is terminated 
with an interrupt return (also called an exception exit, as discussed in Chapter 9). Then the 

Interrupt

Request

Interrupt

Pending Status

Processor

Mode

Thread

Mode

Handler Mode
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active status is cleared and the interrupt can be processed again if the pending status is 1. It is 
possible to re-pend an interrupt before the end of the interrupt service routine.
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Figure 7.9 Interrupt Pending Cleared Before Processor Takes Action
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Figure 7.10 Interrupt Active Status Set as Processor Enters Handler

If an interrupt source continues to hold the interrupt request signal active, the interrupt will be 
pended again at the end of the interrupt service routine as shown in Figure 7.11. This is just 
like the traditional ARM7TDMI.

If an interrupt is pulsed several times before the processor starts processing it, it will be treated 
as one single interrupt request as illustrated in Figure 7.12.

If an interrupt is de-asserted and then pulsed again during the interrupt service routine, it will 
be pended again as shown in Figure 7.13.
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active status is cleared and the interrupt can be processed again if the pending status is 1. It is 
possible to re-pend an interrupt before the end of the interrupt service routine.
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If an interrupt source continues to hold the interrupt request signal active, the interrupt will be 
pended again at the end of the interrupt service routine as shown in Figure 7.11. This is just 
like the traditional ARM7TDMI.

If an interrupt is pulsed several times before the processor starts processing it, it will be treated 
as one single interrupt request as illustrated in Figure 7.12.

If an interrupt is de-asserted and then pulsed again during the interrupt service routine, it will 
be pended again as shown in Figure 7.13.
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Pending of an interrupt can happen even if the interrupt is disabled; the pended interrupt can 
then trigger the interrupt sequence when the enable is set later. As a result, before enabling an 
interrupt, it could be useful to check whether the pending register has been set. The interrupt 
source might have been activated previously and have set the pending status. If necessary, you 
can clear the pending status before you enable an interrupt.
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Figure 7.11 Continuous Interrupt Request Pends Again After Interrupt Exit
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Figure 7.12 Interrupt Pending Only Once, Even with Multiple Pulses Before the Handler
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Pending of an interrupt can happen even if the interrupt is disabled; the pended interrupt can 
then trigger the interrupt sequence when the enable is set later. As a result, before enabling an 
interrupt, it could be useful to check whether the pending register has been set. The interrupt 
source might have been activated previously and have set the pending status. If necessary, you 
can clear the pending status before you enable an interrupt.
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Fault Exceptions

A number of system exceptions are useful for fault handling. There are several categories of 
faults:

• Bus faults

• Memory management faults

• Usage faults

• Hard faults

Bus Faults

Bus faults are produced when an error response is received during a transfer on the AHB 
interfaces. It can happen at these stages:

• Instruction fetch, commonly called prefetch abort

• Data read/write, commonly called data abort

In the Cortex-M3, bus faults can also occur during a:

• Stack PUSH in the beginning of interrupt processing, called a stacking error

• Stack POP at the end of interrupt processing, called an unstacking error
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Figure 7.13 Interrupt Pending Occurs Again During the Handler
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Table 8.1 Interrupt Set Enable Registers and Interrupt Clear Enable Registers 
(0xE000E100-0xE000E11C, 0xE000E180-0xE000E19C)

Address Name Type Reset Value Description

0xE000E100 SETENA0 R/W 0 Enable for external interrupt #0–31

    bit[0] for interrupt #0 (exception #16)

    bit[1] for interrupt #1 (exception #17)

    …

    bit[31] for interrupt #31 (exception #47)

    Write 1 to set bit to 1; write 0 has no effect

    Read value indicates the current status

0xE000E104 SETENA1 R/W 0 Enable for external interrupt #32–63

    Write 1 to set bit to 1; write 0 has no effect

    Read value indicates the current status

0xE000E108 SETENA2 R/W 0 Enable for external interrupt #64–95

    Write 1 to set bit to 1; write 0 has no effect

    Read value indicates the current status

… – – – –

0xE000E180 CLRENA0 R/W 0 Clear enable for external interrupt #0–31

    bit[0] for interrupt #0

    bit[1] for interrupt #1

    …

    bit[31] for interrupt #31

    Write 1 to clear bit to 0; write 0 has no effect

    Read value indicates the current enable status

0xE000E184 CLRENA1 R/W 0 Clear Enable for external interrupt #32–63

    Write 1 to clear bit to 0; write 0 has no effect

    Read value indicates the current enable status

0xE000E188 CLRENA2 R/W 0 Clear enable for external interrupt #64–95

    Write 1 to clear bit to 0; write 0 has no effect

    Read value indicates the current enable status

… – – – –

controls might contain more than one register if there are more than 32 external interrupt 
inputs.

The pending status registers can be changed, so you can cancel a current pended exception or 
generate software interrupts via the SETPEND register (see Table 8.2).
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Table 8.1 Interrupt Set Enable Registers and Interrupt Clear Enable Registers 
(0xE000E100-0xE000E11C, 0xE000E180-0xE000E19C)

Address Name Type Reset Value Description
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    bit[0] for interrupt #0

    bit[1] for interrupt #1

    …

    bit[31] for interrupt #31

    Write 1 to clear bit to 0; write 0 has no effect

    Read value indicates the current enable status

0xE000E184 CLRENA1 R/W 0 Clear Enable for external interrupt #32–63

    Write 1 to clear bit to 0; write 0 has no effect

    Read value indicates the current enable status

0xE000E188 CLRENA2 R/W 0 Clear enable for external interrupt #64–95

    Write 1 to clear bit to 0; write 0 has no effect

    Read value indicates the current enable status

… – – – –

controls might contain more than one register if there are more than 32 external interrupt 
inputs.

The pending status registers can be changed, so you can cancel a current pended exception or 
generate software interrupts via the SETPEND register (see Table 8.2).
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Priority Levels

Each external interrupt has an associated priority-level register, which has a maximum width 
of 8 bits and a minimum width of 3 bits. As described in the previous chapter, each register 
can be further divided into preempt priority level and subpriority level based on priority group 
settings. The priority-level registers can be accessed as byte, half word, or word. The number of 

Address Name Type Reset Value Description
0xE000E200 SETPEND0 R/W 0 Pending for external interrupt #0–31

    bit[0] for interrupt #0 (exception #16)

    bit[1] for interrupt #1 (exception #17)

    …

    bit[31] for interrupt #31 (exception #47)

    Write 1 to set bit to 1; write 0 has no effect

    Read value indicates the current status

0xE000E204 SETPEND1 R/W 0 Pending for external interrupt #32–63

    Write 1 to set bit to 1; write 0 has no effect

    Read value indicates the current status

0xE000E208 SETPEND2 R/W 0 Pending for external interrupt #64–95

    Write 1 to set bit to 1; write 0 has no effect

    Read value indicates the current status

… – – – –

0xE000E280 CLRPEND0 R/W 0 Clear pending for external interrupt #0–31

    bit[0] for interrupt #0 (exception #16)

    bit[1] for interrupt #1 (exception #17)

    …

    bit[31] for interrupt #31 (exception #47)

    Write 1 to clear bit to 0; write 0 has no effect

    Read value indicates the current pending status

0xE000E284 CLRPEND1 R/W 0 Clear pending for external interrupt #32–63

    Write 1 to clear bit to 0; write 0 has no effect

    Read value indicates the current pending status

0xE000E288 CLRPEND2 R/W 0 Clear pending for external interrupt #64–95
    Write 1 to clear bit to 1; write 0 has no effect

    Read value indicates the current pending status

… – – – –

Table 8.2 Interrupt Set Pending Registers and Interrupt Clear Pending Registers 
(0xE000E200-0xE000E21C, 0xE000E280-0xE000E29C)
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Each external interrupt has an associated priority-level register, which has a maximum width 
of 8 bits and a minimum width of 3 bits. As described in the previous chapter, each register 
can be further divided into preempt priority level and subpriority level based on priority group 
settings. The priority-level registers can be accessed as byte, half word, or word. The number of 

Address Name Type Reset Value Description
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    bit[0] for interrupt #0 (exception #16)

    bit[1] for interrupt #1 (exception #17)

    …
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    Write 1 to set bit to 1; write 0 has no effect

    Read value indicates the current status

0xE000E204 SETPEND1 R/W 0 Pending for external interrupt #32–63
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    Read value indicates the current status

0xE000E208 SETPEND2 R/W 0 Pending for external interrupt #64–95
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… – – – –
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    …
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    Read value indicates the current pending status

0xE000E284 CLRPEND1 R/W 0 Clear pending for external interrupt #32–63

    Write 1 to clear bit to 0; write 0 has no effect

    Read value indicates the current pending status
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    Write 1 to clear bit to 1; write 0 has no effect

    Read value indicates the current pending status
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(0xE000E200-0xE000E21C, 0xE000E280-0xE000E29C)

CH08-H8534.indd   140CH08-H8534.indd   140 7/19/07   1:32:48 PM7/19/07   1:32:48 PM

26



Configuring the NVIC (3)

• Interrupt Active Status Register
– 0xE000E300-0xE000E31C

27

The NVIC and Interrupt Control

141

priority-level registers depends on how many external interrupts the chip contains (see Table 
8.3). The priority level confi guration registers details can be found in Appendix D, Table D.18.

Table 8.3 Interrupt Priority-Level Registers (0xE000E400-0xE000E4EF)

Address Name Type Reset Value Description
0xE000E400 PRI_0 R/W 0 (8-bit) Priority-level external interrupt #0

0xE000E401 PRI_1 R/W 0 (8-bit) Priority-level external interrupt #1

… – – – –

0xE000E41F PRI_31 R/W 0 (8-bit) Priority-level external interrupt #31

… – – – –

Active Status

Each external interrupt has an active status bit. When the processor starts the interrupt 
handler, the bit is set to 1 and cleared when the interrupt return is executed. However, during 
an interrupt service routine execution, a higher-priority interrupt might occur and cause 
a preemption. During this period, despite the fact that the processor is executing another 
interrupt handler, the previous interrupt is still defi ned as active. The active registers are 
32-bit but can also be accessed using half word or byte-size transfers. If there are more than 
32 external interrupts, there will be more than one active register. The active status registers 
for external interrupts are read-only (see Table 8.4).

Table 8.4 Interrupt Active Status Registers (0xE000E300-0xE000E31C)

Address Name Type Reset Value Description

0xE000E300 ACTIVE0 R 0 Active status for external interrupt #0–31

    bit[0] for interrupt #0

    bit[1] for interrupt #1

    …

    bit[31] for interrupt #31

0xE000E304 ACTIVE1 R 0 Active status for external interrupt #32–63

… – – – –

PRIMASK and FAULTMASK Special Registers

The PRIMASK register is used to disable all exceptions except NMI and hard fault. It 
effectively changes the current priority level to 0 (highest programmable level). This register 
is programmable using MRS and MSR instructions. For example:

     MOV    R0, #1
     MSR    PRIMASK, R0   ; Write 1 to PRIMASK to disable all 
                          ; interrupts
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• What do we do if several interrupts arrive at the same time?
• NVIC allows to set priorities for (almost) every interrupt
• 3 fixed highest priorities, up to 256 programmable priorities

– 128 preemption levels
– Not all priorities have to be implemented by a vendor!

– SmartFusion has 32 priority levels, i.e., 0x00, 0x08, …, 0xF8

• Higher priority interrupts can pre-empt lower priorities
• Priority can be sub-divided into priority groups

– splits priority register into two halves, preempt priority and subpriority

– preempt priority: indicates if an interrupt can preempt another
– subpriority: used if two interrupts of same group arrive concurrently
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Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ImplementedImplementedImplemented Not implemented, read as zeroNot implemented, read as zeroNot implemented, read as zeroNot implemented, read as zeroNot implemented, read as zero

Interrupt Priority (2)

• Interrupt Priority Level Registers
– 0xE000E400-0xE000E4EF
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priority-level registers depends on how many external interrupts the chip contains (see Table 
8.3). The priority level confi guration registers details can be found in Appendix D, Table D.18.

Table 8.3 Interrupt Priority-Level Registers (0xE000E400-0xE000E4EF)

Address Name Type Reset Value Description
0xE000E400 PRI_0 R/W 0 (8-bit) Priority-level external interrupt #0

0xE000E401 PRI_1 R/W 0 (8-bit) Priority-level external interrupt #1

… – – – –

0xE000E41F PRI_31 R/W 0 (8-bit) Priority-level external interrupt #31

… – – – –

Active Status

Each external interrupt has an active status bit. When the processor starts the interrupt 
handler, the bit is set to 1 and cleared when the interrupt return is executed. However, during 
an interrupt service routine execution, a higher-priority interrupt might occur and cause 
a preemption. During this period, despite the fact that the processor is executing another 
interrupt handler, the previous interrupt is still defi ned as active. The active registers are 
32-bit but can also be accessed using half word or byte-size transfers. If there are more than 
32 external interrupts, there will be more than one active register. The active status registers 
for external interrupts are read-only (see Table 8.4).

Table 8.4 Interrupt Active Status Registers (0xE000E300-0xE000E31C)

Address Name Type Reset Value Description

0xE000E300 ACTIVE0 R 0 Active status for external interrupt #0–31

    bit[0] for interrupt #0

    bit[1] for interrupt #1

    …

    bit[31] for interrupt #31

0xE000E304 ACTIVE1 R 0 Active status for external interrupt #32–63

… – – – –

PRIMASK and FAULTMASK Special Registers

The PRIMASK register is used to disable all exceptions except NMI and hard fault. It 
effectively changes the current priority level to 0 (highest programmable level). This register 
is programmable using MRS and MSR instructions. For example:

     MOV    R0, #1
     MSR    PRIMASK, R0   ; Write 1 to PRIMASK to disable all 
                          ; interrupts
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level will be in the same level, and no preemption between these exceptions will take place, 
except that hard fault, NMI, and reset, which have priority of !1, !2, and !3, respectively, 
can preempt these exceptions.

When deciding the effective preempt priority level and subpriority level, you must take these 
factors into account:

• Implemented priority-level confi guration registers

• Priority group setting

For example, if the width of the confi guration registers is 3 (bit 7 to bit 5 are available) and 
priority group is set to 5, you can have four levels of preempt priority levels (bit 7 to bit 6), 
and inside each preempt level there are two levels of subpriority (bit 5).

Priority Group Preempt Priority Field Subpriority Field
0 Bit [7:1] Bit [0]

1 Bit [7:2] Bit [1:0]

2 Bit [7:3] Bit [2:0]

3 Bit [7:4] Bit [3:0]

4 Bit [7:5] Bit [4:0]

5 Bit [7:6] Bit [5:0]

6 Bit [7] Bit [6:0]

7 None Bit [7:0]

Table 7.4 Defi nition of Preempt Priority Field and Subpriority Field 
in a Priority Level Register in Different Priority Group Settings

Bits Name Type Reset Description
   Value
31:16 VECTKEY R/W –  Access key; 0x05FA must be written to this fi eld to write 

to this register, otherwise the write will be ignored; the 
read-back value of the upper half word is 0xFA05

15 ENDIANNESS R –  Indicates endianness for data: 1 for big endian (BE8) 
and 0 for little endian; this can only change after a reset

10:8 PRIGROUP R/W 0 Priority group

2 SYSRESETREQ W – Requests chip control logic to generate a reset

1 VECTCLRACTIVE W –  Clears all active state information for exceptions; 
typically used in debug or OS to allow system to recover 
from system error (Reset is safer)

0 VECTRESET W –  Resets the Cortex-M3 processor (except debug logic), 
but this will not reset circuits outside the processor

Table 7.5 Application Interrupt and Reset Control Register (Address 0xE000ED0C)
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Exercise: How many preemption priorities and 
subpriority levels do we get on the Smart Fusion if 
we set Priority Group to 5?
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Programmable

Exceptions

-3
-2
-1

0x00

Reset
NMI

Hard Fault

Preempt levels 
with priority 

group set to 5

Subpriority 
levels

PRIMASK, FAULTMASK, and BASEPRI

• What if we quickly want to disable all interrupts?

• Write 1 into PRIMASK to disable all interrupt except NMI
– MOV R0, #1
– MSR PRIMASK, R0

• Write 0 into PRIMASK to enable all interrupts
• FAULTMASK is the same as PRIMASK, but also blocks hard 

fault (priority -1)

• What if we want to disable all interrupts below a certain 
priority?

• Write priority into BASEPRI
– MOV R0, #0x60
– MSR BASEPRI, R0

32

What exactly is an interrupt handler?
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Vector Table

• Upon an interrupt, the Cortex-M3 needs to know the 
address of the interrupt handler (function pointer)

• After powerup, vector table is located at 0x00000000

34
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Since the address 0x0 should be boot code, usually it will either be Flash memory or ROM 
devices, and the value cannot be changed at run time. However, the vector table can be 
relocated to other memory locations in the Code or RAM region where the RAM is so that we 
can change the handlers during run time. This is done by setting a register in the NVIC called 
the vector table offset register (address 0xE000ED08). The address offset should be aligned 
to the vector table size, extended to the power of 2. For example, if there are 32 IRQ inputs, 
the total number of exceptions will be 32 ! 16 (system exceptions) " 48. Extending it to the 
power of 2 makes it 64. Multiplying it by 4 makes it 256 (0x100). Therefore, the vector table 
offset can be programmed as 0x0, 0x100, 0x200, and so on. The vector table offset register 
contains the items shown in Table 7.7.

In applications where you want to allow dynamic changing of exception handlers, in the 
beginning of the boot image you need to have these (at a minimum):

• Initial Main Stack Pointer value

• Reset vector

Figure 7.8 Defi nition of Priority Fields in an 8-bit Priority Level Register with Priority 
Group Set to 0

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Preempt priority     Subpriority

Address Exception Number Value (Word Size)
0x00000000 – MSP initial value

0x00000004 1 Reset vector (program counter initial value)

0x00000008 2 NMI handler starting address

0x0000000C 3 Hard fault handler starting address

… … Other handler starting address

Table 7.6 Exception Vector Table After Power Up

Bits Name Type Reset Value Description
29 TBLBASE R/W 0 Table base in Code (0) or RAM (1)

28:7 TBLOFF R/W 0 Table offset value from Code region or RAM region

Table 7.7 Vector Table Offset Register (Address 0xE000ED08)

Vector Tables

When an exception takes place and is being handled by the Cortex-M3, the processor will 
need to locate the starting address of the exception handler. This information is stored in 
the vector table. By default, the vector table starts at address zero, and the vector address is 
arranged according to the exception number times 4 (see Table 7.6).
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• Can be relocated to change interrupt handlers at 
runtime (vector table offset register)



Vector Table in SoftConsole

• Located in startup_a2fxxxm3.s

• Put at 0x00000000 in linker script

35

Interrupt Handlers

36

Interrupt Handler in GNU C

• We can overwrite the predefined interrupt handlers
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__attribute__((__interrupt__)) void Timer1_IRQHandler()
{
    MSS_TIM1_disable_irq();
    MSS_TIM1_clear_irq();
    …
    NVIC_ClearPendingIRQ( Timer1_IRQn );
}

int main()
{
    MSS_TIM1_enable_irq();
    NVIC_EnableIRQ( Timer1_IRQn );
    …
    while(1){}
}

Interrupt Service Routines

1. Automatic saving of registers upon exception
• PC, PSR, R0-R3, R12, LR pushed on the stack

2. While bus busy, fetch exception vector

3. Update SP to new location

4. Update IPSR (low part of PSR) with new exception number

5. Set PC to vector handler

6. Update LR to special value EXC_RETURN

• Several other NVIC registers get updated

• Latency: as short as 12 cycles
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Return from ISR

• 3 ways to return from an ISR
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Register Updates

After the stacking and vector fetch are completed, the exception vector will start to execute. 
On entry of the exception handler, a number of registers will be updated:

• SP: The Stack Pointer (either the MSP or the PSP) will be updated to the new location 
during stacking. During execution of the interrupt service routine, the MSP will be 
used if the stack is accessed.

• PSR: The IPSR (the lowest part of the PSR) will be updated to the new exception 
number.

• PC: This will change to the vector handler as the vector fetch completes and starts 
fetching instructions from the exception vector.

• LR: The LR will be updated to a special value called EXC_RETURN.1 This special 
value drives the interrupt return operation. The last 4 bits of the LR have a special 
meaning, which is covered later in this chapter.

A number of other NVIC registers will also be updated. For example, the pending status of the 
exception will be cleared and the active bit of the exception will be set.

Exception Exits

At the end of the exception handler, an exception exit (known as an interrupt return in some 
processors) is required to restore the system status so that the interrupted program can resume 
normal execution. There are three ways to trigger the interrupt return sequence; all of them use 
the special value stored in the LR in the beginning of the handler (see Table 9.2).

1 EXC_RETURN has values with bit[31:4] and are all 1 (i.e., 0xFFFFFFFX); the last 4 bits defi ne the return 
information. More information on the EXC_RETURN value is covered later in this chapter.

Return Instruction Description
BX !reg" If the EXC_RETURN value is still in LR, we can use the BX LR instruction to 
 perform the interrupt return.

POP {PC}, or Very often the value of LR is pushed to the stack after entering the exception
POP {...., PC} handler. We can use the POP instruction, either a single POP or multiple POPs, to 
 put the EXC_RETURN value to the program counter. This will cause the processor 
 to perform the interrupt return.

LDR, or LDM It is possible to produce an interrupt return using the LDR instruction with PC as 
 the destination register.

Table 9.2 Instructions that Can be Used for Triggering Exception Return
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• Unstack and reset SP
• Update NVIC registers

Nested Interrupts

• Built into the Cortex-M3 (not every MCU has this)
• Make sure main stack is large enough!

• Two methods:
– Tail Chaining
– Late Arrival (preemption)

40

Tail Chaining

• If first interrupt has same or higher priority
• Skip stacking/unstacking for efficiency
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Late Arrivals

Another feature that improves interrupt performance is late arrival exception handling. When 
an exception takes place and the processor has started the stacking process, and if during this 
delay a new exception arrives with higher preemption priority, the late arrival exception will 
be processed fi rst.

For example, if Exception #1 (lower priority) takes place a few cycles before Exception #2 
(higher priority), the processor will behave as shown in Figure 9.3, such that Handler #2 is 
executed as soon as the stacking completes.
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Routine #1

Interrupt Service
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Main Program

Interrupt

Event #1

Interrupt exits Interrupt exits
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Figure 9.2 Tail Chaining of Exceptions
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Figure 9.3 Late Arrival Exception Behavior

More on the Exception Return Value

When entering an exception handler, the LR is updated to a special value called EXC_RETURN, 
with the upper 28 bits all set to 1. This value, when loaded into the PC at the end of the 
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Late Arrival (Preemption)

• Main stack must be able to hold maximum number 
of preemptions!
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Late Arrivals

Another feature that improves interrupt performance is late arrival exception handling. When 
an exception takes place and the processor has started the stacking process, and if during this 
delay a new exception arrives with higher preemption priority, the late arrival exception will 
be processed fi rst.

For example, if Exception #1 (lower priority) takes place a few cycles before Exception #2 
(higher priority), the processor will behave as shown in Figure 9.3, such that Handler #2 is 
executed as soon as the stacking completes.
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More on the Exception Return Value

When entering an exception handler, the LR is updated to a special value called EXC_RETURN, 
with the upper 28 bits all set to 1. This value, when loaded into the PC at the end of the 
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Different Concepts of Interrupt Sharing

• Number of potential interrupts usually larger than interrupt 
lines availability on Core

• One peripheral often only has one interrupt
• Different types of events are stored in a status register

• Example, UART
– IIR, 0x40000008
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Universal Asynchronous Receiver/Transmitter (UART) Peripherals

278 Revision 1

Interrupt Identification Register (IIR)
Table 15-8 • IIR

Bit 
Number Name R/W Reset Value Description

7:6 Mode R 0b11 Always 0b11. Enables FIFO mode.

5:4 Reserved R 0 Software should not rely on the value of a reserved bit. To
provide compatibility with future products, the value of a
reserved bit should be preserved across a read-modify-write
operation.

3:0 Interrupt 
identification 

bits

R 0b0001 0b0110 = Highest priority. Receiver line status interrupt due
to overrun error, parity error, framing error or break
interrupt. Reading the Line Status Register resets this
interrupt.
0b0100 = Second priority. Receive data available interrupt
modem status interrupt. Reading the Receiver Buffer
Register (RBR) or the FIFO drops below the trigger level
resets this interrupt.
0b1100 = Second priority. Character timeout indication
interrupt occurs when no characters have been read from the
RX FIFO during the last four character times and there was at
least one character in it during this time. Reading the Receive
Buffer Register (RBR) resets this interrupt.
0b0010 = Third priority. Transmit Holding Register Empty
interrupt. Reading the IIR or writing to the Transmit Holding
Register (THR) resets the interrupt.
0b0000 = Fourth priority. Modem status interrupt due to
Clear to Send, Data Set Ready, Ring Indicator, or Data Carrier
Detect being asserted. Reading the Modem Status Register
resets this interrupt.
This register is read only; writing has no effect. Also see
Table 15-9.

Table 15-9 • Interrupt Identification Bit Values

IIR Value
Priority 
Level Interrupt Type Interrupt Source Interrupt Reset Control

0b0110 Highest Receiver line status Overrun error, parity error, or break 
interrupt

Reading the Line Status 
Register

0b0100 Second Received data 
available

Receiver data available Reading the Receiver Buffer 
register or the FIFO drops 
below the trigger level

0b1100 Second Character timeout 
indication

No characters have been read from 
the RX FIFO during the last four 
character times and there was at 
least one character in it during this 
time.

Reading the Receiver Buffer 
register

0b0010 Third Transmitter 
Holding register 
empty

Transmitter Holding Register empty Reading the IRR or writing 
into the Transmitter Holding 
register

0b0000 Fourth Modem status Clear to Send, Data Set Ready, Ring 
Indicator, or Data Carrier Detect

Reading the Modem Status 
register

ISR Sharing, i.e., Callbacks in C

• There is only one interrupt handler
• Functions have to “subscribe” for events
• Callbacks

– Driver provides function to register a function pointer
– Driver stores function pointers in list
– Upon interrupt, each registered function gets called
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typedef void (*radioalarm_handler_t)(void);
radioalarm_handler_t radio_alarm_fired;

void RadioAlarm_init(radioalarm_handler_t handler)
{
    radio_alarm_fired = handler;
}

__attribute__((__interrupt__)) void Timer1_IRQHandler()
{
 alarm_state = FREE;
 MSS_TIM1_disable_irq();
    MSS_TIM1_clear_irq();
    NVIC_ClearPendingIRQ( Timer1_IRQn );
 (*(radio_alarm_fired))(); // call the callback function
}

Common Problems and Pit-Falls

• Too many interrupts
– Your core can’t keep up with handling interrupts

• Concurrency issues
– One interrupt handler modifies global variables

– Can be avoided using atomic sections protected through PRIMASK

• Lost interrupts
– It can happen that an interrupt doesn’t get treated by the Core

– State machine and peripheral has to be aware of this possibility

– Danger for deadlocks
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Summary

• Overwrite default Interrupt Handler

• Initialization
– Enable interrupt in NVIC
– Enable interrupt in Peripheral

• Upon Interrupt
– Clear interrupt in Peripheral
– Clear pending bit in NVIC
– Potentially disable interrupts temporarely
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