The ARM Architecture

Ali Saidi

Agenda

Introduction to ARM Ltd

ARM Architecture/Programmers Model
Data Path and Pipelines
System Design
Development Tools

ARM Ltd

- Founded in November 1990
 - Spun out of Acorn Computers
- Designs the ARM range of RISC processor cores
- Licenses ARM core designs to semiconductor partners who fabricate and sell to their customers.
 - ARM does not fabricate silicon itself.
- Also develop technologies to assist with the designin of the ARM architecture
 - Software tools, boards, debug hardware, application software, graphics, bus architectures, peripherals, cell libraries

The Architecture for the Digital World

ARM designs technology that lies at the heart of advanced digital products

ARM's Activities

Product Areas

Cortex-M0 toCortex-A9

180nm to 28nm

Compilers&OSprofiling

GPU to HD video

ARM Business Today

Processor Shipped Last Year : ~4 Billion

Processor Shipped In Total : >24 Billion

Processor Licenses : 500+

Semiconductor Partners : 200+

Process Technology : 28 – 250 nm

Connected Community Members : 700+

ARM Business Model Drivers

 Deliver more functionality to the end-user sooner and more cost-effectively

- Integration
- Economics
- Focus
- Ecosystem
- Choice
- Power efficiency

Global Company

700+

Nokia N95 Multimedia Computer

OMAP™ 2420

Applications Processor

ARM1136™ processor-based SoC, developed using Magma ® Blast® family and winner of 2005 INSIGHT Award for 'Most Innovative SoC'

Symbian OS™ v9.2

Operating System supporting ARM processor-based mobile devices, developed using ARM® RealView® Compilation Tools

\$60 [™] 3rd Edition \$60 Platform supporting ARM processor-based mobile devices

Mobiclip™ Video Codec Software video codec for ARM processor-based mobile devices

ST WLAN Solution

Ultra-low power 802.11b/g WLAN chip with ARM9[™] processor-based MAC

Connect. Collaborate. Create.

ARM Processor Applications

World's Smallest ARM Computer?

Wireless Sensor Network

Sensors, timers

Cortex-M0 +16KB RAM 65nm UWB Radio antenna

10 kB Storage memory ~3fW/

12µAh Li-ion Battery

Processor, SRAM and PMU

Wirelessly networked into large scale sensor arrays

World's Largest ARM Computer?

4200 ARM powered Neutrino Detectors

70 bore holes 2.5km deep

60 detectors per string starting 1.5km down 2.5km

1km³ of active telescope

Work supported by the National Science Foundation and University of Wisconsin-Madison

From 1mm³ to 1km³

The Architecture for the Digital World

Agenda

Introduction to ARM Ltd

ARM Architecture/Programmers Model

Data Path and Pipelines
System Design
Development Tools

Architecture Versions

Relative Performance*

^{*}Represents attainable speeds in 130, 90 or 65nm processes

ARM Cortex Advanced Processors

Architectural innovation, compatibility across diverse application spectrum

- ARM Cortex-A family:
 - Applications processors for featurerich OS and 3rd party applications
- ARM Cortex-R family:
 - Embedded processors for real-time signal processing, control applications
- ARM Cortex-M family:
 - Microcontroller-oriented processors for MCU, ASSP, and SoC applications

Data Sizes and Instruction Sets

- The ARM is a 32-bit architecture.
- When used in relation to the ARM:
 - Byte means 8 bits
 - Halfword means 16 bits (two bytes)
 - Word means 32 bits (four bytes)
- Most ARM's implement two instruction sets
 - 32-bit ARM Instruction Set
 - 16-bit/32bit Thumb Instruction Set
- Jazelle cores can also execute Java bytecode

ARM and Thumb Performance

Memory width (zero wait state)

Thumb-2 Instruction Set

EEMBC Analysis - Performance

- Second generation of the Thumb architecture
 - Blended 16-bit and 32-bit instruction set
 - 25% faster than Thumb
 - 30% smaller than ARM
- Increases performance but maintains code density
- Maximizes cache and tightly coupled memory usage

EEMBC Analysis - Code Size

Processor Modes – A Class

- The ARM has seven basic operating modes:
 - User: unprivileged mode under which most tasks run
 - FIQ: entered when a high priority (fast) interrupt is raised
 - IRQ : entered when a low priority (normal) interrupt is raised
 - Supervisor : entered on reset and when a Software Interrupt instruction is executed
 - Abort : used to handle memory access violations
 - Undef: used to handle undefined instructions
 - System: privileged mode using the same registers as user mode

The ARM Register Set

Current Visible Registers

Abort Mode

Undef

r13 (sp)

r14 (lr)

spsr

Exception Handling

- When an exception occurs, the ARM:
 - Copies CPSR into SPSR <mode>
 - Sets appropriate CPSR bits

Change to ARM or Thumb state	0x1C
------------------------------	------

- Change to exception mode
- Disable interrupts (if appropriate) _{0x10}
- Stores the return address in LR_<mode> 0x0C
- Sets PC to vector address
- To return, exception handler needs to: 0x04
 - Restore CPSR from SPSR_<mode>
 - Restore PC from LR_<mode>

Vector Table

Vector table can be at 0xFFFF0000 on ARM720T and on ARM9/10 family devices

0x18

0x14

80x0

Program Status Registers

- Condition code flags
 - N = Negative result from ALU
 - Z = Zero result from ALU
 - C = ALU operation Carried out
 - V = ALU operation oVerflowed
- Sticky Overflow flag Q flag
 - Architecture v5+ only
 - Indicates if saturation has occurred
- J bit
 - Architecture v5+ only
 - J = 1: Processor in Jazelle state

- Interrupt Disable bits.
 - I = 1: Disables the IRQ.
 - F = 1: Disables the FIQ.
- T Bit
 - Architecture v5+ only
 - T = 0: Processor in ARM state
 - T = 1: Processor in Thumb state
- Mode bits
 - Specify the processor mode

Conditional Execution and Flags

- ARM instructions can be made to execute conditionally by postfixing them with the appropriate condition code field.
 - This improves code density and performance by reducing the number of forward branch instructions.

```
CMP r3,#0

BEQ skip

ADD r0,r1,r2

skip
```

- Why was this developed?
 - When would you want to use it? Always? Any downsides?

Agenda

Introduction to ARM Ltd ARM Architecture/Programmers Model

Data Path and Pipelines

System Design
Development Tools

The ARM7TDM Core

Pipeline changes for ARM9TDMI

ARM7TDMI

ARM10 vs. ARM11 Pipelines

ARM10

ARM11

Full Cortex-A8 Pipeline Diagram

13-Stage Integer Pipeline

10-Stage NEON Pipeline

Agenda

Introduction to ARM Ltd
ARM Architecture/Programmers Model
Data Path and Pipelines

System Design

Development Tools

- Designed and optimised for AMBA: provides easier integration with ARM cores and fabric IP
- Unified Memory Architecture

Agenda

Introduction to ARM Ltd
ARM Architecture/Programmers Model
Data Path and Pipelines
System Design

Development Tools

ARM Debug Architecture

Debugger (+ optional trace tools)

- EmbeddedICE Logic
 - Provides breakpoints and processor/system access
- JTAG interface (ICE)
 - Converts debugger commands to JTAG signals
- Embedded trace Macrocell (ETM)
 - Compresses real-time instruction and data access trace
 - Contains ICE features (trigger & filter logic)
- Trace port analyzer (TPA)
 - Captures trace in a deep buffer

Keil Development Tools for ARM

- Includes ARM macro assembler, compilers (ARM RealView C/C++ Compiler, Keil CARM Compiler, or GNU compiler), ARM linker, Keil uVision Debugger and Keil uVision IDE
- Keil uVision Debugger accurately simulates on-chip peripherals (I²C, CAN, UART, SPI, Interrupts, I/O Ports, A/D and D/A converters, PWM, etc.)
- Evaluation Limitations
 - 16K byte object code + 16K data limitation
 - Some linker restrictions such as base addresses for code/constants
 - GNU tools provided are not restricted in any way
- http://www.keil.com/demo/

Keil Development Tools for ARM

University Resources

http://www.arm.com/support/university/

University@arm.com

Fin

