
EECS 373-F10

Homework #1 – Solutions

Sep 28, 2010
Due: Oct 7, 2010 at the beginning of class.

Problem 1: Assembly (40 pts). On a machine with the ARM GNU tools installed, type the following into a file

named main.c:

#include <inttypes.h>

volatile int32_t a = 5, b = 6;

int32_t add(int32_t x, int32_t y) {

 return x + y;

}

main() {

 uint32_t c;

 c = add(a, b);

 return c;

}

Type the following into a file named Makefile (note: all but the first line begins with a TAB character):

all:

 arm-none-eabi-gcc -mcpu=cortex-m3 -mthumb main.c \

 -T generic-hosted.ld -o main.out -g

 arm-none-eabi-objdump -S main.out > main.list

(a) (10 pts) Explain what each tool and command line option that is used in the Makefile actually does.

After entering this into the Makefile, type make at the command line.

arm-none-eabi-gcc : Exec ARM EABI-compatible compiler/linker

-mcpu=cortex-m3 : Target the cortex-m3

-mthumb : Emit thumb instruction set

main.c : Input source file

\ : Continue on following line

-T generic-hosted.ld : Use the .ld file for linking

-o main.out : Outputs object code to main.out

-g : Emit debug information in the obj file.

arm-none-eabi-objdump : Display info about an object file

-S : Display both src code and assembly code

main.out : Input file to dump

> main.list : Redirect output to main.list

(b) (30 pts) Find the assembly code for the add() function in the main.list file. Annotate each line of

disassembled listing with a detailed description of what the assembly code actually does.

0000010c <add>:

#include <inttypes.h>

volatile uint32_t a = 5, b = 6;

int32_t add(int32_t x, int32_t y) {

 10c: b480 push {r7}

Register r7, the frame pointer for Thumb code, is pushed on the stack.

 10e: b083 sub sp, #12

The stack pointer is decremented by 12 to leave room for params/retval.

 110: af00 add r7, sp, #0

Register r7 is now equal to the current value of stack pointer.

 112: 6078 str r0, [r7, #4]

Since r7 is the current sp, saves contents of r0 (parameter x) to sp+4.

 114: 6039 str r1, [r7, #0]

Since r7 is the current sp, saves contents of r1 (parameter y) to sp+0.

 return x + y;

 116: 687a ldr r2, [r7, #4]

Loads parameter x into register r2.

 118: 683b ldr r3, [r7, #0]

Loads parameter y into register r3.

 11a: 4413 add r3, r2

Sets register r3 ���� r3 + r2. This is the actual add operation.

}

 11c: 4618 mov r0, r3

Moves the results of the addition to register r0, where it is the retval.

 11e: f107 070c add.w r7, r7, #12

Restores register r7 to the original (top of) frame pointer.

 122: 46bd mov sp, r7

Restore the stack pointer to its original value before entering add.

 124: bc80 pop {r7}

Matching (pop/push) to pop r7 off the stack.

 126: 4770 bx lr

Branch back to the calling function using the value in the link register.

(c) Bonus (10 pts). Find, download, and install the qemu-arm tool (on a non-Linux machine, this may

requires installing a virtual machine). Show us qemu running this on your machine for credit. Modify

main.c to add the following lines just before “#include <inttypes.h>” and just before the

“return c” statement in main(), respectively:

#include <stdio.h>

...

 printf("add(%d, %d) = %d\n", a, b, c);

 Finally, recompile the code (type make), run the code in the simulator, and verify the output:

If successful, the output should look like:

$ qemu-arm -cpu cortex-m3 ./main.out

add(5, 6) = 11

Problem 2: Memory Interfacing (30 pts). Imagine that you have a SmartFusion system configured with four

asynchronous SRAMs wired up in the following configuration. Assume that the hardware is configured to assert

the chip select lines LOW for memory access in the regions show in the table below.

(a) (5 pts) How many bytes can each GS78108 store (you’ll need to find the chip’s datasheet for this)? How

is the memory organized within each chip (# of data bits X size address space)?

The GS78108 is an 8 Mbit memory organized as 8-bit data (words) by 1,048,576 words (a 20-bit address

space).

(b) (10 pts) Assume that memory is initialized to zero and the following code executes:

BASE_EMC = 0x74000000;

uint32_t *a = (uint32_t*)BASE_EMC;

*a = 0x76543210;

*(a-1) = 0xfedcba98;

Fill out the following table with the memory contents after executing the prior lines of code:

The ARMv7 architecture default is little endian (LSB in lowest memory address). Therefore, the value of

*a is the value of the 32-bit word at location 0x74000000. Since a is of type pointer, *(a-1) is four less

than a, so it is the value of the 32-bit word at memory location 0x73FFFFFC.

This means contents should look like the following after executing this code:

Mem. Addr. |31..24|23..16|15...8|7....0|

==

0x74000004 | 00 | 00 | 00 | 00 |

0x74000000 | 76 | 54 | 32 | 10 |

0x73FFFFFC | fe | dc | ba | 98 |

0x73FFFFF8 | 00 | 00 | 00 | 00 |

(c) (5 pts) Assume that the memory chips are numbered as follow: upper left (#1), upper right (#2), lower left

(#3), and lower right (#4). Fill out a table that maps each of the following system addresses to one of the

four chips: 0x74000000, 0x74000001, 0x74000002, 0x74000003, and explain in detail

how you determined this mapping from the schematic.

All of these memory addresses fall into the address range of EMC_CS1_N, which is connected to chips #3

and #4. Furthermore, data bits [7:0] are connected to chip #3 and data bits [15:8] are connected to chip #4.

Since the EMC bus is 16-bit, each EMC word-sized access is 16-bits, with the low-order bits (even

numbered bytes) going to chip #3 and high order bits (odd numbered bytes) going to chip #4. Hence, we

have the following interleaved mapping of system addresses to chips:

0x74000000 ���� Chip #3

0x74000001 ���� Chip #4

0x74000002 ���� Chip #3

0x74000003 ���� Chip #4

(d) (10 pts) Draw a timing diagram that shows both the AHB-Lite and EMC signals for the following write

operation (note: this writes a 32-bit word onto a 16-bit bus): *a = 0x76543210;

AHB-Lite Bus

 _____ _____ _____ _____ _____ ____

 FCLK | |_____^ |_____^ |_____^ |_____^ |_____^

 _ ___________ ___________ ___________ ___________ ___________ __

 HADDR[31:0] |_X_74000000 X___________X___________X___________X___________X__

 _ ___________ ___________ ___________ ___________ ___________ __

 HWRITE |_X___________/ ___________X___________X___________X__

 _____________ ___ __

 HWDATA |_____________X_____________76543210__________________________X__

 _____________ ______________

 HREADY(OUT) | ___________________________________/

EMC Bus

 _____________ _______________________ _______________________ __

 EMC_AB[25:0] |_____________X_________00000_________X_________00002_________X__

 ___ __

 EMC_CS_1_N |__/__

 _______________ ___ ___

 EMC_BYTE_ENx |__________________________________/ ___________________/ \

 ___ ___ __

 EMC_BYTE_OEN1_N |___/ __

 _____________ _______________________ _______________________ __

 EMC_DB[15:0] |_____________X_________3210__________X_________7654__________X__

During writes with wait states, the AHB master holds the data stable through the extended cycles.

Since the GS78108 can support a write cycle time, tWC, of just 10ns, no wait states are needed on the EMC

bus for 100 MHz operation (but two are needed on the AHB).

Notes: See the “AMBA 3 AHB-Lite Protocol v1.0 Specification” and the “Actel SmartFusion MSS User

Guide,” and in particular, “Chapter 7 – External Memory Controller.”

Problem 3: Library/ABI (40 pts). Write a library fully in assembly (i.e. no C code or inline assembly is

permitted, but you will need to provide a C header file). The library should provide the following function

signature and should compile using the Actel SoftConsole tools and be able to run on the SmartFusion board:

/**

 * Changes the state of LED number “num” to “state”.

 * @param num the index number of the LED to change (0 to 7).

 * @param state the desired state of the LED (s/b 0 or 1).

 * @return the value that LED num was set to (0 or 1).

 */

uint8_t setled(uint8_t num, uint8_t state);

(a) Write a C header file (“leds.h”) that includes this function signature.

(b) (10 pts) Write a C program that uses this function to implement a Knight Rider-style display with an

approximately 100 ms delay between LED state changes (you can use a busy loop if you like). Unlike

Knight Rider, one LED can turn off completely before the next LED turns on. If you’re not totally sure

what this means, see the following URL, which has an animated GIF:

http://www.coilgun.info/kitt_car/home.htm

(c) (25 pts) Write an ARM Thumb-2 compliant assembly language program (“leds.s”) that uses the ARM

Architecture Procedure Call Standard (ARM AAPCS or EABI) to implement the setled() function.

Make sure that you use the proper ABI to pass variable into the function and that you save any registers

that you need to use on the stack.

(d) (5 pts) Create these files within a SoftConsole project. Make sure that the project compiles using the

Debug target.

(e) Deliverables: To receive points for this problem, you need to ZIP up the contents of your SoftConsole

project and email it to eecs373@gmail.com with the subject line: “f10-hw1-p3” one before the homework

due date and time.

This problem will be graded separately.

