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Abstract
Bluetooth Low Energy (BLE) has emerged as a prominent

low-power communication protocol for Internet of Things
(IoT) devices due to its affordability, simplicity, efficiency,
and compatibility with mobile platforms. We consider the
use of advertisements, small periodic packets broadcast by
BLE devices, as a potentially useful transport for sensor net-
work data, worthy of deeper investigation. In this paper,
we analyze a network paradigm, which facilitates commu-
nication between IoT devices and gateways through BLE
advertisements—an approach suitable for low-power devices
due to its simplicity and compatibility with existing BLE
stacks. To understand the behavior of such BLE advertisement
networks, we derive and empirically validate analytical mod-
els to predict their performance. We also evaluate real-world
deployments of BLE advertisement networks, first exploring
a dataset from a prior deployment of BLE sensors accounting
for over 600 sensed days across multiple locations. We show
that with redundancy and suitable gateway hardware, BLE
advertisements can be used to create a network achieving 99%
data reception, and with a dynamic adaptation protocol, can
do so in networks with varying contention. We design and
deploy our own advertisement networks that incorporate our
models, demonstrating that they can predict average network
performance, that advertisements can be used as the base for
a reliable network, and that BLE advertisement networks may
prove to be a valuable tool for the sensor network community.
Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]:
Network Architecture and Design—Wireless Communication
General Terms

Design, Measurement, Performance, Reliability
Keywords

BLE, Advertisement Network, Deployment, Adaptation

1 Introduction
Bluetooth Low Energy (BLE) beacons are short-range

broadcast transmitters that are widely used as a method of
enabling consumer devices like smartphones, computers, and
gateways to detect the presence of interactable objects and lo-
cations [46]. Academic projects are exploring the use of BLE
as well in applications such as long-term health tracking [48],
environmental monitoring [25], and indoor localization [12].

One communication mechanism of BLE is the advertise-
ment — a simple, periodic, broadcast message intended for de-
vice discovery. Advertisements reduce or eliminate listening
costs for energy constrained devices, avoid interference via
channel diversity, and are simple to specify in software. With
advertisements, we can create a single-hop, star-topology
network in full compliance with the BLE specification that
allows any number of devices to send data to any number of
gateways, with little software complexity. We refer to this as
a BLE Advertisement Network.

While they only provide unidirectional communication,
advertisements are useful for collecting data from sensor de-
ployments. Placing sensor measurements in advertisement
payloads also allows smartphones to receive and interpret the
data, enabling easy network introspection. Deployed devices
from asset trackers [44] to plug-load power meters [9] are
already using advertisements for data transfer, but we find
that these types of networks have not been rigorously studied
in literature. In this paper, we explore the BLE advertise-
ment primitive to understand how well it performs in various
conditions and how it can best be used for sensor networks.

To predict expected performance before deployment, ana-
lytical models are needed that explain the impacts of network
configurations, such as transmission frequency and number of
deployed devices. While advertisements are ALOHA trans-
missions at heart [1], they are not identical to them. BLE
advertisements are periodic, which means that the probabil-
ity of repeat collisions is greater than the normal ALOHA
expectation. We extend the efforts of prior work [20, 21] to
analytically describe reception rates for periodic transmis-
sions in terms of BLE advertisement parameters. We also
experimentally validate our models, demonstrating that they
accurately represent reality through controlled studies.

While these models do not fully describe deployed net-
works, they are useful for determining expected performance.
The simple access control mechanism of BLE leads to signif-
icant packet loss as the number of devices in a deployment
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Figure 1: BLE Advertisement Overview. During BLE advertising, the advertiser and scanner are unsynchronized and operate
independently. The scanner rotates listening across the three advertising channels, changing channels every Tscan interval . Energy-
conscious scanners can separately configure tscan window which controls the duty-cycle of listening on each channel. At any point
tstart an advertiser may begin sending advertisement events. Inside an advertisement event, advertisers send an identical payload
on all three channels. The delay between advertisement events is controlled by Tadv interval , which dictates the minimum interval
as a random 0−10 ms tadv delay which is added to each interval. A scanner will successfully receive an advertisement when the
advertisement payload transmission and scan window align, which occurs once on Channel 39 in this example.

increases, but we find that through the addition of redundancy,
data reception rates can remain high in many environments.
Deployment-specific factors, such as external interference or
distance from nodes to the gateway, may hinder the connectiv-
ity of the network, but descriptions of network capacity alone
allow a baseline performance expectation to be determined.

Using our models, we can identify when real-world deploy-
ments are underperforming. We analyze a dataset collected
from a previous deployment of sensors using a BLE advertise-
ment network with 335 power meters [9] installed across nine
locations for an average of 68 days in each location. In apply-
ing the models to this dataset, we observe increased network
performance, falling short, however, of anticipated theoretical
reception. An investigation reveals the problem not in the net-
work, but rather in shortcomings of the hardware and software
of the BLE gateway. We explore the gateway issues, and in
new deployments we show that with improved gateways we
can accurately predict average network performance, demon-
strating the efficacy of our models for planning successful
sensor network deployments. Furthermore, we design and
implement the ReliaBLE adaptation protocol, which allows
devices to dynamically adjust transmissions to maintain high
data reception in networks with varying contention.

Building on the success of the original Bluetooth protocol,
BLE has blossomed to a point of stability and ubiquity. This
work moves towards deeply understanding BLE for sensor
network applications, demonstrating that BLE advertisements
can be used as a reliable transport for real-world deployments.

2 Background
Bluetooth Low Energy (BLE) is defined by the Bluetooth

Special Interest Group [7]. While it shares a name and some
similarities with classic Bluetooth networks, it is a distinct
protocol. We discuss the primitives of BLE networking and
explore prior ideas for how BLE could be adapted to sensor
networking applications. Figure 1 depicts the major protocol
elements of BLE advertising discussed in this section.

Advertising. In BLE, advertising is nominally the method
for device discovery. An advertisement event is made up of
three packets sent in rapid succession at periodic intervals.
Each advertisement packet is followed by a brief window for
listening. This limited listening for end devices is the “low
energy” part of BLE, allowing devices to primarily sleep with
their radios entirely off. Reasonably frequent advertisement
events enable quick device discovery and interaction.

Advertisement packets include: a fixed 16 bytes of pream-
ble, address, CRC, and other headers, and up to 31 bytes of
payload. Sent over the 1 Mbps physical layer, advertisement
packets have an on-air time of 128–376 µs. In an advertising
event, identical packets are sent redundantly on three channels
to mitigate interference, with a listening period before chang-
ing channels. The BLE specification reserves three channels
for these advertisements, placed in the spectrum to avoid WiFi
channels 1, 6, and 11.1 Devices emit advertisement events at a
set interval, Tadv interval , (configurable from 20 ms to 10.24 s)
plus a stochastic jitter, tadv delay (selected uniformly from 0–
10 ms). The injected jitter randomly distributes transmissions
in time and prevents collisions from repeating indefinitely.

Broadcasts are sent without collision avoidance or channel
sensing. As a network of unsynchronized blind transmitters,
the aggregate throughput of BLE advertisements can thus
be modeled as an ALOHA network [28]. The use of three
advertisement channels provides no collision avoidance in
the common case as they are iterated in the same order by all
transmitters and there is no entropy in tlisten. In the absence
of significant jitter or fading, a collision on one channel will
result in a collision on the others.

Scanning. BLE scanners are devices listening for adver-
tisements. They listen on one advertisement channel at a
time, periodically rotating to the next channel. The BLE
specification allows scanners to set a configuration for the
receiver duty cycle on each channel, which can be scaled

1The advertisement channels are named 37, 38, and 39, but are not
adjacent in the spectrum. They are at 2402, 2426, and 2480 MHz respectively.



from 0 to 100%. In practice, gateways running on wall power
select 100% duty cycle to receive all advertisements. Power-
constrained devices, such as smartphones, can select lower
duty cycles to conserve energy. Android, for instance, defines
multiple scanning modes that applications can select, which
correspond to 10%, 25%, and 100% duty cycle scanning [2].

Reducing the duty cycle can have a large impact on the
success of receiving data. Particular choices of scanning and
advertising intervals may result in poor synchronization that
results in a high discovery latency [20]. Some platforms,
such as iOS, provide no application control over the scan win-
dow [26] which can require advertisers to set aggressive ad-
vertisement intervals to realize responsive designs, e.g. Apple
recommends a 20 ms advertising interval for discovery [4].

In practice, even scanning hardware set to 100% duty cycle
does not achieve the theoretical 100% reception rate. Perez-
Diaz et al. study the performance of the major BLE chipsets,
finding that, in practice, receivers fail to receive packets for
brief periods when switching channels or decoding received
packets, and periodically throughout the scan [38]. The losses
from these “blind spots” can be as high as 10% depending on
packet size, advertising interval, and scanning interval.2

Scan Requests. When a scanner receives an advertise-
ment, it may choose to request additional data from the ad-
vertiser by sending a scan request. During the advertiser’s
listening period following a transmission, if it receives a scan
request, it responds by sending an additional advertisement
payload of up to 31 bytes, termed a scan response. Scan re-
sponses are generally used to provide additional data that may
not have fit in the original advertisement payload.

Hernandez et al. suggest that the presence of a scan request
could be used as a form of acknowledgment, allowing trans-
mitters to reduce or cease transmitting for some duration after
receiving one, reducing overall contention in the network [18].
However, Harris and Kravets explain how the BLE backoff
protocol works against this idea [17, 24]. If a scanner makes
a request and does not receive a response, it assumes there
was a collision with another scanner and adds a random delay
before requesting again. This backoff mechanism cannot dis-
tinguish the case where the request (or response) collided with
another advertiser, which becomes increasingly likely as net-
work density grows. This is further confounded as scanners
back off exponentially, thus even a modest number of colli-
sions will result in an artificially low number of scan request
“acknowledgments”, incorrectly underestimating link quality
and necessitating yet more advertisements. Rather than send
additional data in scan responses, Kravets et al. recommend
splitting data across successive advertisement payloads [24].

Connections. Connections are the method for high
throughput, bi-directional communication in BLE. After re-
ceiving an advertisement, a scanner can send a connection
request to the advertiser. Both devices then move into a hop-
ping pattern across the 37 channels reserved for connections.

2For example, while nRF52832 hardware is capable of tuning frequencies
in 40 µs [37], in practice the Nordic softdevice takes roughly 800 µs to switch
scan channels [40]. The Noble BLE library sets a default scan interval of
10 ms [32].Were one to scan with Noble atop a Nordic softdevice, it would
have an effective duty cycle of only 92%.

The scanner, which initiated the connection, becomes the
master in charge of scheduling connection events—when
packets are actually exchanged. A master connected to multi-
ple slaves schedules them with both time division and chan-
nel division multiplexing. BLE connections do not scale in
practice, but theoretically, the only limit to the number of
connected devices is the ability to schedule them. At connec-
tion time, the master adds an offset—in 1.25 ms steps—to the
start time of the first communication event. The specification
allows connection periods from 7.5 ms to 4000 ms, which
translates to a maximum number of 6 to 3200 devices that can
be connected to at one time without overlap. Real-world BLE
chipsets are significantly more constrained than this theoret-
ical limit. Firmware on many BLE radios limit the number
of simultaneous connections to less than ten [32]. The open
source MyNewt BLE stack supports the most simultaneous
connections of any we survey at 32 [3].

BLE 5.0 adds “periodic advertisements”, which use con-
nection channels to allow payloads up to 255 bytes and
higher data rates [7]. However, these are still initiated via the
BLE 4.2 advertisement mechanism we focus on in this work.

Gateways. Gateways are bridge devices that translate the
communication protocols of low-power devices to the Internet
at large. For BLE networks, gateways are effectively scanners
that have a connection to the Internet. A wide range of options
can be used to fulfill this requirement—from a Linux box to a
barebones microcontroller with BLE and WiFi. These choices,
as we discuss, can significantly impact network performance.

3 Related Work
This work is not the first to have explored an architecture

for BLE networking. Various techniques for mesh networks
on top of BLE have been explored. Darroudi and Gomez pro-
vide an overview of the academic, commercial, and standards-
organization approaches to BLE mesh [8]. BlueFlood and
BLEmesh implement mesh networks on top of BLE advertise-
ments [34, 22]. These techniques could be improved through
the use of the advertising models discussed in this paper. IPv6
networking over a BLE connection is studied by BLEach [41].
It does not expand to handle large deployment sizes, how-
ever, exploring connections to 4–8 devices total. We expand
these works with our investigation into BLE advertisement
networks, which provide different tradeoffs for deployments,
instead emphasizing simplicity and scalability.

The theoretical models for advertisement networks are in-
formed by several prior works. The ALOHA system first
describes the access control method that will later be used by
BLE [1]. Liu et al. first study the probability of collisions for
BLE advertisements using the Poisson distribution, much like
ALOHA [28]. They calculate delay before device discovery
rather than packet reception rates. Similarly motivated, Jeon
et al. create an iterative model for determining discovery
latency [20]. Harris et al. adopt a probabilistic model for
packet collisions, similar to our own models but missing the
effect of the delay added to each interval [16]. Perez-Diaz et
al. [38] include that random delay, coming to the same result
we do in Equation (1). Our models go beyond this prior work
by accounting for heterogeneous node configurations and ob-
serving the increased probability of repeat collisions in BLE.



Rather than just presenting models for collisions, we also use
BLE parameters to describe network reception rates. While
our models only encompass network performance, prior work
also models energy use of BLE [20, 29], which is valuable
for a wholistic understanding of BLE deployments.

We also draw inspiration from studies of other network
technologies. Similar to this work, Kohvakka et al. create
analytical models for ZigBee networks, including probabilis-
tic models of collisions [23]. Szewczyk et al. analyze data
from their deployment on Great Duck Island to detect and
determine causes of network failures [43]. The Roofnet de-
ployment [6] evaluates a real-world deployment of an 802.11b
mesh network with an unplanned topology. Like this work,
they evaluate success of a simple-to-deploy network in the real
world. Srinivasan et al. [42] make empirical measurements of
802.15.4 networks to challenge assumptions common to pro-
tocol design and inform future design efforts. They suggest
that a gap exists between research work in networking and per-
formance of real-world network deployments which needs to
be solved by understanding root causes of deployment failures.
This work is notably inspired by LoRaWAN [30], a communi-
cation protocol whose network architecture shares many traits
with BLE advertisement networks, but facilitates longer-range
needs with generally lower throughput and higher dedicated
infrastructure costs. Studies have explored alternative access
control methods and gateway improvements for LoRaWAN
[10, 11, 14, 45]. We expand these works by exploring BLE
networks, and follow their spirit by investigating results of
real-world network deployments.

4 BLE Advertisement Networks
Prior efforts have considered neighbor discovery proto-

cols utilizing BLE [21], how BLE gateways could provide
general-purpose services to sensors [50], and IPv6 network-
ing over BLE connections [41]. However, exploration of BLE
advertisements for IoT networking at scale is lacking. In
this section, we motivate BLE advertisements as a mecha-
nism atop which to build an IoT network, explore the design
space of possible network architectures, and develop models
for BLE advertisement-based networking to investigate how
BLE parameters affect the resulting network performance.

4.1 Why Network with Advertisements?
Using BLE advertisements for communication has its ad-

vantages. Advertisements, and BLE in general, enable com-
munication directly with people through presence in personal
devices. Anyone with a phone can easily discover and col-
lect transmissions from BLE devices, unlike other low-power
networks. Second, advertisements are simple. For radios
implementing BLE, the interface for sending data over adver-
tisements can be as straightforward as providing a payload
and interval. Even when using a raw radio interface, BLE ad-
vertisements do not requiring tight timing or complex access
control. Due in part to this simplicity, BLE advertisements
are very low energy. This makes them a good choice for
power-constrained devices, like intermittent computing sys-
tems, which cannot reliably participate in scheduled networks
as devices may not have energy when needed [31, 47].

Finally, advertisements scale to many devices in a way that
connections do not in practice. While a single gateway can
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Figure 2: Packet reception as deployment size increases.
Both the worst case (31 byte payload broadcast every 20 ms)
and best case (0 byte payload every 10240 ms) are displayed.
PowerBlade [9], a research BLE sensor node that transmits
23 bytes every 200 ms, is also shown as a real-world example.
Small deployments (<10 nodes) often yield acceptable PRR.
Larger ones must balance desired throughput and reception.

theoretically connect to many devices at once, BLE firmware
has much lower limits. Users report that common USB dongle
chipsets allow less than ten simultaneous connections [32].
In contrast, there is no limit to the number of devices from
which a scanner can receive advertisements, apart from chan-
nel utilization. Additionally, use of advertisements does not
preclude use of connections. The latter may be useful for
infrequent, complex operations such as updates to device con-
figuration or firmware. In this study, we focus on steady-state
operation of networks during data collection, assuming such
bi-directional interactions are rare.
4.2 Communication with Advertisements

BLE advertisements have a user-configurable payload of
0–31 bytes. While some payload bytes have specialized pur-
poses, such as a leading flags field or a company identifier,
in practice advertisers can send 31 arbitrary bytes.3 Advertis-
ers may send identical data in every packet (e.g. to act as a
proximity beacon) or change packet contents and length on
every message (e.g. to report instantaneous sensor data). To
improve reliability at the expense of latency and throughput,
an advertiser could repeat the same data for several packets
in a row before updating the data. The frequency of ad-
vertising packets is controlled by the advertisement interval,
Tadv interval ∈ [20 ms,10.24 s], plus a random additional delay,
tadv delay drawn uniformly from [0,10]ms at each period. The
maximum theoretical goodput for one node is thus 9.92 kb/s.
4.3 Advertisement Collision Model

We explore the potential of advertisement-based network-
ing by modeling collisions of BLE advertisers. First, let
us assume that distance and channel do not affect packet
reception—that all sensor nodes in the network are within
range of the gateway receiving their data and that the received
signal strength from each is identical on all advertising chan-
nels. This is the worst-case for collisions; in practice the
capture effect will mitigate some collisions. Next, consider
a wall-powered gateway that is always listening and always

3Desktop OSes & Android permit scanning apps to access raw advertise-
ments. iOS requires the first 4 bytes (flags & company ID) be well-formed
to recover advertisements.
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Figure 3: Intervals required for target packet error rates.
Given a fixed payload (here 31 bytes), to realize a target packet
error rate, the minimum advertising interval must grow with
the number of devices. Even small deployments require sev-
eral hundred milliseconds between transmissions to achieve a
1% packet error rate. Accepting 10% error rates allows sub-
second intervals even as deployments expand to 100 devices.

able to receive packets (such a gateway is quite reasonable, ef-
fectively tscan window = Tscan interval and tscan window >> tretune).
As explained in Section 2, because a collision on any adver-
tising channel will collide on all advertising channels and we
are treating the propagation of each channel as identical, we
can therefore ignore the channel of the scanner altogether.
Finally, to start we will assume that all advertisements have
identical payload sizes and that there is no other interference.

Probabilistic Model. Literature describes the basic model
for BLE advertisement collisions [38]. The probability of
collision, Pc, for N advertising BLE devices, is:

Pc = 1−
(

1− 2× tadv

Tadv interval +E(tadv delay)

)N−1

(1)

Additional losses will come from interference with other
technologies, Pi. We can express the packet reception rate,
PRR, more generally then as the probability of neither collid-
ing nor being interfered with:

PRR = (1−Pc)(1−Pi) (2)

In general, the BLE advertisement channels are positioned
so they fall outside of the bands of the normal WiFi channels
(1, 6, and 11). Narendra et al. study BLE interference from a
single WiFi access point and find little to no packet loss when
using BLE channels that avoid the main WiFi channels [35].
However, empirical studies find that many real-world WiFi
deployments use every channel [33] and further interference
may still be caused by 802.15.4 traffic or other transmissions
in the 2.4 GHz ISM band. We simplify by assuming that Pi is
zero for the remainder of this analysis and focus on refining
the estimate of collision probability, Pc.

Using the Probabilistic Model. In Figure 2 we use this
model to explore the effects of number of devices, payload
length, and advertising interval on packet reception rate. Con-
figuring devices for the highest throughput—full payloads
transmitted at the highest frequency—results in the highest
probability of collision and the lowest packet reception rate.
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Certain applications may have acceptable packet error
rates, PER, to meet their requirements. We can solve Equa-
tion (1) to determine the minimum advertising interval that
satisfies a given packet error rate and number of devices:

Tadv interval =
2× tadv

1− (1−PER)
1

N−1
−E(tadv delay) (3)

Figure 3 plots the impact on latency as network density scales
for various target error rates. As expected for an ALOHA-
style network, high throughput for many devices can only be
achieved by sacrificing reliability for any given packet.

Extending to Heterogeneous Configurations. One as-
sumption made previously was that all devices on the network
act identically. But we can extend the model from Equa-
tion (1) to remove this requirement. Assume a primary device
with an advertisement transmission time of tadv0 and a second
possibly colliding device with a transmission time of tadvi . A
collision occurs if the second device begins transmitting any
time during tadv0 or up to tadvi before the primary device be-
gins transmitting. If the transmission from the second device
is uniformly distributed in time, it is equally likely to occur
during any point in its advertising interval. Generalizing this
second device to all nodes in the network, we can express the
probability of collision with the primary device, Pc0 , as:

Pc0 = 1−
N−1

∏
i=1

(
1−

tadv0 + tadvi

Tadv inti +E(tadv delay)

)
(4)

4.4 Packet Reception to Data Reception
In real-world deployments, we are not interested in the re-

ception of individual packets, but rather the eventual recovery
of their payload. If we want to increase the probability that
any particular payload is received, we can repeat it. Then,
for data to be lost all redundant packets sent must be lost. A
naı̈ve model for this would use Pc as the probability for each
failure. However, repeat collisions in BLE are not indepen-
dent. Given that the first packet collided, the probability of a
second collision is greater than a random collision. Indeed,
absent tadv delay (or clock drift), once a single packet suffered
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Figure 5: Data reception for redundant transmissions.
The number of redundant packets transmitted is varied for
multiple deployment sizes, each transmitting at a 20 ms inter-
val, with an extra 100 device scenario at 100 ms interval. As
deployment density and network contention grow, advertisers
must send more redundant packets to maintain data reception
reliability. Slower advertising (e.g. 100 ms case) improves
reception at the expense of responsiveness and throughput.

a collision all future packets would collide too, as long as each
device is using the same Tadv interval (i.e. a network of homo-
geneous devices). This is a change from traditional ALOHA
analysis, which does not have an assumption of periodicity,
and results in an increased probability of a repeat collision.

After a collision, a repeat collision occurs if the sum of
the differences in initial transmission times, advertising in-
tervals, and selected random delays for two devices are less
than the duration of the advertisement. For the homogeneous
deployment case (advertising interval difference and average
difference in initial transmission time are both zero), a repeat
collision occurs if the difference in random delays has not
moved one advertisement outside of the transmission time
of the other. The difference of random delays creates a tri-
angular distribution which we can integrate to determine the
probability of collision. The full equation for the probability
of a repeat collision is demonstrated in Equation (5).

Prc = 1−

[(
1−2

∫ tadv

0

1
tadv delay

− x
t2
adv delay

dx

)
×

(
1− 2× tadv

Tadv interval +E(tadv delay)

)N−2
] (5)

Note that this does not account for the case where more than
one node collides with the primary transmission, which means
it slightly underestimates the number of repeat collisions.

Figure 4 visualizes the impact of repeat collisions for the
two-node case and finds that the odds of a repeat collision
range from 2% to 7%, more than twice as much as the naı̈ve
ALOHA assumption. This increased probability of collision
can have significant impact on device discovery, and may lead
to extended periods when all packets from a device collide.

To extend this to model the probability that data is received,
note that the probability of a second collision is the same as
the probability of a third collision, and so on. The probability
of the first collision is the normal probability of collision from
Equation (4), while the second and onward are the probability
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Figure 6: Data reception rate favors redundancy. Data re-
ception rates are compared across deployment sizes for one
network configured to send a packet every 1000 ms versus an-
other that sends five redundant packets per second at 200 ms
intervals. A crossover point occurs where data reception gains
due to redundancy is not enough to overcome losses due to
network congestion, but the expected maximum deployment
size is typically far below this point for many applications.

of a repeated collision from Equation (5). For a series of M
packets with the same data payload, we express data reception
rate, DRR, as the odds that data is received at least once:

DRR = 1− (Pc)(Prc)
M−1 (6)

Figure 5 applies this model to demonstrate the impact of
redundant advertising on data reception rate. Even at the
fastest advertising frequency, redundant transmissions allow
devices to overcome poor packet reception rates.

Redundancy is not always beneficial, however. To preserve
the same data update rate, devices sending redundant adver-
tisements must advertise more frequently. This increases
transmission contention, which raises the probability of colli-
sion, and may defeat the goal of more reliable receptions.

Consider an application that wishes to reliably transmit
data each second. Is it more reliable for each node to send
five copies (once every 200 ms) or to minimize potential con-
tention and send only one copy (once every 1000 ms)? Fig-
ure 6 shows how the expected data reception rate for these
scenarios responds as network density grows. Advertising re-
dundantly is initially more successful than advertising slowly
but at 432 devices in a deployment there is a crossover. With
more devices, the added contention from redundant packets
actually reduces data reliability. Since we are considering
deployments where all devices are within range of each other,
more than 432 is unlikely. For practical network scenarios,
redundant transmissions are the better choice for reliability.

The worst case for BLE collisions occurs when an event
triggers data transmission, a common architecture in sensing
systems. Per the BLE specification, no random delay is added
before the first packet. As such, transmitting devices triggered
by the same event may collide on their first transmission,
and do so repeatedly on each successive interval. For such
triggered systems, a random delay should be added before
beginning advertising to avoid this failure mode.
4.5 Advertisement Network Takeaways

We find that advertisement-based sensor networks should
be capable of achieving data reception rates over 99% given
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Figure 7: Analytical and experimental packet reception.
Packet reception rate is measured across a range of number of
transmitters and a selection of advertising intervals. Note that
the y-axis starts from 0.6 PRR. We find that the analytical
model tracks well with reality, but that it overestimates the
true reception rate, possibly due to interference.

the right parameter selection. Such networks benefit from
the ease of implementation afforded by the advertisement
primitive, the ubiquity of BLE radios, and the extensibility
afforded by connections for infrequent maintenance tasks. To
maximize the performance of advertisement-based networks,
advertisers should add packet redundancy. Applications de-
manding very high density (100 or more devices in the same
broadcast domain) and sub-second latency constraints may
not be well served by advertisement-based networks.

Additionally, lack of acknowledgments makes guarantees
of performance probabilistic. The networks are best for appli-
cations that may need high probability of data reception, but
do not require successful reception of any particular packet.

5 Empirical Analysis of BLE Networks
To validate the analytical model of advertising network

performance, we test networks of up to fifty devices and com-
pare their performance with predictions from the model. For
advertising, we use a programmable beacon platform built
atop the nRF51822 BLE radio [36]. All nodes are placed in a
10×5 grid with 15 cm spacing. To recover packets, we use a
Bluetooth Protocol Analyzer [13] to eliminate any potential
variance from the Bluetooth stack. The analyzer sits 1 m away
from the grid and listens on all three advertising channels con-
currently. The experiment is run in a residential building, with
general interference expected from other devices such as WiFi
or Bluetooth transmitters. We dwell in each configuration for
ten minutes, discarding the start and end of each trace.

The experiment varies multiple configuration parameters.
We sweep the number of advertising devices from 3 to 50.
For each deployment size, we test advertising intervals from
100 ms to 10 s. To detect missing packets, each advertising
payload is sent with a monotonically increasing sequence
number. The remainder of the packet payload is padded to a
total payload size of 31 bytes. Packets received with invalid
CRC values are considered missing.

To reduce jitter induced by receiving scan requests, all
transmitters are configured to not listen for scan or connec-
tion requests. Otherwise, the presence of nearby smartphones
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Figure 8: Analytical and experimental data reception.
Data reception rate is measured across a range of number
of redundantly transmitted packets for a selection of deploy-
ment sizes. Note that the y-axis starts from 0.6 DRR. Maxi-
mum sized packets are transmitted at 100 ms intervals. The
experimental results closely match the analytical model.

scanning for BLE packets may influence the behavior of the
experiment. As a side effect, this limits the minimum adver-
tising interval of the network to 100 ms per version 4.2 of the
BLE specification [7].

Figure 7 shows the results of measuring packet reception
rate for this experiment. Each point is the average reception
rate across the three advertising channels for all deployed
devices. While 95% confidence intervals are calculated, they
are too small to visualize. Although the model for BLE adver-
tising should be conservative (as it ignores the capture effect),
we find the model strictly overestimates performance in this
experiment. We hypothesize that this is due to interference
with other transmitters such as WiFi, Bluetooth Classic, or
other BLE devices. This error is minimal, however, account-
ing for less than 5% deviation from the expected result.

Figure 8 adapts the raw packet reception information to
estimate data recovery rate with redundant packets. Inte-
ger division of raw sequence number by a redundancy rate
(number of repeated packets) yields a new stream of possibly-
redundant sequence numbers. If a sequence number is seen
at least once in this adapted stream, we count that data item
as having been received. For a redundancy rate of one, the
results are identical to the 100 ms interval line from Figure 7.
Adding even modest redundancy quickly results in 100% data
reception rates. Again, we find that the experimental data
tracks the analytical model.

6 Real-World Deployments
While modeling the behavior of a network is valuable

for informing system designers, there is no substitute for
measurements of a real-world deployment. A recent power
meter deployment provides us an opportunity to analyze long-
running in-situ BLE networks that have collected useful data.

PowerBlade is a research power meter that measures volt-
age and current waveforms in real time, transmitting the data
via BLE advertisements [9]. Its design results in a miniscule
energy budget, preventing use of mesh network architectures.
BLE also allows deployers to easily label devices and users
to observe power draw of metered appliances on a phone app.



Location 1 2 3 4 5 6 7 8 9
Duration (Days) 66 168 7 110 87 83 40 24 23

# of PowerBlades 68 84 12 23 37 35 29 21 26
Expected PRR (%) 63.5 57.0 92.8 86.1 78.3 79.4 82.7 87.3 84.4
Expected DRR (%) 96.8 94.5 100 99.8 99.3 99.4 99.6 99.8 99.7

Table 1: PowerBlade deployments. 355 BLE power meters
are deployed in 9 locations. Given the network configuration,
our models predict data reception greater than 99% for most
locations. This provides an opportunity to compare real-world
network performance to theoretical expectations.

PowerBlade has been deployed in 8 residential homes and
a commercial office to study contribution of various loads.
Table 1 details the 9 deployments, which include 335 devices
over 608 deployment-days and result in 1.5 billion recorded
measurements. We study the data from these deployments to
evaluate performance of their BLE advertisement networks
and test the efficacy of our models on a real-world dataset.

In each location, one or more gateways are deployed to
collect measurements. The gateway is a BeagleBone Black
running Linux with an attached USB Bluetooth dongle [5]. It
runs a simple NodeJS application atop the Noble Bluetooth
library [32] to parse advertisements into data packets. Packets
are de-duplicated and sent to a cloud database. This data can
be used to measure data reception rates for the deployments.

PowerBlade records a new measurement once per second.
It transmits with an advertising interval of 200 ms, sending 4
redundant packets for each measurement. The 5th packet each
second is an Eddystone beacon [15] that links to a phone app
to interact with the device. Each measurement has an attached
sequence number, which helps to detect missed data. The data
payload is 27 bytes and Eddystone is 26 bytes. PowerBlade
also places its name, a 12-byte payload, in the scan response,
to allow phones to identify it. This causes more collision by
increasing packet transmission time when a scan request is
received. While collection of scan response is optional, the
gateways’ BLE library does not allow disabling scan requests.

6.1 Expected Reception Rates
We apply models from Section 4 to predict performance.

We use an average tadv of 342.4 µs and Tadv interval is 200 ms.
Number of redundant transmissions is 4. We assume all de-
vices in a deployment are within transmit range of each other.

While the actual probability of a scan request occurring
is unclear due to scanner backoff policies, we can assume a
worst case in which every advertisement has a corresponding
scan request which is properly received and results in a scan
response. We can model this worst case as an extension to the
duration of the collision window. So rather than 2× tadv, the
numerators of Equations (4) and (5) become 2× tadv + 2×
tIFS + tscan req + tscan resp where tIFS is inter-frame spacing of
150 µs, tscan req is scan request on-air duration of 176 µs, and
tscan resp is PowerBlade’s scan response duration of 224 µs.

Accounting for scan requests and responses in this manner,
Table 1 lists expected packet and data reception rates for a
network the size of each deployment. While the deployment
size is large enough to produce more than 40% packet error
in the worst case, all deployments are expected to have data
reception rates above 90% and most expect above 99%.
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Figure 9: Data reception rate by deployment location.
While expected DRR is greater than 99% for the majority
of locations, we find that locations receive 50–80%. Revised
DRR loosely accounts for loss due to infrastructure failure by
liberally removing gaps in reception longer than 1 hour.

6.2 Measured Data Reception Rates
We can determine the data reception rate for each deploy-

ment location by observing the sequence number in each mea-
surement, counting how many unique measurements were
received and dividing by how many were expected. As shown
in Figure 9, data reception is much lower than expected. The
best performance is in Location 4 with 83.4% DRR.

To attempt to identify why the network is underperform-
ing, we measure the data loss pattern. Figure 10 shows the
probability of occurrence for increasing lengths of missed
measurements for each device in the deployment. As run
length increases, the probability falls off, however there is a
relatively high occurrence of long runs of dropped measure-
ments. It is possible that such periods represent infrastructure
failures rather than problems with devices. This includes
problems like gateway crashes and network outages that are
all too common in real world deployments [19].

To investigate whether infrastructure failures could be the
source of most of the packet loss in these deployments, we
omit packet loss that accounts for large gaps in data. The
revised DRR in Figure 9 shows each result if we discount all
gaps in data of an hour or more. Upon investigation, Locations
1 and 3 each have multi-day gaps during their deployment
period, which are likely true outages. However, even liberally
removing all 1-hour gaps does not yield satisfactory results,
which suggests that another factor is at fault.

6.3 Gateway Analysis
Another cause of packet loss could be problems in the

receiver chain. It is possible that packets are being dropped
by the USB dongle hardware or firmware, in the Linux BLE
stack, or in the Noble BLE library. To test for this, we can
compare the performance of various gateway configurations
compared to the professional scanner in a controlled setting.

Re-using the experimental setup from Section 5, we place
twenty-five nRF51822 BLE beacons in a single room. At
five different advertising intervals, we simultaneously record
received packets on a sniffer and other gateway designs placed
next to each other. Table 2 shows percent error from the
theoretical model for the gateways at each advertising interval.

“Original Gateway” is the configuration used in the orig-
inal PowerBlade deployments, a USB BLE dongle with the
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Figure 10: Measurement loss probability. For each re-
ceived measurement, we count the number of immediately
preceding measurements that were missed. A line is plotted
for each device in the deployment. The most common count
is 0 (last measurement was received). Brief streaks of 1 to
several missed measurements are not rare. Very long gaps—
19+ missed—suggest possible infrastructure or device failure.

Noble BLE library. We find that this gateway configuration
performs far more poorly than the professional scanner with
a 30 to 40 percentage point lower reception rate. A low
scan interval on the gateway could result in frequent scan-
ning gaps while channel-switching [38]. “Modified Gateway”
increases the scan interval from 10 to 100 ms, resulting in
some improvement, but still 20–30% loss. Another issue
might be the receiver hardware or firmware [49]. Using an
open-source HCI stack implementation [27], we use a nRF52
development kit to receive packets for the Noble library with
an increased scan interval. “nRF52DK Gateway” shows these
results, which still demonstrate loss of 10–30%. The most
successful technique tested is to avoid the Noble library and
Linux BLE stack altogether. We investigate the nRF52 devel-
opment kit and the ESP32, both microcontrollers combined
with BLE radios. For the nRF52, we find 7.88% additional
packet loss on average from the theoretical model.

The particular choice of hardware and libraries used in the
PowerBlade deployment gateways, while the straightforward
path, introduces the most packet loss of any configuration
tested, likely accounting for many of the packet reception
problems discovered. Here we find that the ubiquity of BLE
is a double-edge sword. Gateways are easy to build due
to available commercial BLE dongles and installable radio
stacks, but the presence of multiple, layered, opaque stacks
makes tracking down the source of possible losses difficult.
7 Statically Planned Deployments

While the results from unplanned BLE deployments fall
below expectations, combining knowledge of BLE advertise-
ment models with the experimentally determined packet loss
expected at the gateway can allow deployment success to be
estimated. We demonstrate this in two additional deploy-
ments, planned in advance to see if reception rates improve.
7.1 Revising Deployment Parameters

We can adjust the data reception model to account for
packet loss at the gateway similar to interference. Equation (7)
shows the probability of receiving data sent M times where Pl
is probability of packet loss at the gateway, Pc is probability
of a collision, and Prc is probability of a repeat collision.

Advertising Interval (ms) 100 500 1000 5000 10000
Deviation from Theoretical Performance (%)

Original Gateway, Noble -46.6 -42.8 -39.5 -36.4 -34.4
Modified Gateway, Noble -32.9 -27.2 -23.9 -21.3 -18.3
nRF52DK Gateway, Noble -33.3 -22.6 -17.1 -14.4 -12.3
ESP32 Serial -8.3 -14.2 -12.9 -12.4 -11.6
nRF52DK Serial -4.3 -9.9 -8.9 -8.5 -7.8
Professional Sniffer -1.3 -3.0 -2.7 -3.4 -3.1

Table 2: Additional packet loss in tested receivers. For a
series of advertising intervals, all packets from 25 BLE bea-
cons are recorded by: a BLE gateway identical to those in the
PowerBlade deployment, a modified gateway with increased
scan interval, a gateway with different BLE hardware, an
ESP32 BLE scanner over serial, a nRF52DK BLE scanner
over serial, and a professional BLE sniffer. Reception is most
improved by avoiding the Linux BLE stack and Noble library
and instead collecting with a scanning microcontroller. But all
configurations yield packet loss above the theoretical amount.

DRR = 1− [1− (1−Pc)(1−Pl)] [1− (1−Prc)(1−Pl)]
M−1

(7)
The first deployment we plan targets a 99% data reception
rate and is referred to as the “99%” deployment. Assuming
7.88% loss at the gateway (average for nRF52DK), 25 devices
deployed, and new data once per second, we can solve for
expected data reception rate given a number of redundant
packets per second. Sending 3 per second (333 ms interval)
should result in a reception rate of 99.6%. For the second
deployment, we target a deployment with 80% data reception
and refer to it as the “80%” deployment. With the same num-
ber of devices and expected loss at the gateway, an interval of
112.5 ms with no redundancy should lead to this outcome.

25 PowerBlades are deployed throughout an apartment, at-
tached to devices and plugged into outlets. A gateway using a
nRF52 development kit over a serial connection is deployed at
the intersection of the kitchen and living room. Nodes in the
bedroom are the furthest away from the gateway, transmitting
through a wall for the shortest-path link. The PowerBlades
are first configured for the “99%” deployment and data is
collected for 24 hours. Following that, devices are repro-
grammed for the “80%” deployment and then replaced in the
same locations for an additional 24 hours.
7.2 Deployment Results

The results of the real-world deployments are messier than
the managed setup used for empirical testing, but far more
predictable than the unplanned BLE deployment as we min-
imize and account for gateway issues. Figure 11 shows the
results of the “99%” deployment. Out of the 25 deployed
devices, 17 reach 99% data reception, with another 4 greater
than 90% and a median of 99.6%. Devices in the bedroom
are furthest away from the gateway and also have the highest
prevalence of weaker than expected DRR. Devices 19 and 20
are physically close to the gateway, but positioned behind a
microwave, which likely results in weak signal strength.

Without changing the locations of deployed devices, the
“80%” deployment, which has a target data reception rate of
80%, obtains a measured median of 78.5%. Eight devices
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Figure 11: DRR for each device in “99%” deployment. A
gateway is deployed between the living room and kitchen
of an apartment, with an adjacent bedroom through a wall.
Expected DRR is marked with a black line. Over two-thirds
of the devices reach 99% data reception. Some devices, espe-
cially those further away, suffer degraded performance due to
poor connectivity.

have rates within the range of 76–84%, as displayed in Fig-
ure 12. Seven more devices have better than predicted DRR,
between 84–90%. Based on received device signal strength,
capture effect is the likely cause. Prior work evaluates BLE
capture effect suggests that stronger colliding packets can be
received successfully at any point during the weaker packet
(not just if transmitted during the preamble) as long as the
packet is 14 dB higher in strength [39]. We find that in our
“80%” deployment, all devices above 84% reception are above
this threshold in comparison to at least two other deployed
devices. Device 22 is the strongest case of this, with its trans-
missions averaging 14 dB higher than 12 other devices.

Neither deployment was fully successful in achieving tar-
get reception rates for all devices. Though reduced reception
does correlate with distance, determining in advance which
devices will perform poorly is difficult. Even between the two
planned deployments we find that which devices do poorly
changes (e.g. devices 1, 8, and 19). Devices 1 and 2 are also
inches from each other, but have very different results in the
“99%” deployment. We hypothesize that these issues are due
to the antenna gain pattern, with slight adjustments in place-
ment resulting in poor signal and fading effects. In these cases,
a second gateway could be deployed, which would improve
reception rates without any changes to deployed devices.

8 Adapting to the BLE Environment
In the prior examples, we statically configured advertise-

ment parameters based on our expectations of transmission
contention. In many real-world scenarios however, the num-
ber of communicating devices is often not known in advance.
This is especially true for long-term deployments, where de-
vices may be added or removed over time. Automatically
adapting to the environment would allow a device to ensure
reliable communication under any scenario, while also min-
imizing transmissions and therefore conserving energy. We
implement an approach for adaptation, named ReliaBLE.

8.1 Measurement
The first step of adapting to the environment is measuring

it. Many BLE radios support dual mode operation, where a
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Figure 12: DRR for each device in “80%” deployment.
Over half of the devices meet the target rate of 80% (black
line). Devices close to the gateway perform better than ex-
pected, likely due to the capture effect. Without changing
device locations, resulting DRR is poorer than in the “99%”
deployment as expected due to more frequent packet colli-
sions without redundant transmissions.

device can be both an advertiser and a scanner. By entering
scanner mode, the device can receive all valid BLE advertise-
ments being broadcast around it. Doing so for a certain period
will give a good sense of what the transmission contention
looks like. Usefully, the ability to do a brief scan is part of
the BLE API on microcontrollers and smartphones, meaning
this method will work on almost all devices.

While scanning is a much higher energy cost than transmit-
ting, periodically performing a brief scan for advertisements
can be a low energy cost if rare and brief enough. Scanning
for one second every ten minutes increases an nRF51822’s
average power draw by about 70 µW—roughly the same cost
as increasing advertisement rate by one packet per second.
This may be a reasonable price to pay for applications expect-
ing rapid changes in the environment. A daily or weekly scan
rate would further diminish energy impact.

8.2 Adaptation
Two steps are needed for ReliaBLE adaptation: estima-

tion of collision probability and determination of redundancy.
Given a reasonably accurate measurement capability, the re-
ceptions can be transformed into an estimated packet recep-
tion rate. It can then be used, along with a desired data
reception rate, to select transmission redundancy.

As calculations will be performed on microcontrollers,
some simplifying assumptions are helpful. First, we can
utilize the naı̈ve model for packet collisions from Section 4.4.
This will increase error slightly, but is unlikely to majorly
impact redundancy selection. For another simplification, we
can measure packets per second, rather than actual devices
and advertisement intervals. The difference in collision rate
between sending, for example, 200 packets from one device
or 2 packets each from 100 devices, is around 1%. Packet
duration is more important for determining collisions, but
packet size is provided to higher layers of most BLE libraries.

Combining these simplifications, Equation (4) can be re-
vised to a product across all received packets of the device’s
own on-air duration (tadv0) plus the received on-air duration
(tadvi ), divided by the scan duration (tscan).



Algorithm 1 Number of redundant transmissions for a DRR.
1: procedure CALCULATEREDUNDANCY(estimatedPRR, desiredDRR)
2: drr← estimatedPRR
3: advCount← 1
4: while drr < desiredDRR do
5: drr← 1− ((1−drr)∗ (1− estimatedPRR))
6: advCount← advCount +1
7: end while
8: return advCount
9: end procedure

Transmissions per Second 1 2 3 4 5 6 7
90% 140 252 276 274 265 253 241

Desired DRR 95% 68 168 203 212 211 206 200
99% 13 70 107 126 134 138 138

Table 3: Number of devices supported at a desired DRR.
As more devices are added, each must increase transmissions
to maintain reliability. At a certain threshold (shaded), more
transmissions reduce reliability. Deployments with fewer
devices than this in a single broadcast domain will be stable.

estPc = 1−
Packets

∏
i=1

tadv0 + tadvi

tscan
(8)

After calculating an estimated probability of collision, a
desired data reception rate can be used to determine redun-
dancy configuration. Algorithm 1 demonstrates the steps for
doing so. Eliding repeated collisions, DRR is a product of
PRR for each redundant transmission. This algorithm can be
used on microcontrollers with fixed point arithmetic without
major loss in accuracy. An upper limit on redundancy can
also be imposed based on maximum acceptable energy use.

A concern with automatic adaptation is stability when
many devices employ the same algorithm. There are regions
of stability where a number of devices can all be following the
same algorithm and meet the same reliability. Adding enough
devices will push the entire deployment to add an additional
packet per second. Eventually, this can cascade to the point
where increasing transmissions harms overall reliability. The
number of devices this occurs at depends on the desired DRR.

Table 3 demonstrates maximum deployment size and sta-
ble regions for 90%, 95%, and 99% desired DRR. For exam-
ple, 80 devices can achieve 99% DRR at 3 transmissions per
second. 140 devices cannot stably meet 99% DRR, but can
yield 90% or 95% DRR with 1 to 2 transmissions per second.
High reliability deployments of over 100 devices in a single
area may need to investigate other protocols.
8.3 Experimental Results

To test, we implement the algorithm on an nRF51822. The
adapting device starts by transmitting one BLE advertisement
per second. Every ten minutes, it acts as a BLE scanner for
one second. After each scan, it adjusts its transmission rate to
reach 99% DRR. We also account for expected gateway losses
when calculating packet loss as discussed in Section 7.1.

The environment the adapting device is deployed in has 20-
100 BLE advertisements per second (background noise from
nearby iOS devices). We additionally enable up to 49 other
BLE transmitters, all placed within two meters of the adapting
device, in order to increase noise in the environment. These
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Figure 13: Runtime adaptation to the BLE environment.
Over 90 minutes, the number of advertisements transmitted
per second in an environment varies from 20 to over 500.
An adapting device is deployed, scanning and modifying its
behavior every ten minutes. Recorded are the number of ad-
vertisements it sends per second and the data reception rate
(as a running average of the last 100 seconds) for those adver-
tisements. The shaded regions are periods when the adapting
device underestimates transmissions in the environment and
poorer performance is likely. The next time the device scans
the environment, it increases redundancy to account for the
heavier traffic and maintain 99% DRR. Similarly, when it
overestimates the environment, it reduces redundancy to save
energy. Adaptation allows the device to maintain reliability
even when the environment changes by an order of magnitude.

transmitters are changed between ten-minute scan periods and
transmit ten packets per second each. A gateway is placed
within two meters of the adapting device to collect results.

Figure 13 demonstrates the results from this test. The
top plot (in green) visualizes the number of BLE transmis-
sions per second in the environment. The minor count spikes
throughout are due to nearby iOS device activity. At 15 min-
utes, 20 transmitters are added to the environment. At 35, they
are disabled. Then, from 45–65, all transmitters are enabled.

The middle (orange) and bottom (blue) plots respectively
display the number of advertisements per second sent by the
adapting device and the resulting data reception rate for the
adapting device. Vertical dashed lines every 10 minutes de-
note when the adapting device scans the environment and then
adapts its transmission rate. Gray regions from 0–12, 15–22,
and 45–52 minutes mark points where the adapting device
has underestimated the environment and poor performance is
expected. DRR shown is a running average of 100 seconds.

Initial background traffic is enough to warrant transmis-
sion of 2 packets per second to maintain 99% DRR. With
more than 500 transmissions at once, 4 packets are necessary.
Sending only 3 would have resulted in 95% DRR. Sending 2
packets or a single packet would have resulted in 86% or 63%
reception rates respectively. As the environment reduces in
contention, the adapting device follows that as well, eventu-
ally returning to 2 transmissions per second by the end.



9 Conclusions
In this paper, we investigate BLE advertisement networks—

useful for low-power IoT due to their simplicity. The models
we describe and validate allow for a theoretical understand-
ing of the performance a network can expect. Moving into
the real world, we demonstrate the power of these models
to measure whether existing deployments are working as ex-
pected and to select network parameters to meet a desired
performance. We explore the dataset from a large deployment
of BLE power meters, finding problems in the BLE gateway
that cause poor reception. In new deployments, we show that
with redundancy, BLE advertisements can be used to create a
network achieving 99% data reception. Further, we develop
and implement the ReliaBLE adaptation protocol, which dy-
namically adjusts redundancy to maintain 99% data reception
even with drastic real-time changes in network contention.

Not all issues faced by advertisement networks are solved.
Connectivity is a challenging deployment problem and is ex-
acerbated by BLE’s short range, necessitating the deployment
of smarter, ubiquitous gateways to solve it. This paper, how-
ever, provides an important first step towards BLE networking
for reliable, interoperable, and ubiquitous sensor networks.
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