
Embedded Device Generation:
Turning Software into Hardware

Rohit Ramesh
EECS Department
University of Michigan
rohitram@umich.edu

Prabal Dutta
EECS Department
University of Michigan
prabal@eecs.umich.edu

The authors retain copyright over this work.
This work was presented at the CrossFAB workshop at CHI 2016.

Abstract
This paper introduces embedded device generation, a de-
sign and synthesis process that allows anyone who can
write code to develop embedded hardware. The key insight
is that a simple program can serve as a complete design
specification for the embedded device that runs it. We en-
vision future device generation tools that can enable new
workflows for makers and provide building blocks that per-
sonal fabrication researchers can integrate into their own
work. We are currently developing a prototype version of
these tools, and we soon hope to solicit feedback from the
personal fabrication community.

Author Keywords
Hardware Synthesis; Embedded Systems; Personal Fabri-
cation

ACM Classification Keywords
B.1.m [Hardware]: Miscellaneous; J.6 [Computer Aided
Engineering]; 3 [Special Purpose and Application-Based
Systems]: Real-time and Embedded Systems

Introduction
Embedded systems are an integral part of personal fabri-
cation, as well as an important component of 3D printing,
the Internet of Things, smart infrastructure, robotics, and
numerous other technologies. Yet despite their increasing



ubiquity, many issues compound to make developing em-
bedded hardware a difficult and tedious process. Choosing
components for a device requires wading through reams
of datasheets and documentation, design tools only pro-
vide meager forms of correctness checking, and embedded
software development often requires users to reimplement
large blocks of code to make tiny hardware changes. These
issues increase cost, create barriers to learning, and waste
time on tasks that could be automated.

We believe that developing embedded device generation
tools will alleviate these issues and allow anyone who can
write simple software to design embedded hardware. Our
work focuses on automatically generating embedded sys-
tems, like those in Figure 1, from programs that describe
the their functionality. At their simplest, these programs
look like the software written for an Arduino, yet they cap-
ture enough information to allow our tools to automatically
choose components, wire them together, and generate a
complete design for an embedded device. We envision an
ecosystem that will allow any programmer to write a pro-
gram describing a device they need, send the generated
design to a fabrication service, and receive a finished de-
vice in the mail the next day. There are 18.2 million profes-
sional software developers in the world [2] and the number
of students learning computer science is growing rapidly,
yet these are only the most visible groups with the skills
needed to use device generation. We aim to empower
students, professionals, hobbyists, the creative, and the
curious to make electronic art, automate their homes, ex-
periment with robotics, and design sensors that help them
gather information about their world.

Figure 1: We envision that our
embedded device generation tools
will be capable of generating a
wide variety of devices including
sensors, simple robots, musical
instruments, and even handheld
games.

Our design for embedded device generation follows the fa-
miliar pattern of transforming a hard problem into an easier
one, solving the easier problem, and transforming that so-

lution back into a solution for the original problem. To do
this, we develop a formal model that represents embed-
ded devices as a network of components, which allows us
to tractably reason about the relationships between those
components. Figure 2 presents an overview of our sys-
tem. We first analyze a user-supplied program to generate
a specification within the formal model, then incrementally
synthesize a schematic by adding components which bring
it closer to satisfying the specification, and finally reify that
schematic into a complete design for an embedded system.

An Outline for Device Generation
Embedded device generation will enable new workflows for
makers, lower the bar for building hardware, and give a vast
audience of programmers the ability to immediately jump
into embedded hardware development. Imagine a maker
who is building a custom setup for home-brewing beer.
They have a fermentation barrel and water bath, but need
to carefully control the temperature of the water during the
brewing process. Instead of buying a costly control system
that may not be tailored to their needs, the maker can write
a program describing what they want their temperature
controller to do. This program—like the one in Figure 3—
describes the components the device must have, as well as
how those components act as the device runs. Once the
program is complete, embedded device generation tools
take over, choose parts, verify that they are compatible, and
generate a design for the temperature controller. Depend-
ing on the maker’s exact needs, they can tell the device
generation tools to optimize for price, power draw, or some
other user-defined criterion. When the generation process
is complete, the maker can send the design to be fabricated
and will soon receive their custom home-brewing tempera-
ture controller in the mail.



Component
Library

User Program
(Used as Specification)

Formal
Specification

Formal
Schematic

Embedded
Hardware Design
(Satisfies Specification)

"Real World"

Formal Domain

Traditional
Embedded

Development

A
na

ly
si

s

Synthesis

R
ei

fic
at

io
n

Figure 2: Embedded device
generation is a three phase
process. First, a user program is
analyzed to generate a
specification. Second, a schematic
for the embedded device is
synthesized using parts from a
component library. Finally, that
schematic is reified into a complete
design for an embedded device by
replacing components in the
schematic with implementations
taken from the component library.

Here, we examine the process outlined in Figure 2 in more
depth. The initial step, analysis, analyzes the program to
gather information about the specifications of the device.
In its most basic form, this parses the program to retrieve
those components which must appear in the final device
and converts the execution logic into a component that is
inserted into the synthesis process. Eventually tools from
program analysis will also extract information about timing
and energy consumption in order to more aggressively op-
timize the design of generated devices. The second step,
synthesis, searches the space of possible designs for a
valid device schematic that satisfies the specification. If
performed naively, such a search would be intractable, but
we design the formalism to have a number of symmetries
that significantly prune the search space. The final step,
reification, completes the process by converting the device
schematic into a complete design for an embedded device.
The resulting software and hardware designs will then be
passed to existing tools that compile the generated device
firmware and automatically create a PCB.

// Component Declarations
component thermometer = new Thermometer(

immersion, min-temp <= 0c,
max-temp >= 100c);

component heater = new Heater(immersion,
power > 10w);

component cooler = new Cooler(immersion);
component status = new RGB-LED();

// Activity Description
fn main(){

while(true){
if(thermometer.temp() < 16c){

// Water temp too low
cooler.off();
heater.on();
status.setColor(Blue);

} else if(thermometer.temp() > 20c){
// Water temp too high
heater.off();
cooler.on();
status.setColor(Red);

}else{
// Water temp just right
heater.off();
cooler.off();
status.setColor(Green);

}
}

}

Figure 3: This program acts as a self-contained specification and
implementation for a temparature controller. The initial section
acts as a declaration of the components the controller must
contain, as well as the properties those components must have.
The second section is a decription of how the device should act,
written as if the declared components had a well-defined generic
software API. The program, as a whole, acts as a specification
that embedded device generation tools attempt to satisfy when
generating a device.



Design Considerations
In order to be successful, embedded device generation
tools need be easy for novices to learn and powerful enough
for advanced users. Thankfully, the computer science re-
search community has significant experience designing and
using programming languages. Embedded microcontrollers
like the Arduino have spurred the development of easy-
to-use programming idioms and design patterns. These
conventions allow those without formal training to learn em-
bedded development skills quickly while continuing to make
progress on the projects that impelled them to start work-
ing with embedded devices [1]. Tools from programming
language design can allow device generation tools to in-
corporate new technologies as they become available by
creating a robust framework for change over time [3]. Tools
from type theory can allow expert users to express com-
plex relationships between software and hardware while
being invisible to novices [4]. Embedded device generation
synthesizes these concepts to provide an accessible way
to describe the function of embedded systems, and then
provide the tools to turn those descriptions into reality.

Our design for embedded device generation allows it to be-
come an important research tool, providing faster and eas-
ier ways to develop hardware, and providing components
that integrate into other research efforts. Device generation
can be coupled with new tools for circuit printing and multi-
material 3D printing [5], to create systems with complex
electronic and mechanical properties. Other systems could
incorporate device generation as a component, generating
bespoke embedded devices that are specialized to the task
at hand. Existing tools could incorporate the component li-
brary and formalisms to provide engineers stronger forms
of design verification. The modularity of embedded device
generation will allow researchers to incorporate its compo-
nents into their work, opening new avenues for inquiry.

Conclusion
Embedded hardware development is still an arduous pro-
cess, requiring time, money, and skill that is often unrea-
sonable. Device generation will change that by providing
users an accessible method for describing embedded hard-
ware and tools that can automate turning those descriptions
into actual hardware. The components of embedded de-
vice generation can serve as building blocks for future re-
searcher efforts, creating powerful new methods for reason-
ing about embedded systems. Device generation tools will
provide large, new communities the ability to build embed-
ded devices and serve as a catalyst for innovation within
the personal fabrication community.

Acknowledgements
This work was supported by STARnet, a Semiconductor
Research Corporation program, sponsored by MARCO and
DARPA. This material is based upon work partially sup-
ported by the National Science Foundation under Grant No.
1505684.

References
[1] Alicia M Gibb. 2010. New media art, design, and the

Arduino microcontroller: A malleable tool. Ph.D. Dis-
sertation. Pratt Institute.

[2] Al Hilwa. 2013. 2014 Wordwide Software and ICT-
skilled Worker Estimates. Technical Report. IDC.

[3] Nathaniel Nystrom, Michael R Clarkson, and others.
2003. Polyglot: An extensible compiler framework for
Java. In Compiler Construction. Springer, 138–152.

[4] Benjamin C. Pierce. 2002. Types and Programming
Languages. MIT Press, Cambridge, MA, USA.

[5] Pitchaya Sitthi-Amorn, Javier E Ramos, and others.
2015. MultiFab: a machine vision assisted platform
for multi-material 3D printing. ACM Transactions on
Graphics (TOG) 34, 4 (2015), 129.


	Introduction
	An Outline for Device Generation
	Design Considerations
	Conclusion
	Acknowledgements
	References

