
POET: Training Neural Networks on Tiny Devices
with Integrated Rematerialization and Paging

Shishir G. Patil 1 Paras Jain 1 Prabal Dutta 1 Ion Stoica 1 Joseph E. Gonzalez 1

Abstract

Fine-tuning models on edge devices like mobile
phones would enable privacy-preserving person-
alization over sensitive data. However, edge train-
ing has historically been limited to relatively small
models with simple architectures because training
is both memory and energy intensive. We present
POET, an algorithm to enable training large neu-
ral networks on memory-scarce battery-operated
edge devices. POET jointly optimizes the inte-
grated search search spaces of rematerialization
and paging, two algorithms to reduce the mem-
ory consumption of backpropagation. Given a
memory budget and a run-time constraint, we for-
mulate a mixed-integer linear program (MILP) for
energy-optimal training. Our approach enables
training significantly larger models on embedded
devices while reducing energy consumption while
not modifying mathematical correctness of back-
propagation. We demonstrate that it is possible
to fine-tune both ResNet-18 and BERT within
the memory constraints of a Cortex-M class em-
bedded device while outperforming current edge
training methods in energy efficiency. POET
is an open-source project available at https:
//github.com/ShishirPatil/poet

1. Introduction
Deep learning models are widely deployed for inference on
edge devices like smartphones and embedded platforms. In
contrast, training is still predominantly done on large cloud
servers with high-throughput accelerators such as GPUs.
The centralized cloud training model requires transmitting
sensitive data from edge devices to the cloud such as photos

1University of California Berkeley. Correspondence to: Shishir
G. Patil <shishirpatil@berkeley.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

and keystrokes, thereby sacrificing user privacy and incur-
ring additional data movement costs.

To enable users to personalize their models without relin-
quishing privacy, on-device training methods such as feder-
ated learning (Li et al., 2020) perform local training updates
without the need to consolidate data to the cloud. These
methods have been widely deployed to personalize key-
board suggestions in Google Gboard (Hard et al., 2018)
and to improve Automatic Speech Recognition (ASR) on
iPhones (Paulik et al., 2021).

At the same time, current on-device training methods can-
not support training modern architectures and large models.
For example, Google Gboard fine-tunes a simple logistic
regression model. Training larger models on edge devices is
infeasible primarily due to the limited device memory which
cannot store activations for backpropagation. A single train-
ing iteration for ResNet-50 (He et al., 2016) requires 200×
more memory than inference.

Prior work has proposed strategies including paging to auxil-
iary memory (Peng et al., 2020) and rematerialization (Chen
et al., 2016; Jain et al., 2020; Kirisame et al., 2021) to re-
duce the memory footprint of training in the cloud. However,
these methods result in a significant increase in total energy
consumption. The data transfers associated with paging
methods often require more energy than recomputing the
data. Alternatively, rematerialization increases energy con-
sumption at a rate of O(n2) as the memory budget shrinks.

In this work, we show that paging and rematerialization are
highly complementary. By carefully rematerializing cheap
operations while paging results of expensive operations to
auxiliary memory such as a flash or an SD card, we can
scale effective memory capacity with minimal energy over-
head. By combining these two methods, we demonstrate
it is possible to train models like BERT on mobile-class
edge devices. By framing edge training as an optimization
problem, we discover optimal schedules with provably min-
imal energy consumption at a given memory budget. While
the focus of this paper is edge deployemnts, the energy
objective is increasingly becoming relevant even for cloud
deployments (Patterson et al., 2022).

https://github.com/ShishirPatil/poet
https://github.com/ShishirPatil/poet

POET: Training Neural Networks on Tiny Devices with Integrated Rematerialization and Paging

Neural net
model

Operator cost
profile

POET solver

min total energy usage
s.t. memory constraint
s.t. runtime constraint

Execute on edge device

 (1) Rematerialize

 (2) Page to flash

Figure 1: POET optimizes state-of-the-art ML models for training on Edge devices. Operators of the ML model are profiled
on target edge device to obtain fine-grained profiles. POET adopts an integrated integrated rematerialization and paging to
produce an energy-optimal training schedule.

We present POET (Private Optimal Energy Training), an
algorithm for energy-optimal training of modern neural net-
works on memory-constrained edge devices (Fig 1). Given
that it is prohibitively expensive to cache all activation ten-
sors for backpropagation, POET optimally pages and rema-
terializes activations, thereby reducing memory consump-
tion by up to 2x. We reformulate the edge training problem
as an integer linear program (ILP) and find it is solved to
optimality in under ten minutes by commodity solvers.

For models deployed on real-world edge devices, train-
ing happens when the edge device is relatively idle and
spare compute cycles are available. For example, Google
Gboard schedules model updates when the phone is put
to charge. Hence POET also incorporates a hard training
constraint. Given a memory constraint and the number of
training epochs, POET generates solutions that also satisfy
the given training deadline. POET transparently develops a
comprehensive cost model by profiling the target hardware
with the target network’s operators. Finally, POET is mathe-
matically value preserving (i.e, it makes no approximations),
and it works for existing architectures out-of-the-box.

The novel contributions of this work include:

1. A formulation of an integer linear program to find the
energy-optimal schedule to train modern deep neural
networks with a) memory and b) runtime as hard
constraints.

2. A unified algorithm for hybrid activation recomputa-
tion and paging.

3. The first demonstration of how to train ResNet-18 and
BERT on tiny Cortex M class devices with memory
and timing constraints.

2. Related Work
Scarcity of compute and memory is one of the largest con-
straint for machine learning on edge devices. Large models
with state-of-the-art performance have largely been exorbi-
tantly expensive for edge devices. The research community
has predominantly focused on addressing inference on edge

devices via methods like efficient DNN architecture (Ian-
dola et al., 2016; Tan & Le, 2021), quantization (Dong et al.,
2019) or pruning (Blalock et al., 2020).

Instead, we aim to make training large neural networks fea-
sible on tiny edge devices. While compute is the limiting
resource for inference on the edge, limited memory capac-
ity constraints prevent training large models on the edge.
Training via vanilla backpropagation requires caching the
output of all intermediate layers (activations). We categorize
methods to reduce memory usage of training as activation
(1) compression, (2) rematerialization, and (3) paging. We
then discuss prior work in energy-efficient training.

Activation quantization: Chen et al. (2021), Park
et al. (2017), and others have proposed techniques to quan-
tize activations while performing full-precision multiply-
accumulates (MACs). However, these techniques compro-
mise accuracy and correctness. Moreover, poor hardware
support for quantized operations under 8 bits limits the
practical savings of these techniques. We do not consider
methods for pruning during training like Frankle & Carbin
(2019) as they do not reduce the size of activations.

Rematerialization: Rematerialization discards activations
in the forward pass and recomputes those values during gra-
dient calculation. Chen et al. (2016) proposed a simple and
widely used algorithm for rematerialization where every
O(

√
n) layer is retained for the backward pass. Griewank

& Walther (2000) propose an optimal algorithm for rema-
terialization on unit-cost linear auto-diff graphs. However,
they force the strong assumption that models have uniform
compute requirements across layers. Checkmate (Jain et al.,
2020) identifies the optimal rematerialization schedule for
arbitrary static graphs. Shah et al. (2021) extends Check-
mate with operator implementation selection, but this is
orthogonal to our work’s scheduling problem. Dynamic
Tensor Rematerialization (DTR) (Kirisame et al., 2021)
finds an approximation of Checkmate that is near-optimal
for common computer-vision models. Our work addresses
the following limitations of Checkmate: (1) Checkmate
does not consider energy nor latency as a constraint and (2)
Checkmate does not page activations to secondary memory.
POET is the first work that demonstrates provably optimal

POET: Training Neural Networks on Tiny Devices with Integrated Rematerialization and Paging

Method General
Graphs

Compute
Aware

Memory
Aware

Power
Aware

Checkpoint all (PyTorch)
√

× × ×
Griewank & Walther (2000) × × × ×
Chen et al. (2016)

√
n × × × ×

Chen et al. (2016) greedy × × ∼ ×
Checkmate (Jain et al., 2020)

√ √ √
×

POFO (Beaumont et al., 2021) ×
√ √

×
DTR (Kirisame et al., 2021)

√ √ √
×

POET (ours)
√ √ √ √

Table 1: Comparison of baseline methods under power,
compute, memory and generality metrics. POET satisfies
all criteria, enabling end-to-end training on the edge.

integrated paging and rematerialization.

Paging: Huang et al. (2020) and Ren et al. (2021) page
activations off a memory-scarce GPU to the CPU when
out of memory. However, we find paging is very energy-
intensive and is often less efficient than rematerialization.
Capuchin (Peng et al., 2020) uses the Memory Saving Per
Second (MSPS) heuristic to decide what to page. Only
if paging is insufficient will Capuchin rematerialize acti-
vations thereby making it sub-optimal as demonstrated in
Sec 6.1. POFO (Beaumont et al., 2021) formulates finding
finding the optimal sequence combining rematerialization
and paging as a dynamic programming problem. POFO
makes many assumptions that limit generality: POFO only
supports chain (linear) model graphs while we support arbi-
trary graphs such as BERT (Fig 3). POFO limits layers to a
single rematerialization or page operation while POET can
remat/page layers repeatedly. POFO forces all page-out op-
erations to occur prior to calculating the loss while we have
no such restriction. And finally, while POFO assumes pag-
ing is asynchronous (e.g., CUDA) but this is not universally
true for the edge devices we evaluate. Notice that POET
is not only optimizing a different metric (energy vis-a-vis
time) but a) adhere’s to strict timing guarantees and b) is
provably optimal.

Energy-efficient training: We are not the first to consider
energy-optimal training. Prior work on energy-optimal train-
ing for the edge either a) required the design of new archi-
tectures (Cai et al., 2019; Tan & Le, 2021), or proposed b)
new techniques of training by dropping activations, updating
only select layers of the network, or c) used a different opti-
mizer (Wang et al., 2019). Compared to these techniques,
POET is a) mathematically value preserving (makes no ap-
proximations, or modifications), and b) works for existing
and new architectures out-of-the-box.

3. Background
A growing demand exists for edge machine learning appli-
cations for greater autonomy. In response, the community

L1 L2 L3 L4 L5 L6 L7 L8
T1
T2
T3 X
T4 X
T5
T6 >
T7 >
T8
T9
T10 <
T11 <
T12
T13
T14
T15
T16
T17
T18

Fo
rw
ar
d
pa
ss

Ba
ck
wa
rd
pa
ss

Forward pass
Backward pass

X Delete activation
Remat. activation

> Paging out
< Paging in

Figure 2: Rematerialization and paging are complementary.
This plot visualizes the execution schedule for an eight layer
neural network. We represent logical timesteps in increasing
order on the y-axis while different layers are represented by
the x-axis. Layers 2 and 3 are cheap-to-compute operators
and therefore can be rematerialized at low cost. However,
layers 5 and 6 are compute intensive so it is more energy-
efficient to page them to secondary flash storage.

has developed systems to enable machine learning on edge
devices. EdgeML (Dennis et al., 2019), CoreML (Kapoor,
2019) and TensorFlow Lite (Lee et al., 2019) from Google
are all efforts to meet this demand.

However, each of these efforts is application-specific and
proposes new algorithms or optimizations to address the
computational and memory requirements for machine learn-
ing inference on the edge (Lane et al., 2016). While in-
ference is already commonly deployed on edge devices,
training remains ad-hoc and infeasible for large models.

Training on the edge is critical for privacy, cost, and connec-
tivity. First, due to privacy concerns, many edge applications
cannot transmit data to the cloud. Second, the energy con-
sumed by bulk data transmission can significantly reduce
battery life (Levis et al., 2004). Third, applications such as
ocean sensing and communication (Jang & Adib, 2019), and
those deployed in farms (Vasisht et al., 2017) are designed
for offline operations – with no access to the internet.

Our objective of optimizing for energy is a non-trivial contri-
bution. On edge devices, the energy objective can oftentimes

POET: Training Neural Networks on Tiny Devices with Integrated Rematerialization and Paging

conflict with the objective of running to completion. For ex-
ample, on a given platform, rematerializing might consume
lower energy, but paging might be quicker. This is because,
on edge devices, it is common practise to turn-off/duty-cycle
components that are not utilized (e.g., SD card, DMA, etc.)
The energy profile may vary depending on the size of the
tensor, and if the PCIe/DMA/SPI/I2C memory bus needs to
be activated, etc. Exploiting this enables POET to find the
most energy-efficient schedule which would not have been
possible had we not optimized for energy.

While definitions differ on which devices are included in
“the edge” (e.g., mobile phones, routers, gateways, or even
self-driving cars). In the context of this paper, the edge refers
to mobile phones and microcontrollers (Table 2). These
devices are characterized by limited memory (ranging from
KBs to a few GBs) and are commonly battery-powered (∼
few hundred mAh) for real-world deployment. Further, in
our research we found that it is quite common for these edge
devices to be augmented with an off-chip secondary storage
such as a flash or an SD card as seen in (Vasisht et al., 2017;
Jang & Adib, 2019; Patil et al., 2019). This presents us with
an opportunity to exploit the off-chip memory for paging.

4. Integrated paging and rematerialization
Rematerialization and paging are two techniques to lower
the memory consumption of large, state-of-the-art ML mod-
els. In rematerialization, an activation tensor is deleted as
soon as they are no longer needed, most often, during a
forward pass. This frees up precious memory that can be
used to store the activations of the following layers. When
the deleted tensor is needed again, for example, to compute
gradients during backpropagation, it is recomputed from
the other dependent activations as dictated by the lineage.
Paging, also known as offloading, is a complementary tech-
nique to reduce memory. In paging, an activation tensor that
is not immediately needed is paged-out from the primary
memory to a secondary memory such as a flash or an SD
card. When the tensor is needed again, it is paged back in.

This is best understood with the representative neural-
network training timeline from Figure 2. Along the X-axis,
each cell corresponds to a single layer of an eight-layered,
linear, neural-network. The Y-axis represents the logical
timesteps over one epoch. An occupied cell indicates that
an operation (forward/backward pass computation, rema-
terialization, or paging) is executed at the corresponding
timestep. For example, we can see that the activation for
Layer 1 (L1) is computed at the first timestep (T1). At
timestep T2 and T3, the activations of L2 and L3 are com-
puted respectively. Suppose layers L2 and L3 happen to
be memory-intensive but cheap-to-compute operators, such
as non-linearities (tanH, ReLU, etc,) then rematerialization
becomes the optimal choice. We can delete the activations

({T3, L2}, {T4, L3}) to free up memory, and when these
activations are needed during backward propagation we can
rematerialize them ({T14, L3}, {T16, L2}).

Suppose layers L5 and L6 are compute-intensive operators
such as convolutions, dense matrix-multiplication, etc. For
such operations, rematerializing the activations would lead
to an increase in run-time and energy and is sub-optimal. For
these layers, it is optimal to page-out the activation tensor to
secondary storage ({T6,L5}, {T7, L6}), and page-in when
they are needed ({T10,L6}, {T11, L5}).

One major advantage of paging is that depending on how
occupied the memory bus is, it can be pipelined to hide
latency. This is because modern systems have DMA (Direct
Memory Access) which can move the activation tensor from
the secondary storage to the primary memory while the
compute engine is running in parallel. For example, at
timestep T7, we are both paging L6 out and computing L7.
However, rematerialization is compute-intensive, cannot be
parallelized. This leads to an increase in run-time. For
example, we have to dedicate timestep T14 to recompute L3
thereby delaying the rest of the backward pass execution.

5. POET: Private Optimal Energy Training
We introduce Private Optimal Energy Training (POET), a
graph-level compiler for deep neural networks that rewrites
training DAGs for large models to fit within the memory
constraints of edge devices while remaining energy-efficient.
POET is hardware-aware and first traces the execution of
the forward and backward pass with associate memory allo-
cation requests, runtime, and per-operation memory and en-
ergy consumption. This fine-grained profiling for each work-
load happens only once for a given hardware, is automated,
cheap, and provides the most accurate cost model for POET.
POET then generates a Mixed Integer Linear Programming
(MILP) which can be efficiently solved. The POET opti-
mizer searches for an efficient rematerialization and paging
schedule that minimizes end-to-end energy consumption
subject to memory constraints. The resulting schedule is
then used to generate a new DAG to execute on the edge
device. While the MILP is solved on commodity hardware,
the generated schedule shipped to the edge device is only a
few hundred bytes, making it highly memory efficient.

Rematerialization is most efficient for operations that are
cheap-to-compute yet memory-intensive. These operations
can be recalculated with low energy overhead. Paging, how-
ever, is best suited to compute-intensive operations where
rematerialization would otherwise incur significant energy
overhead. POET jointly considers both rematerialization
and paging in an integrated search space.

Without a minimum training throughput limit, it is possible
that the energy optimal strategy is also far too slow to train in

POET: Training Neural Networks on Tiny Devices with Integrated Rematerialization and Paging

practical applications. In reality, training needs to run while
the device is idle where spare compute cycles are available.
For example, Google Android schedules ML model updates
when the phone is charging. To maintain high training
throughputs, the POET optimizer can maintain a minimum
training throughput to ensure that training completes during
downtime.

Given a memory budget µRAM and a training time budget
µdeadline, POET finds an energy optimal schedule by choos-
ing to either a) rematerialize or b) page the tensors to/from
secondary storage such as an SD card. Our method scales
to complex, realistic architectures and is hardware-aware
through the use of microcontroller-specific, profile-based
cost models. We build upon the formulation proposed by
Checkmate (Jain et al., 2020) and adapt it to jointly consider
integrated rematerialization and paging, to optimize for an
energy objective rather than the runtime, and to implement
a minimum throughput constraint.

Assumptions: We assume operations execute sequentially
on edge devices without inter-operator parallelism. More-
over, we assume parameters and gradients are stored in a
contiguous memory region without paging. Unlike prior
work in rematerialization (Chen et al., 2016; Kirisame et al.,
2021), we do not limit rematerialization to occur once. We
assume auxiliary storage (e.g., flash/ SD card) is available.
However, if auxiliary storage is not available, the POET op-
timizer will fall back to only performing rematerialization.

5.1. Optimal Rematerialization

Following the design of Checkmate (Jain et al., 2020), we
introduce the formulation of the rematerialization problem.
Given a directed acyclic dataflow graph G = (V,E) with
n nodes, a topological ordering {v1, . . . , vn} is computed
which constrains execution to that order of instructions. Two
key decision variables are introduced: (1) R ∈ {0, 1}n×n

where rt,i represents the decision to (re)materialize an op-
eration vi at timestep t and (2) S ∈ {0, 1}n×n where st,i
represents whether the result of an operation vi is resident
in memory at timestep t.

From the rematerialzation matrix R, and the storage ma-
trix S, we define a series of constraints to maintain graph
dependencies. All arguments for an operation j must be
resident in memory prior to running that operation, yielding
constraint Rt,i +St,i ≥ Rt,j ∀(i, j) ∈ E ∀t ∈ {1, . . . , n}.
Similarly, the result of an operation is only resident in
memory in one of the two cases: a) if it was already res-
ident in memory before, or b) if it was (re)materialized
(St,i ≤ St−1,i +Rt−1,i ∀i ∈ V ∀t ∈ {1, . . . , n}).

To adhere to the strict constraints on the peak memory used
during training, an intermediate variable U ∈ Rn×n is de-
fined. Ut,i is the total memory used by the system during

training at timestep t when evaluating operation i. By bound-
ing the maximum value of Ut,i ∀i ∈ V ∀t ∈ {1, . . . , n} to
the user-specified memory limit µRAM , we limit the total
memory consumption during training.

5.2. Optimal integrated paging and rematerialization

While rematerialization can provide significant memory sav-
ings, it introduces significant energy consumption overheads
from duplicate recomputations. Similarly, paging if done
wrong will result in a wasteful shuffling of data between
memories. Here, we formalize a joint search space for re-
materialization and paging to enable the discovery of the
energy-optimal hybrid schedule.

Like rematerialization, the discovery of the optimal paging
schedule is a challenging combinatorial search problem.
However, we find that independently solving for paging
first, and then solving for rematerialization will not produce
globally optimal solutions. As an example, consider a graph
where the output depends on the result of two operations v1
and v2 where both nodes have equivalent memory costs but
v2 is cheaper to evaluate. A paging strategy may evict v2
which would force rematerialization to recompute the more
expensive v1 rather than v2.

We represent a schedule as a series of nodes that are either
being saved SRAM , (re)computed R or paged from sec-
ondary storage SAUX . To model when a node is copied
from secondary storage to RAM, we introduce a variable
M in ∈ {0, 1}n×n where M in

t,i represents paging a tensor
from secondary storage to RAM between timesteps t − 1
and t. Similarly, we model page-out with Mout.

We now present the intuition behind adding the following
constraints to the optimization problem in order to search
over optimal schedules for paging and rematerialization:

1c For SRAM
t,i to be in memory at time-step t, either com-

pute Rt,i at timestep t, or retain SRAM
t,i in memory

from the previous timestep t− 1, or page-in if SRAM
t−1,i

is resident on flash (at t− 1).

1d Each node i can reside on flash SAUX
t,i , either if it

resided on flash at timestep t − 1 (SAUX
t−1,i), or it was

paged out at time-step t− 1 (Mout
t−1,i).

1e To page-in M in
t,i at time-step t, it has to be resident on

flash SAUX
t,i at timestep t.

1f Each node i can reside in memory SRAM
t,i at timestep

t, only if it was paged out of flash (Mout
t,i).

Algorithm 1 defines the complete optimization problem.

POET: Training Neural Networks on Tiny Devices with Integrated Rematerialization and Paging

Algorithm 1 POET optimizer: The complete memory constrained MILP with O(|V ||E|) variables and constraints. The
definition of U (not listed) is from Jain et al. (2020), Equations 2 and 3.

arg min
∑
T

[RΦcompute +MinΦpagein +MoutΦpageout]T

subject to Rt,i + SRAM
t,i ≥ Rt,j ∀t ∈ V ∀(vi, vj) ∈ E

Rt−1,i + SRAM
t−1,i +M in

t−1,i ≥ SRAM
t,i ∀k ∈ K ∀t ≥ 2 ∀i

SAUX
t−1,i +Mout

t−1,i ≥ SAUX
t,i ∀t ≥ 2 ∀i

SAUX
t,i ≥ M in

t,i ∀k ∈ K ∀t ≥ 2 ∀i
SRAM
t,i ≥ Mout

t,i ∀k ∈ K ∀t ≥ 2 ∀i
URAM
t,i ≤ µRAM ∀t ∈ V ∀i ∈ V∑

T

[RΨcompute]T ≤ µdeadline

S1,i = 0 ∀i ∈ V

Rv,v = 1 ∀v ∈ V

R, SSD, SRAM ,Min,Mout ∈ {0, 1}T×T

(1)

5.3. Expressing an energy consumption objective

If we only consider rematerialization, then minimizing run-
time will generally correlate with decreased energy usage.
However, this is no longer true when considering paging;
paging can be more energy-efficient than rematerializing
a compute-intensive operation. To address this, we intro-
duce a new objective function to the optimization problem
that minimizes the combined energy consumption due to
computation, page-in, and page-out.

When paging occurs on an edge device, the vast majority
of energy consumed is due to powering-on the flash/SD
block device. As this power is in addition to any power the
CPU is consuming, the total power consumption is a linear
combination of paging and CPU energy. We precompute
each of these values, generally as the integral of the power
of active components of the edge device integrated over the
runtime of the operation. Φcompute, Φpagein and Φpageout

represent the energy consumed for each node for computing,
paging in, and paging out respectively.

Therefore, the new objective function combining paging and
rematerialization energy usage is:∑

T

[RΦcompute +MinΦpagein +MoutΦpageout]T (2)

5.4. Ensuring minimum training throughput

If we attempt to find the minimum energy schedule subject
to only a memory constraint, the POET solver may select
solutions with poor end-to-end training throughput. Ideally,
training should occur in the downtime between interactive
workloads on an edge device. To ensure this, we introduce

a new constraint to the optimization problem that ensures
schedules meet a minimum training throughput threshold.
This constraint effectively trades off between energy con-
sumption and training throughput.

To enforce a particular throughput, we compute a latency
target. Via profiling, we capture Ψcompute denoting the
runtime of each operation. We then constrain total runtime
with the constraint:∑

T

[RΨcompute]T ≤ µdeadline (3)

5.5. Paging latency hiding via transfer planner

POET outputs the DAG schedule in terms of which nodes of
the graph (k) to rematerialize, and which to page-in (M in

t,k)
or page-out (Mout

t,k) at each time-step (t). Our Algorithm 2
takes the ILP solves to generate and dictate the strategy that
determines which tensors are resident-in-memory (Saux

t,k) at
a fine-grained (operator) level.

We factor in the latency introduced by paging. As described
in Section 6.1, POET is hardware-aware by profiling the
latency per platform for paging activations to secondary
storage. Fine-grained profiling helps in fine-tuning when
to start paging, such that the activation tensors arrive just-
in-time. We then modify the page-in (M in

t,k) and the page-
out (Mout

t,k) schedule to ensure there is no contention for
the memory bus as the tensors are paged-in just-in-time.
For example, if (M in

t,i) can contend with (M in
t,j), then we

schedule one of them to page-in at an earlier time (M in
t−1,i)

and update the in-memory schedule (Saux
t−1,i) to account for

the earlier paging-in. While this ensures the activations

POET: Training Neural Networks on Tiny Devices with Integrated Rematerialization and Paging

Algorithm 2 Training Graph Execution Plan
Input: Graph G = (V,E), schedule R,Min,Mout

for t=1,..,|V | do
for k=1,..,|V | do

if M in
t then

add %r = pagein vk to P

if Rt,k then
add %r = compute vk to P

if Mout
t,k then

add %r = pageout vk to P

for i ∈ DEPS[k] ∪ {k} do
if Mout

t,k ∨ FREEt,i,k then
add deallocate %r to P

Output: execution plan P = (v1, .., vn)

Device Clock RAM FPU?

M0 (MKR1000) 48 MHz 32 KB ×
M4 (nrf52840) 64 MHz 256 KB

√

A72 (RPi-4B+). 1.5 GHz 2 GB
√

A57 (Jetson TX2) 2 GHz 8 GB
√

Table 2: We evaluate a wide variety of battery-powered edge
devices. All devices have at least 32GB of flash memory
via an SD card or flash to enable paging of activations or
tensors. FPU is floating-point unit.

are paged in just-in-time, in parallel, (Rt′,j) informs the
PyTorch DAG scheduler to deallocate the tensors that we
have chosen to rematerialize (Saux

t,k) at a future timestep (t′).

6. Evaluation
In our evaluation of POET we seek to answer three key
questions. First, how much energy consumption does POET
reduce across different models and platforms? Second, how
does POET benefit from the hybrid paging and rematerial-
ization strategy? Lastly, how does POET adapt to different
runtime budgets?

6.1. Experimental setup

We evaluate POET on four distinct hardware devices listed
in Table 2: the ARM Cortex M0 class MKR1000, ARM
Cortex M4F class nrf52840, A72 class Raspberry Pi 4B+,
and Nvidia Jetson TX2. POET is fully hardware-aware
and relies on fine-grained profiling. For example, on the
Jetson-TX2 hardware we profile each operator along with
its variations in dimensionality (e.g., conv2d with vary-
ing kernel-sizes, strides, padding, etc.) These fine-grained
time, energy, and memory profiles then inform POET about
the exact specifications. These devices test a diverse set of

ResNet-18 Training
POET POFO (Beaumont et al. 2021)

Memory 285,873 kB 311,808 kB
Runtime 82.36 ms 94.79 ms

Table 3: POET’s MILP formulation lowers peak memory
consumption by 8.3% and improves throughput by 13%
compared to POFO (Beaumont et al., 2021) on Nvidia’s
Jetson TX2 edge device

memory, compute, and power configurations. As POET is
hardware and energy-aware, it takes device-specific charac-
teristics into account.

We evaluate POET on VGG16 (Simonyan & Zisserman,
2014) and ResNet-18 (He et al., 2016) trained on the CIFAR-
10 dataset as well as BERT (Devlin et al., 2018). In all of
our baselines, we limit all MILP solves to no more than
10 min on commodity CPUs. Our experiments are with
a batch-size of 1. We compare POET to work PyTorch’s
default scheduler, Chen et al. (2016), Griewank & Walther
(2000), DTR (Kirisame et al., 2021), and Checkmate (Jain
et al., 2020).

Hyperparameters: POET only decides on the optimal
scheduling of nodes in the training graph and does not
change the training routine (learning rate, optimizer, etc.).
Hence, our system is robust to hyper-parameters.

Sensitivity to Batch-size: POET is mathematically preserv-
ing and can be easily scaled to arbitrary batch sizes without
loss of generality. Of course, this is conditioned on the
underlying device’s memory capacity. It is possible that
as batch size varies, the underlying operator implementa-
tion might change. POET, with its fine-grained profiling is
robust to these changes and transparently adapts to artifacts.

6.2. How much energy consumption does POET reduce
across models and platforms?

Figure 3 shows the energy consumed for a single epoch
of training. Each column represents a unique hardware
platform as defined in Table 2. We notice that across all
platforms, POET generates the most energy-optimal (Y-axis)
schedule all the while reducing the peak memory consumed
(X-axis) and adhering to the timing budget.

For the BERT model on the Cortex M4 and the TX2 plat-
form, we noticed an interesting behavior: our ILP solves
time-out. This is because we limit all solves to no more than
10 min. With a longer ILP solve budget (<30 min), POET
can predictably find more optimal solutions. Further, notice
that a) POET has an additional timing budget which none of
the other baselines do, and b) all of our baselines are already
mature. Checkmate (Jain et al., 2020) is provably optimal

POET: Training Neural Networks on Tiny Devices with Integrated Rematerialization and Paging

0.2 0.4 0.6 0.8 1.0
Activation RAM savings

0.950

0.975

1.000

1.025

1.050

1.075

1.100

R
el

at
iv

e
E

ne
rg

y
U

sa
ge

 F
W

D
+B

W
D

ResNet18 on Cortex m0

0.2 0.4 0.6 0.8 1.0
Activation RAM savings

1.0

1.2

1.4

1.6

R
el

at
iv

e
E

ne
rg

y
U

sa
ge

 F
W

D
+B

W
D

ResNet18 on Cortex m4

0.2 0.4 0.6 0.8 1.0
Activation RAM savings

1.0

1.2

1.4

1.6

1.8

2.0

R
el

at
iv

e
E

ne
rg

y
U

sa
ge

 F
W

D
+B

W
D

ResNet18 on TX2

0.2 0.4 0.6 0.8 1.0
Activation RAM savings

0.950

0.975

1.000

1.025

1.050

1.075

1.100

R
el

at
iv

e
E

ne
rg

y
U

sa
ge

 F
W

D
+B

W
D

ResNet18 on Cortex A72

0.4 0.6 0.8 1.0
Activation RAM savings

0.950

0.975

1.000

1.025

1.050

1.075

1.100

R
el

at
iv

e
E

ne
rg

y
U

sa
ge

 F
W

D
+B

W
D

VGG on Cortex m0

0.4 0.6 0.8 1.0
Activation RAM savings

0.95

1.00

1.05

1.10

1.15
R

el
at

iv
e

E
ne

rg
y

U
sa

ge
 F

W
D

+B
W

D
VGG on Cortex m4

0.4 0.6 0.8 1.0
Activation RAM savings

0.95

1.00

1.05

1.10

R
el

at
iv

e
E

ne
rg

y
U

sa
ge

 F
W

D
+B

W
D

VGG on TX2

0.4 0.6 0.8 1.0
Activation RAM savings

0.950

0.975

1.000

1.025

1.050

1.075

1.100

R
el

at
iv

e
E

ne
rg

y
U

sa
ge

 F
W

D
+B

W
D

VGG on Cortex A72

0.6 0.8 1.0
Activation RAM savings

0.950

0.975

1.000

1.025

1.050

1.075

1.100

R
el

at
iv

e
E

ne
rg

y
U

sa
ge

 F
W

D
+B

W
D

BERT (Transformer) on Cortex m0

0.6 0.8 1.0
Activation RAM savings

1.0

1.1

1.2

1.3

1.4

R
el

at
iv

e
E

ne
rg

y
U

sa
ge

 F
W

D
+B

W
D

BERT (Transformer) on Cortex m4

0.6 0.8 1.0
Activation RAM savings

0.95

1.00

1.05

1.10

1.15

1.20

1.25
R

el
at

iv
e

E
ne

rg
y

U
sa

ge
 F

W
D

+B
W

D

BERT (Transformer) on TX2

0.6 0.8 1.0
Activation RAM savings

0.950

0.975

1.000

1.025

1.050

1.075

1.100

R
el

at
iv

e
E

ne
rg

y
U

sa
ge

 F
W

D
+B

W
D

BERT (Transformer) on Cortex A72

PyTorch baseline
DTR (Kirasame et al. 2021)

revolve (Griewank and Walther 2000)
Checkmate (Jain et al. 2020)

Chen et al. 2016
POETRy (ours)

PyTorch baseline
DTR (Kirasame et al. 2021)

revolve (Griewank and Walther 2000)
Checkmate (Jain et al. 2020)

Chen et al. 2016
POETRy (ours)

PyTorch baseline
POETRy (ours)

DTR (Kirasame et al. 2021)
revolve (Griewank and Walther 2000)

Checkmate (Jain et al. 2020)
Chen et al. 2016

Figure 3: POET consumes less energy across diverse models and devices: We profile the energy usage of each method
relative to a full-memory configuration as the device’s available memory capacity shrinks. For ResNet-18 (top row), VGG
(middle row) and BERT (bottom), POET outperforms competitive methods in most configurations. When training ResNet-18
on the TX2, POET consumes up to 35% less energy than DTR while discovering solutions at tighter memory budgets.

for rematerialization, while DTR (Kirisame et al., 2021)
closely approximated Checkmate. Furthermore, POET tried
to solve a much “harder” problem as its search space with
rematerialization and paging together is larger.

6.3. How does POET benefit from integrated
rematerialization and paging?

We compare our joint optimal paging and rematerializa-
tion schedule with Capuchin which optimizes each with a
heuristic. Capuchin will effectively page until no longer
feasible and only then will it begin to rematerialize. Instead,
POET begins rematerializing cheap operations like ReLU
much earlier which yields considerable energy savings (up
to 141% lower overhead).

In Figure 5, we benchmark POET and Capuchin when train-
ing ResNet-18 on the A72. As the RAM budget decreases
(to the right), Capuchin consumes 73% to 141% more en-
ergy than a baseline with full memory. In comparison, POET

incurs less than a 1% energy overhead. This trend holds for
all architectures and platforms we tested.

In Table 3 we benchmark POET and POFO when training
ResNet-18 on Nvidia’s Jetson TX2. We find that POET finds
an integrated rematerialization and paging schedule that
lowers peak memory consumption by 8.3% and improves
throughput by 13%. This showcases the benefit of POET’s
Mixed-integer linear programming (MILP) solver, which
is able to optimize over a much larger search-space. While
POFO only supports linear models, POET generalizes to
non-linear models as demonstrated in Fig 3.

6.4. How does POET adapt to varying runtimes?

Figure 4 highlights the benefit of the integrated strategies
that POET adopts across different timing constraints. The
run-time budget refers to the total time available for one
epoch of training naı̈vely (without paging or rematerializa-
tion). For each of the runtimes, we plot the total energy

POET: Training Neural Networks on Tiny Devices with Integrated Rematerialization and Paging

1 2 3
Peak activation RAM (MB)

0.365

0.370

0.375

To
ta

l E
ne

rg
y

(J
ou

le
s)

Runtime budget: 0.5ms

1 2 3
Peak activation RAM (MB)

Runtime budget: 0.6ms

1 2 3
Peak activation RAM (MB)

Runtime budget: 0.8ms

1 2 3
Peak activation RAM (MB)

Runtime budget: 0.9ms

POET (paging only) POET (remat only) POET (paging + remat)

Figure 4: Both rematerialization and paging are necessary for low-energy schedules with limited memory: We
compare ablations of POET on VGG for CIFAR-10 and find that both rematerialization and paging are required to achieve
low-energy solutions at limited memory budgets across all runtime constraint values.

0 20 40 60 80
Activation RAM savings

0.001%

0.1%

10%

1000%

Ad
di

tio
na

l E
ne

rg
y

Us
ag

e Capuchin
POET

Figure 5: Optimal integrated rematerialization and pag-
ing outperforms Capuchin (log scale): POET incurs 73%
to 140% less energy overhead relative to a full-memory base-
line by rematerializing earlier alongside paging. Capuchin
strongly prefers paging before falling-back on rematerializ-
ing activations which makes it sub-optimal.

consumed if we were to restrict to either of a) paging or b)
rematerialization only, and the c) integrated solution.

We find that rematerialization is energy-optimal compared
to paging at higher (looser) timing budgets. This is reflected
in the POET (paging+remat) green curve, closely tracking
the POET (remat only) yellow curve at runtime budgets of
0.6 - 0.9 ms. However, at lower runtime budget (0.5 ms),
paging is preferable as rematerialization strategies become
infeasible. This is because, rematerialization is a compute
intensive serial operation, however, our Algorithm 2 benefits
from the ability to hide paging latencies by pipelining (see
Section 6.2) to realize the tighter deadline bounds. POET’s
optimal, integrated solution consumes up to 40% lower en-
ergy compared to paging or rematerialization only solutions.

7. Conclusion
Enabling large models to be trained on edge devices is
important due to privacy constraints as well as offline opera-
tion. Edge devices deployed in the real-world are powered
by tiny microcontrollers that are low-powered, and have
limited memory (e.g. 32 KB).The low-power and limited
memory, coupled with tight timing constraints imposed by
real-time systems makes training on the edge challenging.

Our novel mixed-integer linear programming based Power
Optimal Edge Training (POET) algorithm enables training
on tiny chips with memory as low as 32 KB. Given a mem-
ory budget and a timing constraint, POET finds the most
energy optimal schedule to train the model by choosing to
either rematerialize or page the tensors to secondary storage.

Across a diverse set of models and devices, we discover
low-power training schedules at less memory than baselines.
POET enables new applications for privacy-preserving per-
sonalization of large models like BERT on tiny devices at
the edge for the first time. Future directions include integrat-
ing activation compression as well as expanding POET’s
search space to paging parameters.

Acknowledgement
We thank Prateek Jain, Charles Packer, Daniel Rothchild,
Alex Smola, Pete Warden, and the anonymous reviewers
whose insightful comments, and feedback helped improve
the paper. This research is supported by a NSF CISE Ex-
peditions Award CCF-1730628, and gifts from Amazon
Web Services, Ant Group, Ericsson, Facebook, Futurewei,
Google, Intel, Microsoft, Scotiabank, and VMware. This
work was supported in part by the CONIX Research Cen-
ter, one of six centers in JUMP, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA.

POET: Training Neural Networks on Tiny Devices with Integrated Rematerialization and Paging

References
Beaumont, O., Eyraud-Dubois, L., and Shilova, A. Efficient

combination of rematerialization and offloading for
training dnns. In Ranzato, M., Beygelzimer, A.,
Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
volume 34, pp. 23844–23857. Curran Associates,
Inc., 2021. URL https://proceedings.
neurips.cc/paper/2021/file/
c8461bf13fca8a2b9912ab2eb1668e4b-Paper.
pdf.

Blalock, D., Gonzalez Ortiz, J. J., Frankle, J., and Guttag, J.
What is the state of neural network pruning? In Dhillon,
I., Papailiopoulos, D., and Sze, V. (eds.), Proceedings
of Machine Learning and Systems, volume 2, pp.
129–146, 2020. URL https://proceedings.
mlsys.org/paper/2020/file/
d2ddea18f00665ce8623e36bd4e3c7c5-Paper.
pdf.

Cai, H., Zhu, L., and Han, S. ProxylessNAS: Di-
rect neural architecture search on target task and hard-
ware. In International Conference on Learning Repre-
sentations, 2019. URL https://arxiv.org/pdf/
1812.00332.pdf.

Chen, J., Zheng, L., Yao, Z., Wang, D., Stoica, I., Mahoney,
M. W., and Gonzalez, J. E. Actnn: Reducing training
memory footprint via 2-bit activation compressed training.
In International Conference on Machine Learning, 2021.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Train-
ing deep nets with sublinear memory cost. CoRR,
abs/1604.06174, 2016. URL http://arxiv.org/
abs/1604.06174.

Dennis, D. K., Gopinath, S., Gupta, C., Kumar, A., Kusu-
pati, A., Patil, S. G., and Simhadri, H. V. EdgeML:
Machine Learning for resource-constrained edge devices.
2019. URL https://github.com/Microsoft/
EdgeML. http://github.com/Microsoft/
EdgeML.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. BERT:
pre-training of deep bidirectional transformers for lan-
guage understanding. CoRR, abs/1810.04805, 2018. URL
http://arxiv.org/abs/1810.04805.

Dong, Z., Yao, Z., Gholami, A., Mahoney, M. W., and
Keutzer, K. Hawq: Hessian aware quantization of neural
networks with mixed-precision. In The IEEE Interna-
tional Conference on Computer Vision (ICCV), October
2019.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. In 7th Inter-
national Conference on Learning Representations, ICLR

2019, New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net, 2019. URL https://openreview.net/
forum?id=rJl-b3RcF7.

Griewank, A. and Walther, A. Algorithm 799: Revolve:
An implementation of checkpointing for the reverse or
adjoint mode of computational differentiation. ACM
Trans. Math. Softw., 26(1):19–45, March 2000. ISSN
0098-3500. doi: 10.1145/347837.347846. URL https:
//doi.org/10.1145/347837.347846.

Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays,
F., Augenstein, S., Eichner, H., Kiddon, C., and Ramage,
D. Federated learning for mobile keyboard prediction.
arXiv preprint arXiv:1811.03604, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Huang, C.-C., Jin, G., and Li, J. SwapAdvisor: Push-
ing Deep Learning Beyond the GPU Memory Limit
via Smart Swapping, pp. 1341–1355. Association for
Computing Machinery, New York, NY, USA, 2020.
ISBN 9781450371025. URL https://doi.org/10.
1145/3373376.3378530.

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K.,
Dally, W. J., and Keutzer, K. Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and ¡0.5mb model
size, 2016.

Jain, P., Jain, A., Nrusimha, A., Gholami, A., Abbeel, P.,
Keutzer, K., Stoica, I., and Gonzalez, J. E. Checkmate:
Breaking the memory wall with optimal tensor remateri-
alization. arXiv preprint arXiv:1910.02653, 2020.

Jang, J. and Adib, F. Underwater backscatter network-
ing. In Proceedings of the ACM Special Interest Group
on Data Communication, SIGCOMM ’19, pp. 187–199,
New York, NY, USA, 2019. Association for Comput-
ing Machinery. ISBN 9781450359566. doi: 10.1145/
3341302.3342091. URL https://doi.org/10.
1145/3341302.3342091.

Kapoor, G. e. a. Coreml, apple. 2019. URL https:
//developer.apple.com/documentation/
coreml.

Kirisame, M., Lyubomirsky, S., Haan, A., Brennan, J.,
He, M., Roesch, J., Chen, T., and Tatlock, Z. Dy-
namic tensor rematerialization. In International Confer-
ence on Learning Representations, 2021. URL https:
//openreview.net/forum?id=Vfs_2RnOD0H.

https://proceedings.neurips.cc/paper/2021/file/c8461bf13fca8a2b9912ab2eb1668e4b-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/c8461bf13fca8a2b9912ab2eb1668e4b-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/c8461bf13fca8a2b9912ab2eb1668e4b-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/c8461bf13fca8a2b9912ab2eb1668e4b-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf
https://arxiv.org/pdf/1812.00332.pdf
https://arxiv.org/pdf/1812.00332.pdf
http://arxiv.org/abs/1604.06174
http://arxiv.org/abs/1604.06174
https://github.com/Microsoft/EdgeML
https://github.com/Microsoft/EdgeML
http://github.com/Microsoft/EdgeML
http://github.com/Microsoft/EdgeML
http://arxiv.org/abs/1810.04805
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://doi.org/10.1145/347837.347846
https://doi.org/10.1145/347837.347846
https://doi.org/10.1145/3373376.3378530
https://doi.org/10.1145/3373376.3378530
https://doi.org/10.1145/3341302.3342091
https://doi.org/10.1145/3341302.3342091
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://openreview.net/forum?id=Vfs_2RnOD0H
https://openreview.net/forum?id=Vfs_2RnOD0H

POET: Training Neural Networks on Tiny Devices with Integrated Rematerialization and Paging

Lane, N. D., Bhattacharya, S., Georgiev, P., Forlivesi, C.,
Jiao, L., Qendro, L., and Kawsar, F. DeepX: A soft-
ware accelerator for low-power deep learning inference
on mobile devices. In Proceedings of the 15th Inter-
national Conference on Information Processing in Sen-
sor Networks, IPSN ’16. IEEE Press, 2016. ISBN
9781509008025.

Lee, J., Chirkov, N., Ignasheva, E., Pisarchyk, Y., Shieh,
M., Riccardi, F., Sarokin, R., Kulik, A., and Grundmann,
M. On-device neural net inference with mobile GPUs.
CoRR, abs/1907.01989, 2019. URL http://arxiv.
org/abs/1907.01989.

Levis, P., Patel, N., Culler, D., and Shenker, S. Trickle: A
self-regulating algorithm for code propagation and main-
tenance in wireless sensor networks. In Proceedings of
the 1st Conference on Symposium on Networked Systems
Design and Implementation - Volume 1, NSDI’04, pp. 2,
USA, 2004. USENIX Association.

Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. Feder-
ated learning: Challenges, methods, and future directions.
IEEE Signal Processing Magazine, 37(3):50–60, 2020.
doi: 10.1109/MSP.2020.2975749.

Park, E., Ahn, J., and Yoo, S. Weighted-entropy-based
quantization for deep neural networks. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 7197–7205, July 2017. doi: 10.1109/CVPR.
2017.761.

Patil, S. G., Dennis, D. K., Pabbaraju, C., Shaheer, N.,
Simhadri, H. V., Seshadri, V., Varma, M., and Jain, P.
Gesturepod: Enabling on-device gesture-based interac-
tion for white cane users. In Proceedings of the 32Nd
Annual ACM Symposium on User Interface Software
and Technology, UIST ’19, pp. 403–415, New York,
NY, USA, 2019. ACM. ISBN 978-1-4503-6816-2. doi:
10.1145/3332165.3347881. URL http://doi.acm.
org/10.1145/3332165.3347881.

Patterson, D., Gonzalez, J., Hölzle, U., Le, Q., Liang,
C., Munguia, L.-M., Rothchild, D., So, D., Texier, M.,
and Dean, J. The carbon footprint of machine learn-
ing training will plateau, then shrink. arXiv preprint
arXiv:2204.05149, 2022.

Paulik, M., Seigel, M., Mason, H., Telaar, D., Kluivers, J.,
van Dalen, R. C., Lau, C. W., Carlson, L., Granqvist,
F., Vandevelde, C., Agarwal, S., Freudiger, J., Byde, A.,
Bhowmick, A., Kapoor, G., Beaumont, S., Cahill, Á.,
Hughes, D., Javidbakht, O., Dong, F., Rishi, R., and

Hung, S. Federated evaluation and tuning for on-device
personalization: System design & applications. CoRR,
abs/2102.08503, 2021. URL https://arxiv.org/
abs/2102.08503.

Peng, Q., Shi, X., Dai, H., Jin, H., Ma, W., Xiong, Q.,
Yang, F., and Qian, X. Capuchin: Tensor-based gpu
memory management for deep learning. In ASPLOS,
March 2020. URL https://www.microsoft.
com/en-us/research/publication/
capuchin-tensor-based-gpu-memory-\
management-for-deep-learning/.

Ren, J., Rajbhandari, S., Aminabadi, R. Y., Ruwase,
O., Yang, S., Zhang, M., Li, D., and He, Y.
ZeRO-Offload: Democratizing Billion-Scale model
training. In 2021 USENIX Annual Technical Con-
ference (USENIX ATC 21), pp. 551–564. USENIX
Association, July 2021. ISBN 978-1-939133-23-6.
URL https://www.usenix.org/conference/
atc21/presentation/ren-jie.

Shah, A., Wu, C.-Y., Mohan, J., Chidambaram, V., and Krae-
henbuehl, P. Memory optimization for deep networks. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=bnY0jm4l59.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Tan, M. and Le, Q. V. Efficientnetv2: Smaller models
and faster training. CoRR, abs/2104.00298, 2021. URL
https://arxiv.org/abs/2104.00298.

Vasisht, D., Kapetanovic, Z., Won, J., Jin, X., Chandra, R.,
Sinha, S., Kapoor, A., Sudarshan, M., and Stratman, S.
Farmbeats: An iot platform for data-driven agriculture.
In 14th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 17), pp. 515–529,
2017.

Wang, Y., Jiang, Z., Chen, X., Xu, P., Zhao, Y., Lin, Y., and
Wang, Z. E2-train: Training state-of-the-art cnns with
over 80% energy savings. In Wallach, H., Larochelle, H.,
Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett,
R. (eds.), Advances in Neural Information Processing
Systems 32, pp. 5138–5150. Curran Associates, Inc.,
2019. URL http://papers.nips.cc/paper/
8757-e2-train-training-state-of-the-\
art-cnns-with-over-80-energy-savings.
pdf.

http://arxiv.org/abs/1907.01989
http://arxiv.org/abs/1907.01989
http://doi.acm.org/10.1145/3332165.3347881
http://doi.acm.org/10.1145/3332165.3347881
https://arxiv.org/abs/2102.08503
https://arxiv.org/abs/2102.08503
https://www.microsoft.com/en-us/research/publication/capuchin-tensor-based-gpu-memory-\ management-for-deep-learning/
https://www.microsoft.com/en-us/research/publication/capuchin-tensor-based-gpu-memory-\ management-for-deep-learning/
https://www.microsoft.com/en-us/research/publication/capuchin-tensor-based-gpu-memory-\ management-for-deep-learning/
https://www.microsoft.com/en-us/research/publication/capuchin-tensor-based-gpu-memory-\ management-for-deep-learning/
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://openreview.net/forum?id=bnY0jm4l59
https://openreview.net/forum?id=bnY0jm4l59
https://arxiv.org/abs/2104.00298
http://papers.nips.cc/paper/8757-e2-train-training-state-of-the-\ art-cnns-with-over-80-energy-savings.pdf
http://papers.nips.cc/paper/8757-e2-train-training-state-of-the-\ art-cnns-with-over-80-energy-savings.pdf
http://papers.nips.cc/paper/8757-e2-train-training-state-of-the-\ art-cnns-with-over-80-energy-savings.pdf
http://papers.nips.cc/paper/8757-e2-train-training-state-of-the-\ art-cnns-with-over-80-energy-savings.pdf

	Introduction
	Related Work
	Background
	Integrated paging and rematerialization
	POET: Private Optimal Energy Training
	Optimal Rematerialization
	Optimal integrated paging and rematerialization
	Expressing an energy consumption objective
	Ensuring minimum training throughput
	Paging latency hiding via transfer planner

	Evaluation
	Experimental setup
	How much energy consumption does POET reduce across models and platforms?
	How does POET benefit from integrated rematerialization and paging?
	How does POET adapt to varying runtimes?

	Conclusion

