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While modern electronics prototyping systems – both breadboard-based and toolkits – have enabled even novices to be productive and 

able to build functional devices quickly, they also impose a low ceiling on capability by being limited to the ecosystem of breadboard- or 

toolkit-compatible parts. However, inspired by the success of software engineering and its library-driven development flow in being 

novice-friendly and scaling up to complex applications, we instead examine a hardware description language (HDL) approach to 

electronics design that can enable user-created libraries and user-defined design automation to make electronics design easier and more 

efficient while offering the flexibility and capability of custom circuit boards. In this position paper, we recap our prior work on this HDL 

and discuss extensions to better support prototyping as well as explore the broader trade-off space of electronics design tools. 
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1 INTRODUCTION 

While modern electronics prototyping systems – commonly a combination of solderless breadboards, microcontroller 

development boards like Arduino, breakout boards like screens and motor drivers, and plug-and-play ecosystems like 

Qwiic and Jacdac [1] – have been transformative by enabling novices to build custom devices with a very low threshold 

to entry, they also impose a low ceiling on capability. Breadboards are large and fragile, which makes them unsuitable for 

where formfactor is a concern. Furthermore, breakout boards are only available for a tiny subset of all available electronics 

components. And as each device must be painstakingly hand-built, this becomes infeasible in even low volume production. 

Typically, the next step beyond breadboarding is building a custom printed circuit board (PCB), though this can be 

daunting. While PCB fabrication today is affordable enough to be used for prototyping by even hobbyists, and open-source 

yet user-friendly design tools exist, a lot of knowledge is still required to produce a working board. No longer is the low-

level electronics expertise encapsulated into an off-the-shelf breakout board, but the user must instead read datasheets and 

find and transcribe reference schematics. Plenty of gotchas also lie in wait for those not familiar with these lengthy 

datasheets and detailed tables, such as voltage limits and IO thresholds. And overall, PCB tools don’t help with the actual 

circuit design – they’re more computer-aided drafting tools for drawing schematics. 

In contrast, the software development ecosystem offers a brighter vision for how design could not only be easier for 

novices, but also be more efficient for experts. While user-friendly programming tools and resources like StackOverflow 

help, much of the power comes from libraries which encapsulate significant complexity and functionality into easy-to-use 

packages. Furthermore, because of this separation of interface and implementation, even novice programmers can make 

use of these without understanding the (often significant) details of what they do under the hood. 

We aim to bring that kind of power to hardware design by building design tools around these software engineering 

ideas. In the rest of this position paper, we recap our thread of work on a hardware description language (HDL) approach 

for PCB design to blend the best of software and hardware engineering, examine where it fits into the larger picture of 

device prototyping and design, and speculate on how this could be expanded in the future to not only further lower the 

threshold of entry but also raise the ceiling on capability. 

2 RELATED WORK 

Much of the academic work on board-level electronics focuses on supporting novices through tools for breadboards. These 

include design tools [6, 14] which blend aspects of schematic and breadboard design, built-in instrumentation [2] to aid 

debugging, and circuit synthesis tools [5] that produce breadboarding diagrams. However, as discussed earlier, breadboards 

impose significant limits on capability. 

Academic work is more limited beyond breadboarding, though there is some needs-finding of bridging prototype to 

production [11] and a thread of work on synthesizing boards from high-level specifications [10, 3]. Some recent 

commercial work [13, 4] also examines high-level PCB design with a library-based modular block-based-design approach, 

though lack of focus on user library creation can also be limiting. 

3 OUR APPROACH: HARDWARE DESCRIPTION LANGUAGE 

In contrast, our aspiration is to pick three of three: low threshold (usable by novices, suitable for prototyping), high ceiling 

(scales to complex, production designs), and wide walls (useful for a wide range of applications) [12]. Since modern 

programming languages balance all of the above, we built a hardware description language for PCBs1 in prior work [7, 8]. 

 
1 Open-source at https://github.com/BerkeleyHCI/PolymorphicBlocks 

https://github.com/BerkeleyHCI/PolymorphicBlocks
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Many software engineering concepts actually translate well to hardware design: for example, schematics are commonly 

designed with reusable subcircuits, which maps well to a library-based flow. As these subcircuits often need to be 

customized for each application, such as by modifying component values (e.g., different resistance for different input 

voltages), choosing different parts (e.g., 0603 vs. through-hole resistor), or even changing the structure (e.g., a 2x2-LED 

matrix instead of a 4x4 matrix), the conceptual reusability of the abstract circuit often does not translate into actual reuse 

of schematic files, since schematics in mainstream tools are static. By instead defining the circuit as a block of code via a 

hardware description language, the block of code can automatically generate the internal circuit details in a way that is 

responsive to parameters (e.g., LED matrix dimensions) or environment (e.g., calculate resistance based on input voltage). 

Furthermore, the idea of “jellybean parts” (a generic component for which compatible parts are widely available, e.g., 

1kOhm resistor) can be formalized with a type system where abstract supertypes represent the high-level generic type 

while concrete subtypes are actual purchasable parts. Using abstract parts in libraries further enhances reusability and 

generality, preserving the option of concrete compatible parts. The type hierarchy can also be helpful to novices, who may 

be more comfortable with these high-level specifications while the system then resolves ambiguity through smart defaults. 

The HDL can then be compiled down to a netlist, which defines the components and connectivity and can be imported 

into a mainstream PCB layout tool like KiCad. Over the years, we’ve built increasingly complex boards with higher 

automation, as shown in Figure 1. 

                         

Figure 1: Example boards we have built in our HDL system. On the left is an IoT charlieplexed LED matrix, which enables the low-pin-

count ESP32C3 microcontroller to drive a 5x6 grid of LEDs. The charlieplexing LED matrix library block encapsulates the details of 

the nontrivial circuit topology generator and packages it to be easily used by non-experts with a width and height parameter. Internal, 

lower-level blocks like resistors and capacitors are similarly generators that can automatically select matching parts from a table. On the 

right are two other boards we’ve built: a Simon memory game demonstrating a 5-to-12-volt boost converter generator to power the large 

dome button LEDs, and a compact multimeter demonstrating custom analog circuits. 

Supporting tooling as an IDE [9] with block diagram visualizer and supporting schematic-like edit actions (e.g., insert 

block, connect ports) that generate corresponding HDL further helps working with this representation. 

4 FUTURE WORK 

While this HDL-based PCB design flow produces boards with higher-level design inputs and greater automation, future 

work can extend this to better support novice users and prototyping. 

4.1 Bridging Prototyping and PCBs 

Fundamentally, what we’ve built is a circuit design tool that supports user-defined automation and user-defined libraries. 

That it generates into PCBs is somewhat of an implementation detail: there’s no reason an output couldn’t be a 
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breadboarding diagram and a list of breakout boards to be purchased. After physical prototyping and testing, the same 

high-level design might be automatically specialized to a PCB for a production run or higher-fidelity prototype. 

Extending this, such a system might also generate supporting artifacts like consistent hardware abstraction layer code 

for both prototyping and production platforms, further easing the transition by enabling the use of similar firmware. 

4.2 Prototype-focused Tooling 

While an HDL is powerful by enabling user-defined automation, code can be less intuitive and discoverable compared to 

modern graphical tools or prototyping with a collection of physical parts. However, this system can still usefully serve as 

infrastructure for more novice- and prototype-focused tooling, enabling experts to define libraries while more casual users 

can use those from a graphical frontend like existing modular design tools. 

Furthermore, even breadboarding requires some of the same skills as a PCB designer would, such as understanding the 

functionality of breakout boards. The concept of a parts type system defines a design space, a set of all satisfying designs, 

through choices of subtypes to implement each abstract type. This idea could perhaps also extend to non-PCB prototyping 

tools, which allows users to define designs at a higher, ambiguous, level, while the system helps users make those more 

concrete and navigate trade-offs. 

4.3 Overall Trade-off Space 

In contrast to much existing work that takes a bottom-up approach by focusing on novices, we take a center-out approach 

by focusing on intermediate designs and incrementally expanding support for both novices and more complex designs. We 

believe that custom PCBs offer the widest capability while having a reasonable (though still significant) learning curve. In 

Figure 2, we explore the rough conceptual trade-off spaces of various electronics design tools, looking at metrics like 

learning curve, capability, and latency – and we hope that our approach is a ‘happy medium’ instead of a ‘no man’s land’. 

But beyond these, what other trade-offs and objectives are important? Is there a one-size-fits-all solution, or does 

electronics design necessarily need to be a landscape of fragmented (but interoperating) tools? Or perhaps better 

interoperability is how we can bridge the gap between the different levels of prototyping and even production? 

 

Figure 2: Rough concept of the trade-off space between toolkit-based design, breadboarding, HDL PCB design, and conventional PCB 

design. Our hope is that this design approach enables most of the capability of PCBs while being significantly easier to design with. 
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