
Computational Support for Multiplicity in Hierarchical
Electronics Design

Richard Lin
richardlin@ucla.edu

University of California, Los Angeles
Los Angeles, USA

Rohit Ramesh
rkr@berkeley.edu

University of California, Berkeley
Berkeley, California, USA

Prabal Dutta
prabal@berkeley.edu

University of California, Berkeley
Berkeley, California, USA

Björn Hartmann
bjoern@berkeley.edu

University of California, Berkeley
Berkeley, California, USA

Ankur Mehta
mehtank@ucla.edu

University of California, Los Angeles
Los Angeles, California, USA

Microcontroller
mcu led(rows=6, cols=5)

CharlieplexedLedMatrix

...

gnd

...

...

QuadResistorarray ports,
array connections,

and width propagation

gpios needs 7 IOs

request 7 IOs
ios

packed into multipack device
(a)(a)

(b)(b)

Figure 1: An example LED matrix circuit board that demonstrates our extensions to the standard blocks, ports, and connections
hierarchical design model. The diagram on the left summarizes the user-facing design for this board – in particular, including the
highlighted novel elements of (a) dynamically-sized port arrays (stacked ports) for the IOs on the LED matrix generator and the array
connections (thick lines) to the microcontroller which also propagate width data (blue lines), and (b) multi-packing (orange lines) of the
resistors in the LED matrix into a physical quad-pack resistor device.

ABSTRACT
While hierarchical design promises design process improvements
through structures that better enable computational design, the
basic model of blocks, ports, and connections lacks support for
multiplicity – dealing with repeated instances of objects. In this
work, we explore two extensions of that basic model to support
two types of multiplicity, specifically in the context of board-level
electronics where this is a common pattern. First, to support blocks
that can be arbitrarily scalable across number of devices – e.g., an
n-element LED array generator – we extend the existing fixed port
interfaces for blocks with port arrays that can have dynamic width
with automatic propagation through connections. Second, to sup-
port mapping abstract blocks in a design onto physical multipack
devices – e.g., combining resistors across the design into a single
quad-pack resistor device to optimize for fabrication – we intro-
duce cross-hierarchy packing including support for shared pins.

This work is licensed under a Creative Commons Attribution International
4.0 License.

SCF ’22, October 26–28, 2022, Seattle, WA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9872-5/22/10.
https://doi.org/10.1145/3559400.3561997

For both of these constructs, we describe the user-facing abstrac-
tions, internal representations, and compiler implementation, then
demonstrate their end-to-end use through three example designs
that we have fabricated and tested.

CCS CONCEPTS
•Hardware→ PCB design and layout; Hardware description lan-
guages and compilation.

KEYWORDS
electronics design, hierarchical design, port arrays, multipack de-
vices

ACM Reference Format:
Richard Lin, Rohit Ramesh, Prabal Dutta, BjörnHartmann, andAnkurMehta.
2022. Computational Support for Multiplicity in Hierarchical Electronics
Design. In Symposium on Computational Fabrication (SCF ’22), October 26–
28, 2022, Seattle, WA, USA. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3559400.3561997

1 INTRODUCTION
Hierarchical design is a common technique in many fields of engi-
neering that helps manage complexity byworkingwith higher-level
and more intuitive building blocks. For example, in robotics this
may be using a leg sub-assembly instead of discrete motors and

https://orcid.org/0000-0003-3960-6248
https://orcid.org/0000-0001-5708-9964
https://orcid.org/0000-0003-4106-9138
https://orcid.org/0000-0002-0693-0829
https://orcid.org/0000-0002-1199-5424
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3559400.3561997
https://doi.org/10.1145/3559400.3561997
https://doi.org/10.1145/3559400.3561997

SCF ’22, October 26–28, 2022, Seattle, WA, USA Lin, et al.

struts, or in electronics this may be using a voltage converter sub-
circuit instead of a chip with inductors and capacitors around it.
Furthermore, designers may draw upon libraries of these blocks,
building upon the design work and expertise of others.

Yet, hierarchical design also describes a wide array of prac-
tices - from the process of sketching system-level diagrams to
be manually translated into concrete designs, to tools that can
work with these high-level descriptions and automatically gen-
erate fabrication-ready designs. This work focuses on extending
hierarchical design tools in the context of board-level electronic
circuit design. Our prior work [Lin et al. 2019] found that current
mainstream design practices revolves around schematic capture,
where users place symbols representing components onto a virtual
schematic, then connect their pins together by drawing wires.

While mainstream schematic tools support notions of hierarchy
by allowing components to represent a subcircuit, these primar-
ily provide organization and readability benefits and are too basic
for meaningful design automation. In particular, these subcircuits
must be a single fixed instance, with components fully specified
and allowing no parameterization or variability. While this encodes
designs to the lowest level of detail and is necessary to produce a
fabrication-ready schematic, this also limits the generalizability of
any subcircuit. These component values and even circuit topologies
are often tailored to one application and may be suboptimal or even
incorrect in other contexts. For example, a voltage converter subcir-
cuit encapsulates the controller chip and supporting resistors and
capacitors into a single neat schematic block, but the resistor values
also set the output voltage which limits the block to applications
where that voltage is acceptable.

Recent work on more advanced tools extend this basic hierarchi-
cal structure with generators [Izraelevitz et al. 2017; Lin et al. 2020;
SKiDL 2022], which define a subcircuit’s implementation with code.
Instead of being limited to a particular design instance with fully
specified components, blocks can now encode a family of designs
with the code resolving the details based on the desired application.
This approach can cover a wide application space with a relatively
small number of powerful generators. Continuing the voltage con-
verter example, a generator could take in a target output voltage
parameter and automatically choose resistor values to satisfy that
specification.

However,multiplicity –whichwe define as dealing with repeated
instances of objects in general – is a common pattern in electronics
design where the above basic hierarchical structure falls short. One
fairly direct form of multiplicity would be defining arrays of devices
in a block – for example, an n-element LED array. Another form of
multiplicity is a sort of inverse problem, packing and optimizing
blocks in a hierarchical design into multipack devices that combine
several devices into one physical component – for example, combin-
ing discrete resistors into a single physical quad-pack resistor array
that offers size and cost advantages. We focus on the two above
and common forms of multiplicity, though there are undoubtedly
other forms that are out of scope of this work.

While all of the above are possible in any hierarchical design
structure by essentially reducing down to schematics, doing so
in a way that preserves the benefits of hierarchical design such
as correctness-by-construction and reusability of blocks requires
extensions to the fundamental hierarchical design model. For the

array case, we would like to be able to define a single, reusable,
width-parameterized block, but this requires the ports to scale with
the device array. Furthermore, we would like its use to be correct-
by-construction, automatically propagating and inferring width
data across its connections. As for multipack, we would like to
re-use general blocks that are built with individual components,
but have those packed into these optimized devices even when
the parts span across multiple blocks. We also want to preserve
the correctness benefits of re-using proven libraries, even as their
contents are modified to use these packed blocks.

In this work, we examine solutions to these issues through ex-
tensions of the basic hierarchical design model of blocks, ports, and
connections. In particular, we contribute:

• Port arrays, to enable dynamic interfaces on blocks and
specifically supporting width propagation, implicit width
specification, and elastic requested connections to maximize
automatic consistency across the design.

• Packed devices implemented with cross-hierarchy con-
structs, that enables these cross-cutting optimizations
while preserving the abstraction and re-use benefits of a
hierarchical design model.

• Implementation of the above constructs as an extension of
our prior work on Polymorphic Blocks [Lin et al. 2020],
a hierarchical board-level electronics HDL and compiler.
The entire project is open sourced at https://github.com/
BerkeleyHCI/PolymorphicBlocks.

Three example designs that we have fabricated – a charlieplexed
LEDmatrix, a time-of-flight distance sensor array, and a multimeter
– demonstrate real-world applications of these constructs, illustrate
how they mesh with generator-based flows to increase meaningful
design automation, and provide end-to-end demonstrations through
the compiler to real circuit boards.

2 RELATEDWORK
While hierarchical design applies for many fields of engineering,
this work primarily focuses on and builds atop prior work on elec-
tronics design.

2.1 Hierarchical Design
Hierarchical design tools are the subject of active research in fields
of engineering outside electronics design. For example, work in
robotics include high-level specification of kinematic chains us-
ing libraries of parts [Desai et al. 2017] and integrated electronic
and mechanical co-design of small robots [Mehta et al. 2015, 2014]
including generation of foldable structures. In mechanical design
more generally, similar ideas of hierarchical library-based design
also appear, including as part of assembly-aware structural synthe-
sis [Desai et al. 2018] and inferring parameterized templates from
example designs [Schulz et al. 2014]. However, while these systems
provide powerful examples of incorporating computational design
with hierarchical design, such as by parameterizing on the length of
drawers, they do not address multiplicity, such as by parameterizing
on the number of drawers.

https://github.com/BerkeleyHCI/PolymorphicBlocks
https://github.com/BerkeleyHCI/PolymorphicBlocks

Computational Support for Multiplicity in Hierarchical Electronics Design SCF ’22, October 26–28, 2022, Seattle, WA, USA

2.2 Electronics Design
The currentmainstream approach of interactive graphical schematic
capture dates back as far as the 1970s, as a replacement to punch
card and text-based schematic entry [Matthews 1977]. Today, PCB
suites are available as both commercial software [Altium 2018; Au-
todesk 2018; Mentor 2018] and open-source tools [KiCad 2018] and
include the aforementioned schematic capture aspect as well as
board layout. While earlier work explored bolting on hierarchical
design for schematics as a separate tool [Bezzo et al. 2015], modern
tools support basic hierarchical design by allowing components to
represent subcircuits.

Schematic entry in modern tools tends to be a low-level task [Lin
et al. 2019], often involving manual transcription from component
datasheets. While design assistance tools exist, they are typically
not integrated into the design suite and rely on the user to ensure
design consistency. Examples of these tools include web apps that
pick resistive dividers from a high-level ratio specification [Texas
Instruments 2003] and create power conversion circuits [Texas
Instruments 2022].

While modern schematic tools have features similar to array
connections and for multipack devices, those approaches do not
generalize to more automated and library-based flows. For arrays,
schematic tools provide busses as a way to bundle multiple lines.
However, the aggregation and disaggregation must be done manu-
ally, forcing the user to manually ensure design consistency. For
multipack, users can place parts of a packed device as individual
symbols. However, this may require modifications deep into the
design hierarchy, which makes this incompatible with library-based
flows where modifying the library is inadvisable.

Some novel commercial tools [Gumstix 2018; Sparkfun 2020]
remix hierarchical schematic design with module-based design,
where the tool allows users to design with high-level modules
representing subcircuits (for example, for a microcontroller) instead
of discrete components. However port arrays are not relevant as
these tools do not support user-defined modules, and multipack
devices are not relevant these tools do not allow inspecting into
libraries for devices to pack.

Some recent research work on electronics design tools has ex-
amined synthesis approaches, where users specify a partial design
and the system completes it through interface-driven synthesis. For
example, a user might ask for sensors andmotors, and the system in-
serts the missing power and compute systems by building outward
from disconnected ports. Embedded Design Generation [Ramesh
et al. 2017] translates and passes the circuit design problem to an
SMT solver, while Echidna [Merrill et al. 2019; Merrill and Swanson
2019] uses heuristic-assisted tree search. However, fixed port defi-
nitions limit support for general blocks of scalable arrayed devices,
while lack of support for multipack devices prevents the use of
those more optimized components.

2.3 Electronics Hardware Description
Languages

With hardware description languages (HDLs), users specify the
circuit design as textual code instead of as graphical schematics.
While this approach is not currently in common use for board

design, recent work has examined how HDLs could support mean-
ingful automation through programmatic circuit generation.

The simplest approach to a board HDL is schematics in tex-
tual form, such as with PHDL [Nelson et al. 2012]. More recent
work [Bachrach et al. 2016; SKiDL 2022] extends these HDLs with
generators, where users could define subcircuits with code and
allow them be reactive to high-level parameters. For example, an
LED-resistor circuit could automatically calculate the resistor value
given a voltage and target current draw.

Our prior work on Polymorphic Blocks [Lin et al. 2020, 2021],
the board-level HDL that this work builds on top of, further ex-
tends the generator concept by incorporating ideas from software
engineering. In particular, a type system of blocks enables library
builders to use generic and abstract superclass blocks, which can
be refined into concrete subclass blocks by the system designer who
would have more overall context. For example, an indicator LED
block might use an abstract resistor, which then leaves the choice of
surface-mount or through-hole resistor up to the system designer
and allows the block itself to be widely applicable and directly used
without modification.

Yet, all parts still must have fixed interfaces, so a parameterized
length version of the above LED array block would not be possible.
Furthermore, optimizations that cross hierarchical boundaries, like
multipack devices, are not possible.

2.4 Digital Logic Design
Boards aside, hardware description languages are commonly in use
for chip-level digital design, and array-typed ports are a common
feature owing to the wide signal lines within chips. However, their
semantics are more limited that what we propose and as a result
require the designer to do more work to manually manage widths
and consistency. Verilog, for example, requires explicit widths on
array typed ports. Chisel [Izraelevitz et al. 2017], a newer genera-
tor HDL, does supports limited width propagation across module
boundaries [Li et al. 2016], but generators cannot be reactive to
widths of incoming connections.

Furthermore, arrays in digital logic HDLs are typically intended
for signal buses where the lines are not interchangeable – for ex-
ample, we would not want to swap the most significant bit and
least significant bit. However, this is not necessarily the case in
board-level electronics – where, for example, one IO pin on a mi-
crocontroller might be as good as the next – and new constructs
like elastic port arrays which allow incoming connections without
requiring a position make sense.

For chip design in general, while optimizations may also cross
hierarchical boundaries, these are often handled in proprietary chip
tools.

3 BACKGROUND
As this work extends Polymorphic Blocks [Lin et al. 2020], a novel
HDL for board design, this section briefly recaps its underlying
design model to provide context for the new work. Because this
work focuses on design models rather than syntax, we present
examples through diagrams of the block structure instead of user-
facing HDL.

SCF ’22, October 26–28, 2022, Seattle, WA, USA Lin, et al.

Figure 2: The internal design model with blocks (rectangles),
ports (circles on those rectangles), and links (diamonds). Blocks are
hierarchical and can contain other blocks and ports. Links mediate
connections between ports. Parameters and expressions (in blue)
can exist on all these elements and form the basis of the electronics
model and design automation.

3.1 Hierarchical Block Model
Overall, users’ textual HDL elaborates down to an internal model
of blocks, ports, and links. Blocks represent subcircuits and compo-
nents and contain ports on their boundaries, while ports represent
pins and can be connected together through links. As the model is
fully hierarchical, blocks can contain other blocks. Figure 2 shows
an example of this model for a common embedded "hello, world"
device, a microcontroller that controls an indicator LED, where the
indicator LED is a subcircuit composed of internal discrete resistor
and LED (sub)blocks.

The parameter and generator system enables meaningful design
automation atop this basic structure. Blocks, ports, and links can
define parameters (variables), relationships between them, and as-
sertions on them. While these can contain arbitrary values, these
typically represent electronic quantities like voltages and currents,
and ratings like voltage and current limits. For example, this system
can be used to automatically calculate the resistor value from the
input voltage and target current, then check that the current draw
is within the source’s capabilities. Furthermore, generators allow
arbitrary Python code to run and fill in a block’s definition, for
example the resistor block loading a parts table and filtering to find
a suitable part.

The blocks can also be part of a type hierarchy. In this system,
abstract blocks define a ports and parameters interface that subclass
blocks can implement, and can then be replaced during compilation
with concrete subclasses. This structure enables libraries of blocks
that are appropriately general – for example, using any resistor
instead of asking for an unnecessarily limiting specific part number
– to allow that decision to be deferred until later – for example,
by the system designer who opts for a machine-placed surface-
mount board instead of a hand-soldered through-hole board. This
also extends to different circuit topologies that perform the same
function, such as a voltage converter that can be implemented by
either a buck converter or a linear regulator.

3.2 Design Conventions
While the fundamental model does not enforce any dataflow order,
our design convention for electronics has specifications flowing
top-down and actual behavior flowing bottom-up. Continuing the
voltage converter example, the enclosing block would specify a
target output voltage for the converter (top-down dataflow), which

would then choose parts to satisfy that specification. With parts
chosen, the converter block then calculates the actual output volt-
age and makes that available to the enclosing block (bottom-up
dataflow). This value can then be used as part of the specification
for another block, for example in calculating the resistance needed
for an LED (top-down dataflow again).

Our electronics model only models static behavior such as volt-
ages, voltage limits, currents, and current limits. We do not model
any notion of time, which would be in the domain of simulation,
but we use ranges and interval arithmetic to provide static bounds
on time-varying behavior.

3.3 Compiler
Overall, the compiler starts at the top-level block and recursively
walks down the design tree to process blocks. On compiling each
block, we process its connections, parameter assignments, and
parameter assertions – for example, the automatic resistance calcu-
lation expression from above. A dependency graph manages rela-
tionships between parameters, generating a concrete value once
all its dependency parameters have concrete values. This includes
invoking generators when its input parameters are ready.

Once all blocks have been compiled, the design is complete. Then,
a board netlist can be generated, containing a list of components
and their connected pins. This can be directly imported into a board
layout tool, in lieu of drawing a graphical schematic.

4 PORT ARRAYS
While the basic blocks, ports, and links structure with generators
enables computational design through parameterization of variable
values, the limitation of fixed port interfaces on blocks precludes
parameterization of port counts. In particular, arraying devices –
instantiating a set of n devices – is a common pattern in electronics,
but this typically also requires the interface to scale with it. Without
some way to dynamically size interfaces, we would be limited to
manually defining a few static parameterizations, severely limiting
the power of what could be computationally generated.

One example would be an n-LED array block, which requires one
IO port for each LED.With blocks limited to fixed port interfaces, we
would have to define a separate block for each width – a repetitive
and inelegant solution. The situation is no better for the block user,
where changing n would require changing the instantiated block
type, then adding or deleting connections to be consistent with the
new interface.

Ideally, we would like a single, reusable block that is parame-
terized by n, and for this sizing to automatically propagate to the
block’s interface and connections. This becomes more important
with complicated devices having a non-trivial relation between
their size parameter and the number of ports, where we would like
computational tools to manage and encapsulate these relationships.

Our solution to this is port arrays, an interface supporting a
parameterized number of ports. While this basic concept is common
in digital logic HDLs like Verilog, their limited width propagation
and connection semantics make them less than ideal for board-level
electronics. Our implementation extends the connection semantics
to include bidirectional width propagation to maximize automatic
design consistency and correctness-by-construction, and elastic

Computational Support for Multiplicity in Hierarchical Electronics Design SCF ’22, October 26–28, 2022, Seattle, WA, USA

requested connections to better support common electronics design
patterns.

4.1 Structure: Dynamicism in a Static Container
We structure a port array as a container port, which contains some
parameterized number of internal element ports of the same type.
This container port provides a static top-level interface for con-
necting to externally, and may be part of a supertype’s interface
definition. The inner ports then provide dynamic scaling within
that structure.

The internal elements of a port array are named and always
defined by the containing block. They may either be statically
defined, or be defined by a generator to be reactive to parameters.

Using the n-LED array block as a running example, its static
definition includes a port array of digital input lines, the width
parameter, and the generator based on that parameter. During com-
pilation, the generator can take the width value and dynamically
instantiate that many elements in the port array.

4.2 Explicit and Implicit Specification
The LED array example above demonstrates an explicit width pa-
rameterization where the designer specifies a numeric width, which
is typically the only way port arrays are defined in digital logic
HDLs. However, this explicit width may be redundant with the
number of incoming connections – connections to the port from
the outside. In those cases, it can make more sense to derive an
implicit width from those connections. This provides a potentially
more natural input specification, eliminates a source of design in-
consistency, and ultimately furthers correctness-by-construction.

Continuing the n-LED array running example, we may want
to drive each LED from status outputs of a chip and therefore
connect each status output to the n-LED array’s input array. With
this, we can infer the number of LEDs from the connections and
avoid the need for an user-specified explicit count. Additional use
cases include microcontrollers which present an elastic bag-of-IOs
abstraction and n-to-one switches which are more naturally defined
by connections instead of an explicit numeric width.

To allow for this, all port arrays have a requested parameter,
which returns a list of incoming connections. These can be option-
ally named, which provides a mechanism to request specific ports,
or ports with specific properties. For instance, a system designer
might want to use a particular pin on a microcontroller to simplify
physical layout. Like explicit widths, this requested parameter can
also be a generator input, allowing the generator to automatically
size the block.

The compiler matches requested names from the connection
with element names of the port array. Where no requested name is
specified, the compiler picks the next unused element. If a requested
name matches no element names, the compiler flags an error.

As element names are defined by the block, it is up to the library
writer to ensure correct element names, whether they are statically
named or reactive to requested names. Static names may be useful
for an n-to-one switch allocating sequential element names, while
reactive names may be useful for an elastic-bag-of-IOs microcon-
troller to instantiate as many elements as needed for all incoming
connections.

requested

elements

Array Export

Internal Connections External Connections

Array Connect

Elementwise Connects
Requested Element

and Sub-array Connections

elements

requested

Requested connect

Element connect
Array connect

Concatenated
requests

elements
defined separately

requested available
to generator

requested
from connections

Figure 3: Summary of connection types and propagation
rules. From internally, the port array can be connected as a whole
to another array which propagates both requested and elements,
or its elements can be defined and the element ports individually
connected. From externally, the port array can also be connected
as a whole via a link array which also propagates requested and
elements, or individual connections can be made to requested sub-
ports and sub-arrays.

In general, requested flows inward (top-down, like specifications
in our electronics design convention) and elements flows outward
(bottom-up, like actual values in our convention).

4.3 Internal Connections
The connection semantics differ based on whether it is viewed from
inside or outside the block. All the connection types and parameter
propagation behavior are summarized in Figure 3.

From internally, the port array’s elements can be explicitly de-
fined, and each element port can be individually connected as if
it were a typical top-level boundary port. Alternatively the port
array can be connected as a whole array, exporting from an internal
block’s port array of the same type. This propagates requests in-
ward and elements outward, and does not require a separate explicit
definition of elements. These two connection types are mutually
exclusive per port array.

4.4 External Connections
Viewed from externally, port arrays do not have defined elements,
so elementwise connections must be done by requesting new ports,
optionally with names. Newly requested ports can then be con-
nected to like any other port on a block. There are no limits on
requested ports, and as described above the compiler will try to
match external requests with internally-defined elements.

Sub-arrays can also be requested from a port array, which allows
port arrays to be connected into this port array alongside other array
or element-wise connections. These sub-arrays have undefined
elements, so elements must come from one of the connected port
arrays. Unlike digital logic HDLs where connections to arrays must
be at known indices, this structure of optionally-named-element,

SCF ’22, October 26–28, 2022, Seattle, WA, USA Lin, et al.

src

sinks
sinks
src

sinks
src

sinks
src

Figure 4: Example link array for a three element parallel con-
nection of three digital IOs driving two LEDs each. The element
link contains a single source port and an array of sink ports, while
the encapsulating array contains an array of source ports and an
array-of-array of sink ports.

elastic port arrays better suits board-level electronics where pins
may be interchangeable and the specific element may not matter.

Similarly, port arrays can also be connected as an unit, either
to other port arrays or to requested sub-arrays as described above.
Aside from the above case where a port array is directly connected
to a boundary port array on its enclosing block, only port arrays
between sibling blocks (at the same level of hierarchy) may be
connected1.

Like single element connections where a link is required to medi-
ate the connection, we introduce a link array construct that contains
a parallel array of element links to mediate port array to port array
connections. Link arrays are also parameterized by elements, and
bidirectionally propagates elements between the link array and
connected port arrays. While any port array may be a dataflow
source or sink for elements, there must be exactly one source per
link array, which then propagates to other connected port arrays.
Figure 4 shows an example for a 3-element digital link array with
one source and two sinks - such as would be the case for three
microcontroller pins that each drives two LEDs.

Internally, the link array instantiates the element link type for
each element, then connects the internal link’s ports to the ar-
ray’s exterior ports. In general, the connections are of the form
link_port.elt to elt.link_port for elt in elements if the element link
port is a single port, or link_port.i.elt to elt.link_port.i if the element
link port itself is an array (in which case the port on the link array
is a nested port array).

Element-wise and sub-array requested connections and whole
array connections are also mutually exclusive per port array.

4.5 Compiler Implementation
Compiler support for the port array construct includes defining
and propagating the elements and requested parameters, expanding

1In our hierarchical block model, when connecting more than one internal block’s port
to a boundary port, a bridge block is required to adapt between the boundary port and
the link connecting the internal blocks. Intuitively, this is because a boundary port,
viewed from inside, has flipped directionality – for example, a port that is a power
sink externally looks like a power source internally. In concept, we can extend this to
array connections by generating a bridge array, but this is not implemented. Users can
still achieve the same goal more verbosely using element-wise connects, which will
automatically instantiate the bridge blocks.

array connects into individual element-wise connects, and rewriting
requests in connections to concrete element names.

As each block is compiled, the compiler gathers all connections
to each port of each internal block. For port arrays, this may either
be a direct array-to-array connection, in which case elements and
requested are assigned according to the rules above, or this may
be multiple connections to requested elements, in which case re-
quested is assigned to be the concatenation of those requests. For
element requests, this is the suggested name or an automatically
generated name, while for sub-array requests, this is the elements
of the sub-array prefixed by the suggested name of the sub-array.

For array-to-array connections, once the elements of the connec-
tion are known, they are expanded into single-element connects.
Then, once the elements are known for a port array, such as after
the block’s generator runs, the requests of all connections can be
matched with and rewritten as concrete element names. Afterwards,
these look like, and are processed as, normal connections.

5 PACKED DEVICES
While port arrays enhance the abstraction power of blocks through
variable-sized interfaces, in some cases it is helpful to break ab-
straction boundaries. In electronics, some devices are available
multipacked – typically as multiple copies of the same device in-
tegrated into a single physical package. For example, a quadpack
resistor contains four resistor parts, but requires less board area
and costs less than using four discrete resistors.

While these multipack devices could be directly instantiated
where they are used, baking this optimization into library blocks
would be inelegant especially as not all applications may call for the
same optimization and we may want to pack part blocks spanning
across multiple blocks into a single multipack device. Furthermore,
we would like to re-use unoptimized library blocks, while having
a separate correct-by-construction packing process that preserves
the proven nature of these library blocks.

This section describes our solution to the device packing prob-
lem, in a way that avoids the above pitfalls while largely staying
consistent with and preserving the full power of the hierarchy
blocks and generators model.

5.1 Internal Packed Device Model
Overall, the intuition for the internal design model is that each part
block that is packed into a multipack device can be implemented
by the multipack device itself. Model-wise, the multipack device
would be inside each part block and export its ports and parameters
into the part block. These part blocks can be thought of as thin
wrappers around the multipack device, with the implementation
of the part block delegated to the multipack device. This structure
enables each part block to appear complete electronics-model-wise,
while still having the multipack device be the ultimate source of
truth.

However, the standard hierarchy block model cannot allow the
multipack device to actually be within multiple separate part blocks,
especially when these part blocks might also be scattered through
the design hierarchy. To enable this, we introduce cross-hierarchy
export connections and cross-hierarchy parameter assignments
– cross-hierarchy meaning that these can “punch through” block

Computational Support for Multiplicity in Hierarchical Electronics Design SCF ’22, October 26–28, 2022, Seattle, WA, USA

Figure 5: Example internal design model for a quad-pack
resistor with part blocks delegating their implementation to an
“internal” multipack block through cross-hierarchy connections.
Packing is even supported when the part blocks are spread across
the design hierarchy.

boundaries. Aside from not enforcing block boundaries, these have
the same semantics as normal, non-cross-hierarchy export connec-
tions and parameter assignments, and no new compiler behavior is
needed.

Figure 5 shows an example of the hierarchy model, where three
resistors are packed into a quadpack device. Each resistor block
that will be part of the quadpack is placed and externally connected
as it normally would be. The multipack device defines four sets
of resistor ports which is cross-hierarchy exported into resistor
part blocks. The multipack device also defines a parameter for
each part block’s resistance spec, and an overall resistance. Cross-
hierarchy assigns are used to propagate the resistance spec top-
down from the part block to the multipack device, and propagate
the selected resistance bottom-up back to the part block. Since
packed resistor devices generally have the same resistance for all
parts, the multipack device must select a resistor that satisfies all
the part blocks’ resistance specs.

Otherwise, the multipack device block itself looks and behaves
like any other block. Multipack device block can support generators,
which can depend on the values of these cross-hierarchy assigned
parameters. For the multipack resistor, its generator selects parts
from a parts table, similar to a single resistor.

5.2 Packing Specification
In addition to the functionality of a normal block, multipack blocks
also must define packing rules. These specify how to translate user-
facing packing directives into the internal model of cross-hierarchy
exports and assigns.

This model, as in Figure 6, is the conventional view of amultipack
device being comprised of multiple parts, and the inverse of the
internal design model above. Here, the user declares virtual packed
parts inside the multipack block, then defines virtual connections
and assignments between the packed parts’ ports and parameters
and the multipack block’s own.

The actual packing of specific blocks is left to the system designer
and specified at the top level of the design. Here, the designer would
instantiate the multipack blocks, then pack into its parts compatible
blocks throughout the design tree. Like the refinements system, this
specification of which blocks to pack where is fully manual, but the

spec_res

[, , ,]

actual_res

Figure 6: User-facing packing rules for the quad-pack resis-
tor, which provides a more conventional view of packed devices.
The purple boxes denote a packed part, while the purple and blue
lines indicate how the cross-hierarchy exports and parameter as-
signments, respectively, generate between the packed part blocks
and the multipack block.

Power
Merge

Figure 7: Example design model for a packed RGB LED using
an internal merge block for the shared common-anode (positive
voltage) pin that also checks that its three inputs are part of the
same electrical connection.

translation from the user-facing packing directives into the internal
model of cross-hierarchy exports and assigns is automated. This
structure ensures that as long as the library’s packing definition is
correct, the system-level packing is correct-by-construction.

5.3 Packed Arrays
While the above describes individual virtual packed parts, virtual
packed part arrays are also supported. The main difference is that
instead of single-element virtual ports and connections, these have
virtual port arrays and array connections. Similarly, the multipack
device’s boundary ports must be port arrays, and any parameters
assigned from its parts must also be arrays. Since parts often have
more than one port, the port array’s element naming system ensures
each part’s ports are connected together2.

Themultipack resistors described above are actually implemented
with packed arrays, allowing them to support an arbitrary number
of packed resistors limited only by what is available in the parts
tables.

SCF ’22, October 26–28, 2022, Seattle, WA, USA Lin, et al.

5.4 Shared Pins
While all parts of the multipack resistor example have individual
pins, packed devices may have shared pins – where ports on multi-
ple parts must map onto the same pin on the multipack device. For
example, a red-green-blue (RGB) LED can be defined as a tri-pack
of three individual LEDs, but the device itself would have a single,
common power pin. In these cases, the multipack block must still
define independent pins for each packed part, but it can map those
internally to a shared-pin device.

The mapping can involve a merge block, which takes multiple
pins on the input and produces one pin on the output. This could
include an assertion to check that all the input ports are part of the
same electrical connection, then electrically connect them to the
output port. A power merge, as for the RGB LED example and as
shown in Figure 7, would propagate the voltage directly but evenly
split the current draw among the three inputs, and check that all
three inputs are part of the same electrical connection.

6 EXAMPLES
To demonstrate and end-to-end validate these constructs and their
implementation, we designed three example devices and physically
built and tested them. Each of these showcases a different use of
port arrays and multipack devices.

Each example has the schematic-equivalent fully built in our
HDL and compiled down to a netlist. Since our work does not cover
layout, we imported the netlist into KiCad and manually placed
and routed the board. Pin assignments and packing assignments
were manually specified to simplify the layout.

The system also generates part numbers for each component,
which provides the data for the board to be assembled by the factory.
Some common components such as resistors, resistors arrays, and
capacitors were chosen automatically from a factory-provided parts
table by automatically matching against specifications in the design
such as resistance and capacitance. Other components, such as the
choice of microcontroller, were manually specified.

6.1 Charlieplexing LED Matrix
The charlieplexing LED matrix board, as shown in Figure 1 and
with internal model in Figure 8 is a scaled-up and more complex
version of the basic LED array running example. It drives a five-by-
six grid of LEDs using just seven IO pins on a relatively low pin
count microcontroller, an ESP32-C3 module. The microcontroller
is WiFi capable and serves up a basic web page allowing the user
to toggle between LED patterns.

The LED matrix itself uses a charlieplexing circuit, which in
short allows each IO pin to drive both a row and a column, mak-
ing the IO requirement roughly the maximum of the number of
rows or columns, plus one. With ports arrays, the charlieplexed
LED matrix is a block that takes in a row and column count, gener-
ates the internal charlieplexed circuit topology, and produces an
appropriately-sized signal array. This is connected to the microcon-
troller IOs as an array, with the compiler requesting as many pins
on the microcontroller as needed.

2There currently is no support for linking a parameter array’s elements with the
corresponding part – parameter arrays are unordered. However, this could be done
with dict-typed parameters.

...

Microcontroller
mcu led(rows=6, cols=5)

CharlieplexedLedMatrix

...

gpios

gnd

ios

...

...

...

...

QuadResistor

Figure 8: The fully expanded internal model for the char-
lieplexed LED array example from Figure 1, including the port
array interface that enables the arbitrary-size charlieplexing LED
matrix block and the multipacking as cross-hierarchy exports.

Figure 9: Example distance sensor array board. Port arrays
enable the distance sensor array by exposing the shutdown pin for
each individual device, while multipacking combines three discrete
LEDs into an RGB LED.

Overall, the charlieplexing block encapsulates the knowledge
needed to drive a large number of LEDs with just a few pins. The
user only needs to specify the row and column count and connect
the signal lines, without needing to understand the details of the
internal circuit. Furthermore, as widths are automatically propa-
gated, this also frees the user from manually calculating the pin
counts to keep the design consistent.

This charlieplexing topology only uses one resistor per column,
so it creates five resistors. A top-level packing rule replaces those
discrete resistors with the resistor arrays on the board, which are
much more compact. Both are partially packed, with three resistors
on the left device and two on the right device being used.

The design also uses an abstract microcontroller, defined as a
power supply and a set of ports arrays of common IO types like
digital, SPI, I2C, and USB. An user-specified refinement picks the
concrete ESP32-C3, which maps the generic IO arrays to the chip’s
pins.

6.2 Distance Sensor Array
The second example in Figure 9 is an array of distance sensors,
using the VL53L0X time-of-flight laser ranging devices. While this
board just has a linear array of sensors for simplicity, real-world
applications might put these on a more expensive flexible PCB for
wrap-around 360-degree distance sensing.

Computational Support for Multiplicity in Hierarchical Electronics Design SCF ’22, October 26–28, 2022, Seattle, WA, USA

Figure 10: Example BLE multimeter board. Port arrays are
crucial to the arbitrary-width mux tree generator and array con-
nections on its control line encapsulate and hide the sizing details
from the user.

The interesting aspect of these sensors is that they communi-
cate by I2C but all devices share the same address, making it not
straightforward to use multiple of these devices together. Instead,
the shutdown pin of each device must be used to select the active
device. To achieve this, the sensor array block defines both an I2C
port shared by all the devices and a shutdown signal array that
is connected to each individual device. Similar to the charlieplex-
ing example, this encapsulates this implementation detail into an
easy-to-use block. Without port arrays, it would be impossible to
encapsulate the array of shutdown pins, forcing users to instantiate
the sensors directly and connect each shutdown pin individually.

This also instantiates the simple LED array from the running
examples, one LED for each distance sensor plus three more multi-
packed into an RGB LED. The RGB LED is a common-anode device
(the positive connections of each LED are tied together into a single
pin on the device), and provides an end-to-end example in hardware
of shared pins in multipack devices.

This design similarly uses an abstract microcontroller, but with
an STM32 refinement. Unlike the other examples which use micro-
controller modules, this places the discrete microcontroller with
supporting components like capacitors and crystals directly on the
board.

6.3 BLE Multimeter
Finally, the Bluetooth Low Energy (BLE) multimeter in Figure 10
demonstrates a more complete and complex example. This uses
an nRF52840 BLE module as the microcontroller, various power
supply circuits including the 1.5 to 5 volt boost converter, discrete
24-bit analog-to-digital converter (ADC), and signal conditioning
circuits. Bluetooth allows this device to be a compact field instru-
ment by enabling optional connectivity to a smartphone with a
larger display.

Of note is the variable resistor divider, which scales down the
input voltage to the 2.4-volt range the ADC tolerates. For example,
for a 10 volt input, the 100k resistor is selected for the bottom
of the divider, which along with the 1M input resistor forms an
approximately 10:1 divider that gives around 1 volt to the ADC. This
is implemented using analog multiplexers (muxes), devices that
select which of several inputs is connected to the output based on
a control signal. In particular, we use an analog mux tree generator:
as we define four ranges for the variable divider but prefer two-to-
one analog mux devices, this generates three discrete analog muxes
to implement a four-to-one mux.

This generator uses port arrays for both the input lines and
control signals. The width is implicitly parameterized by the num-
ber of connected input lines, and the number of control signals is
the log2 of the width. The control signals are array-connected to
the microcontroller, and the compiler requests as many pins on
the microcontroller as needed. Port arrays are critical to enabling
this arbitrary-width mux generator which requires arbitrary-width
ports, as well as completely encapsulating the control port width
calculation. In general, this is another example of a non-trivial
circuit generator enabled by port arrays, with non-trivial width
relationships between ports.

Unlike the ESP32-C3 and STM32, the nRF52 requires both a 5v
and 3.3v supply when using USB, so this cannot be implemented
by the abstract microcontroller block which allows only one power
supply port. Instead, the nRF52840 block is directly used in the
design and both of its power inputs connected.

Since low-cost assembly services are limited to a single side of
components, only the bottom side was assembled by the factory.
The top side was manually soldered.

7 DISCUSSION AND FUTUREWORK
As shown by the examples, port arrays generalizes the block model
from fixed ports to arbitrary-width ports, and this enables blocks to
define and encapsulate a wide class of subcircuits that are parame-
terized width, even with complex internal topologies. Furthermore,
multipack devices enable a form of cross-hierarchy optimization
that helps bridge the ideal models for computational design tools
with the messy nature of real-world systems.

Both these constructs combined help push the vision of Polymor-
phic Blocks, where lower-level design details can be encapsulated
and computationally designed with powerful generator blocks. This,
in turn, pushes the level of design abstraction higher, towards the
system architecture level that captures the essence without getting
mired in the details and is friendlier to novices.

7.1 Extending the Design Model
While this work extends the hierarchy model in a powerful way,
the examples show that there is more to be done. As in the BLE
multimeter example, the microcontroller also needed a 5-volt input
and could not fit the abstract microcontroller interface. This pat-
tern of almost-fits-an-interface-but-not-quite appears throughout
electronics. For example, a voltage converter might fit the power-in,
power-out, ground interface, but plus a shutdown pin.

A simple approach that works with the current interface is to
use adapter blocks to simplify a complicated interface down to a
more basic interface. However, this potentially risks needing a lot
of adapter blocks which would both clutter the library and make
evaluation of alternatives harder. Additional model extensions may
help more directly encode this use case, including adapting more
programming languages concepts like mixins.

Furthermore, while multipacking captures one particular type
of cross-hierarchy optimization, electronics is filled with highly-
integrated devices that don’t perform just one neat function. For
example, microcontrollers often have more than only IOs: they may
integrate onboard power conversion or analog filtering circuits.
While these can be shoehorned into the multipacking abstraction

SCF ’22, October 26–28, 2022, Seattle, WA, USA Lin, et al.

and the underlying cross-hierarchy constructs, perhaps there are
other extensions that address this class of problems cleaner.

7.2 Verification
While generators are great at producing many designs, whether
those designs work is another question completely. The electronics
model does act as a first-order check, but trades detail for speed
and usability.

Case in point: the LED matrix example actually has an error.
Resistor R1 was mistakenly specified as a pull-down resistor when
it needed to be a pull-up resistor. As a result, the microcontroller
was unable to take new code until fixed with the little wire in
Figure 1 next to R3 and R1.

One benefit of a library-based approach is that, ideally, these
mistakes would be made only once before being fixed in the library
forever. However, it would be worth exploring how tools could
improve the process, either through stronger modeling and simula-
tion, or just sharing information between all those who have built
a device.

7.3 Opportunities for Design Space Exploration
One major benefit of port arrays is that it increases the abstrac-
tion power of blocks – for example, two of the examples used
abstract microcontrollers, and a refinement specification replaces
them with a concrete microcontroller subcircuit without requir-
ing design changes. Somewhat abstractly, this abstract base block
structure actually encodes a design space: all the subclasses are
candidates for refinement.

While the choice of refinements is currently fully manual, future
work could automatically explore this design space. This may come
in the form of automatically making a best choice, a more human-
in-the-loop approach presenting the user with trade-offs between
different options, or somemix of the above that allows finer-grained
control on top of an automatic optimizer.

While the block class hierarchy narrows down the design space
compared to a general synthesis problem, a typical design still
contains a large number of abstract parts and results in a high-
dimensional problem. Human control over the search space can
also help reduce the computational power needed by applying
human intuition – for example, while a typical design might have
a ton of abstract capacitors, a human designer may realize they
should be all of the same subclass instead of searching through
their combinatorial explosion. This process could not only try to
optimize for currently modeled electrical parameters like current
draw, but might also take into account factors like cost, component
count, and even fabrication processes - for example, preferring
larger components for hand-soldering or smaller components for
machine assembly.

7.4 Other Domains
Finally, the hierarchical model is not unique to electronics: there
is much related work across other domains. The constructs we
described here and the more general idea of multiplicity may be
just as applicable elsewhere, for example a parameterized truss
generator that has a variable number of attachment points based on

its length, or modeling an off-the-shelf robot arm that also includes
a camera at the end.

8 CONCLUSION
While hierarchical design is the subject of active research and
promises a more efficient and less error-prone design process, the
basic blocks, ports, and connections model can be limiting. In this
work, we expand that fundamental model with port arrays to better
support parameterized blocks that also need parameterized inter-
faces, and with multipack devices to better support that kind of
cross-hierarchy optimization. Our examples provide end-to-end
demonstrations that these do work in a board-level electronics de-
sign context, and can improve the abstraction and encapsulation
capabilities of these hierarchical design tools.

In the larger picture, the hope is that these constructs can be
another part of the puzzle to bridge theory and practice for these
advanced design tools, enabling them to be useful for a wide variety
of real-world problems and bringing their benefits to a wider group
of people.

ACKNOWLEDGMENTS
This work was supported in part by DARPA grants HR00112110008
and FA8750-20-C-0156 (SDCPS). The views and opinions of au-
thors expressed herein do not necessarily state or reflect those of
the United States Government or any agency thereof, nor does
this imply any official endorsement. Approved for public release;
distribution is unlimited.

REFERENCES
Altium. 2018. Altium Designer. https://www.altium.com/altium-designer/
Autodesk. 2018. EAGLE | PCB Design Software. https://www.autodesk.com/products/

eagle/overview
Jonathan Bachrach, David Biancolin, Austin Buchan, Duncan W Haldane, and Richard

Lin. 2016. JITPCB. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ Interna-
tional Conference on. IEEE, 2230–2236. https://doi.org/10.1109/IROS.2016.7759349

Nicola Bezzo, Peter Gebhard, Insup Lee, Matthew Piccoli, Vijay Kumar, and
Mark Yim. 2015. Rapid Co-Design of Electro-Mechanical Specifications
for Robotic Systems (International Design Engineering Technical Confer-
ences and Computers and Information in Engineering Conference, Vol. Volume
9: 2015 ASME/IEEE International Conference on Mechatronic and Embed-
ded Systems and Applications). https://doi.org/10.1115/DETC2015-47472
arXiv:https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-
pdf/IDETC-CIE2015/57199/V009T07A009/4225178/v009t07a009-detc2015-
47472.pdf V009T07A009.

Ruta Desai, James McCann, and Stelian Coros. 2018. Assembly-Aware Design of
Printable Electromechanical Devices. In Proceedings of the 31st Annual ACM Sym-
posium on User Interface Software and Technology (Berlin, Germany) (UIST ’18).
Association for Computing Machinery, New York, NY, USA, 457–472. https:
//doi.org/10.1145/3242587.3242655

Ruta Desai, Ye Yuan, and Stelian Coros. 2017. Computational abstractions for interactive
design of robotic devices. In 2017 IEEE International Conference on Robotics and
Automation (ICRA). 1196–1203. https://doi.org/10.1109/ICRA.2017.7989143

Gumstix. 2018. Geppetto. www.gumstix.com/geppetto/
A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim, C. Schmidt, C.

Markley, J. Lawson, and J. Bachrach. 2017. Reusability is FIRRTL ground: Hard-
ware construction languages, compiler frameworks, and transformations. In 2017
IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 209–216.
https://doi.org/10.1109/ICCAD.2017.8203780

KiCad. 2018. KiCad EDA. http://kicad-pcb.org/
Patrick S Li, Adam M Izraelevitz, and Jonathan Bachrach. 2016. Specification for the

FIRRTL Language. EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2016-9 (2016).

Richard Lin, Rohit Ramesh, Connie Chi, Nikhil Jain, Ryan Nuqui, Prabal Dutta, and
Björn Hartmann. 2020. Polymorphic Blocks: Unifying High-Level Specification
and Low-Level Control for Circuit Board Design. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology (Virtual Event, USA)

https://www.altium.com/altium-designer/
https://www.autodesk.com/products/eagle/overview
https://www.autodesk.com/products/eagle/overview
https://doi.org/10.1109/IROS.2016.7759349
https://doi.org/10.1115/DETC2015-47472
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2015/57199/V009T07A009/4225178/v009t07a009-detc2015-47472.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2015/57199/V009T07A009/4225178/v009t07a009-detc2015-47472.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2015/57199/V009T07A009/4225178/v009t07a009-detc2015-47472.pdf
https://doi.org/10.1145/3242587.3242655
https://doi.org/10.1145/3242587.3242655
https://doi.org/10.1109/ICRA.2017.7989143
www.gumstix.com/geppetto/
https://doi.org/10.1109/ICCAD.2017.8203780
http://kicad-pcb.org/

Computational Support for Multiplicity in Hierarchical Electronics Design SCF ’22, October 26–28, 2022, Seattle, WA, USA

(UIST ’20). Association for Computing Machinery, New York, NY, USA, 529–540.
https://doi.org/10.1145/3379337.3415860

Richard Lin, Rohit Ramesh, Antonio Iannopollo, Alberto Sangiovanni Vincentelli,
Prabal Dutta, Elad Alon, and Björn Hartmann. 2019. Beyond Schematic Capture:
Meaningful Abstractions for Better Electronics Design Tools. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland
Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, Article
283, 13 pages. https://doi.org/10.1145/3290605.3300513

Richard Lin, Rohit Ramesh, Nikhil Jain, Josephine Koe, Ryan Nuqui, Prabal Dutta, and
Bjoern Hartmann. 2021. Weaving Schematics and Code: Interactive Visual Editing
for Hardware Description Languages. In The 34th Annual ACM Symposium on User
Interface Software and Technology (Virtual Event, USA) (UIST ’21). Association for
Computing Machinery, New York, NY, USA, 1039–1049. https://doi.org/10.1145/
3472749.3474804

Andrew J. Matthews. 1977. A Human Engineered PCB Design System. In Proceedings
of the 14th Design Automation Conference (DAC ’77). IEEE Press, Piscataway, NJ,
USA, 182–186. http://dl.acm.org/citation.cfm?id=800262.809124

AnkurMehta, Joseph DelPreto, and Daniela Rus. 2015. Integrated Codesign of Printable
Robots. Journal of Mechanisms and Robotics 7, 2 (05 2015). https://doi.org/10.1115/1.
4029496 arXiv:https://asmedigitalcollection.asme.org/mechanismsrobotics/article-
pdf/7/2/021015/6253002/jmr_007_02_021015.pdf 021015.

Ankur M Mehta, Joseph DelPreto, Benjamin Shaya, and Daniela Rus. 2014. Cogen-
eration of mechanical, electrical, and software designs for printable robots from
structural specifications. In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ
International Conference on. IEEE, 2892–2897.

Mentor. 2018. Xpedition Enterprise. https://www.mentor.com/pcb/xpedition/

Devon J. Merrill, Jorge Garza, and Steven Swanson. 2019. Echidna: Mixed-Domain
Computational Implementation via Decision Trees. In Proceedings of the ACM
Symposium on Computational Fabrication (Pittsburgh, Pennsylvania) (SCF ’19).
Association for Computing Machinery, New York, NY, USA, Article 5, 12 pages.
https://doi.org/10.1145/3328939.3329004

Devon J. Merrill and Steven Swanson. 2019. Reducing Instructor Workload in an
Introductory Robotics Course via Computational Design. In Proceedings of the 50th
ACM Technical Symposium on Computer Science Education (Minneapolis, MN, USA)
(SIGCSE ’19). Association for Computing Machinery, New York, NY, USA, 592–598.
https://doi.org/10.1145/3287324.3287506

Brant Nelson, Brad Riching, and Josh Mangelson. 2012. Using a Custom-Built HDL for
Printed Circuit Board Design Capture. PCB West 2012 Presentation.

Rohit Ramesh, Richard Lin, Antonio Iannopollo, Alberto Sangiovanni-Vincentelli,
Björn Hartmann, and Prabal Dutta. 2017. Turning Coders into Makers: The Promise
of Embedded Design Generation. In Proceedings of the 1st Annual ACM Symposium
on Computational Fabrication (Cambridge, Massachusetts) (SCF ’17). ACM, New
York, NY, USA, Article 4, 10 pages. https://doi.org/10.1145/3083157.3083159

Adriana Schulz, Ariel Shamir, David I. W. Levin, Pitchaya Sitthi-amorn, and Wojciech
Matusik. 2014. Design and Fabrication by Example. ACM Trans. Graph. 33, 4, Article
62 (jul 2014), 11 pages. https://doi.org/10.1145/2601097.2601127

SKiDL. 2022. SKiDL. https://github.com/devbisme/skidl
Sparkfun. 2020. À La Carte. https://alc.sparkfun.com/
Texas Instruments. 2003. Voltage Divider Calculator. https://www.ti.com/download/

kbase/volt/volt_div3.htm
Texas Instruments. 2022. WEBENCH® Power Designer. https://www.ti.com/design-

resources/design-tools-simulation/webench-power-designer.html

https://doi.org/10.1145/3379337.3415860
https://doi.org/10.1145/3290605.3300513
https://doi.org/10.1145/3472749.3474804
https://doi.org/10.1145/3472749.3474804
http://dl.acm.org/citation.cfm?id=800262.809124
https://doi.org/10.1115/1.4029496
https://doi.org/10.1115/1.4029496
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanismsrobotics/article-pdf/7/2/021015/6253002/jmr_007_02_021015.pdf
https://arxiv.org/abs/https://asmedigitalcollection.asme.org/mechanismsrobotics/article-pdf/7/2/021015/6253002/jmr_007_02_021015.pdf
https://www.mentor.com/pcb/xpedition/
https://doi.org/10.1145/3328939.3329004
https://doi.org/10.1145/3287324.3287506
https://doi.org/10.1145/3083157.3083159
https://doi.org/10.1145/2601097.2601127
https://github.com/devbisme/skidl
https://alc.sparkfun.com/
https://www.ti.com/download/kbase/volt/volt_div3.htm
https://www.ti.com/download/kbase/volt/volt_div3.htm
https://www.ti.com/design-resources/design-tools-simulation/webench-power-designer.html
https://www.ti.com/design-resources/design-tools-simulation/webench-power-designer.html

	Abstract
	1 Introduction
	2 Related Work
	2.1 Hierarchical Design
	2.2 Electronics Design
	2.3 Electronics Hardware Description Languages
	2.4 Digital Logic Design

	3 Background
	3.1 Hierarchical Block Model
	3.2 Design Conventions
	3.3 Compiler

	4 Port Arrays
	4.1 Structure: Dynamicism in a Static Container
	4.2 Explicit and Implicit Specification
	4.3 Internal Connections
	4.4 External Connections
	4.5 Compiler Implementation

	5 Packed Devices
	5.1 Internal Packed Device Model
	5.2 Packing Specification
	5.3 Packed Arrays
	5.4 Shared Pins

	6 Examples
	6.1 Charlieplexing LED Matrix
	6.2 Distance Sensor Array
	6.3 BLE Multimeter

	7 Discussion and Future Work
	7.1 Extending the Design Model
	7.2 Verification
	7.3 Opportunities for Design Space Exploration
	7.4 Other Domains

	8 Conclusion
	Acknowledgments
	References

