
Supporting Circuit Design with a
Block-Based, Generator Language

Richard Lin
Rohit Ramesh
Connie Chi
Nikhil Jain
Prabal Dutta
Björn Hartmann
University of California, Berkeley
richard.lin@berkeley.edu
rkr@berkeley.edu
conniejchi@berkeley.edu
nikhil.jain@berkeley.edu
prabal@berkeley.edu
bjoern@eecs.berkeley.edu

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Copyright held by the owner/author(s).
CHI’20,, April 25–30, 2020, Honolulu, HI, USA
ACM 978-1-4503-6819-3/20/04.
https://doi.org/10.1145/3334480.XXXXXXX

Abstract
Printed circuit boards (PCBs) are an essential part of mod-
ern electronics, yet current tools provide limited assistance
in designing those circuits. While prior work has experi-
mented with approaches like circuit synthesis, generators,
and modeling; recent work has identified hierarchical block
diagrams as a promising user-facing model that can extend
the capability of tools without sacrificing generality. We con-
tribute a hardware construction language and associated
user interfaces which enable non-expert hardware design-
ers to build boards by working at a high level of abstraction.
The underlying hierarchy block diagram model further en-
ables skilled engineers to build libraries of subcircuit gen-
erator blocks, encapsulating their knowledge. Extending
this block model with parameters and constraints further
enables an electronics model that provides meaningful
automation, such as selecting parts and ensuring certain
correctness properties. We discuss the design of our sys-
tem, detailing both fundamental abstractions and usability
trade-offs, and present a preliminary evaluation through the
design of example electronics projects.

Author Keywords
printed circuit board (PCB) design; circuit design, hardware
construction language (HCL).

https://doi.org/10.1145/3334480.XXXXXXX

CCS Concepts
•Hardware → PCB design and layout; •Software and its
engineering → Domain specific languages;

Introduction

Figure 1: An example of a simple
blinky LED circuit in our
hierarchical block diagram model.
Blocks (rectangles) have ports
(circles), which are connected
together through links (diamonds)
Our model of electrical systems
largely follows from the block
diagram representations commonly
found in existing design workflows.
Importantly, the hierarchical nature
allows spanning multiple levels of
abstraction.

Printed circuit boards (PCBs) are at the core of modern
electronic devices across a broad range of industries. Given
the ubiquity and importance of PCBs in electronics, it is
worth examining the PCB design process. In the past, it
was difficult to design an embedded system due to com-
plexity and costs. Today, thanks to a wide range of online
tools and resources, the barrier of entry for creating elec-
tronics has never been lower. However, many online re-
sources still lack the capability to help guide users through
their design process.

Yet, board designers still face many challenges. Primarily, a
significant body of knowledge spanning many subdomains,
like analog circuits, power systems, and digital logic, is re-
quired to design any nontrivial system. While electronics
design automation (EDA) suites exist to support the design
process, mainstream schematic design tools leaves much
to be desired [7]. Their capabilities largely end at being able
to draw schematics, and error checks are rudimentary with
low accuracy. Often, design involves manually synthesizing
the output of many separate tools.

In this work, we build upon previous work on synthesizing
circuits from a high level specifications [9] by providing an
user-facing hardware construction language (HCL) frontend
built upon abstractions familiar to modern hardware design-
ers. Furthermore, extension to a hierarchy block diagram
model continues the support for high-level design while also
allowing experienced engineers to provide implementations
for those blocks and build out reusable libraries. This sep-
aration of interface from implementation enables relative

novices to leverage the knowledge of experts.

In the rest of this paper, we first detail our underlying hi-
erarchy block diagram model, then present the HCL and
associated graphical user interface (GUI) for refining and
exploring designs, and finally conduct a preliminary evalu-
ate by building two electronic devices.

Related Work
Our prior work examining modern practices in board de-
sign [7] revealed that while the interesting hardware design
happens at a high (system architecture) level of abstraction,
mainstream schematic tools operate at a much lower (indi-
vidual components) level. Thankfully, both approaches are
fundamentally block diagrams, and composing them hierar-
chically (where a block is defined by a sub-block-diagram)
allows a common model through system-level design. Here,
we extend those concepts into a working system that paves
the way towards an evaluation of those ideas.

As for recent work on novel electronics design tools, one
approach has been hardware description languages (HDLs).
The simplest is PHDL [8], which gives a textual representa-
tion of schematics and allows limited re-use. JITPCB [2]
further extends the concept by embedding the HDL in a
programming language and enabling circuit generators,
though example applications remained fairly basic, such as
arraying components. In both systems, design support au-
tomation, such as parts selection and correctness checks,
is limited by the lack of an electronics model beyond con-
nected pins. An inability to model operating conditions such
as voltages and currents could mean parts are operated
outside rated conditions.

Recent work has also seen high-level design tools, includ-
ing Trigger-Action-Circuits [1], where designs are specified
at a behavioral level, and Geppetto [4], where designs are

specified at a block-diagram level. Both likely have an more
advanced electronics model, as they are able to generate
working circuits, but neither describes these models, nor
how library components are built.

EDG [9] is more unique in detailing the underlying blocks
and links problem structure, electronics model, and circuit
synthesis algorithm, but with much less focus on the user
interface. Our system extends that fundamental model with
hierarchy blocks and combines it with generators to pro-
duce an end-to-end circuit design tool capable of high-level
design.

System Design
Model and AbstractionsFigure 2: Type hierarchy example

with resistors. Resistor has three
subtypes, ChipResistor,
AxialResistor, and
VerticalAxialResistor, which all
fulfill the resistor interface and
functionality, and can be used in its
place. This mechanism provides
support for abstraction and
ambiguity in our model.

Our foundational models and abstractions are designed to
work well for users without compromising on expressive-
ness. At the most primitive level we provide users with three
things: first, a block diagram model for system designs; sec-
ond, a type or constraint system that validates whether
any given block diagram represents a functional embed-
ded design; and finally, a specification that describes how
to encode concrete properties of design components, like
acceptable voltage range or pin type within the type system.

In Figure 1 we show the three main components of our
block diagram model: blocks, links, and ports. Blocks rep-
resent portions of a design that can be connected together
via some Links. Likewise Ports, describe specific interfaces
between blocks and links. At this level we don’t need to
tie any of those definitions to an abstraction or abstraction
level. In fact fixing a specific abstraction level, like modern
schematic editors do, hinders the user by forcing them to
use different tooling for different portions of their workflow.

There are two notions of hierarchy that our model uses.
The first is structural hierarchy where each block or link can

contain some internal structure at a lower lever of abstrac-
tion. For instance an abstract LED block, something with in-
terfaces like "Power" and "Input Signal", can itself be made
up of a sub-circuit containing the diodes, transistors, and re-
sistors that describe components at a schematic level. This
holds for Links and Ports as well, with high level interfaces
like "Data Bus" containing internal links that each represent
distinct electrical connections for data and clocking.

The second notion of hierarchy in our model, the type hier-
archy show in Figure 2, integrates tightly with the notion of
structural hierarchy. Blocks, Links, and Ports all have type
signatures that we can use to check compatibility, and verify
the correctness of a system design. The key property of our
type system is that any particular specific implementation of
an element, like a power system, is a subtype of the more
general class. Altogether, this means that superclasses and
hierarchy blocks provide a safe parametric abstraction for
both the user and our underlying tooling.

Hardware Construction Language
As for a user-facing interface into this graph model, recent
work in the chip space [5] has demonstrated the effective-
ness of generator languages. Generators can not only de-
scribe a single instance of a design, but also encode the
methodology to construct a class of designs. For example,
an LED-resistor subcircuit generator might automatically
calculate the resistance needed given the input voltage.

We follow a similar approach, providing block diagram con-
struction primitives as functions in Python and enabling pro-
grammatic generation of hardware. Python’s ease-of-use
and popularity among even non software engineers make it
a good candidate for host language.

As shown by the Blinky example in Figure 3, the hardware
construction interface revolves around object-oriented pro-

1 class Bl inky (Block) :
2 def contents (s e l f) :
3 super () . contents ()
4 s e l f .mcu = s e l f . Block (Nucleo_F303k8 ())
5 s e l f . led = s e l f . Block (Ind i ca to rLed ())
6 s e l f . connect (s e l f .mcu . gnd , s e l f . led . gnd)
7 s e l f . connect (s e l f .mcu . d i g i t a l [0] , s e l f . led . i o)

Figure 3: Example code defining the Blinky circuit Block. Within
the block’s contents, lines 4 and 5 instantiate the sub-blocks for
the Nucleo microcontroller board and a discrete LED. Lines 6 and
7 then make the signal and ground connections.

gramming. Classes represent a hierarchy block template
that can be re-used, while object represent individual in-
stances. The generator defining the block’s contents are
written as member functions, and can call methods to in-
stantiate sub-blocks, ports, and parameters.

Figure 4: Overall system flow.
Designers start by writing the
design HDL, which is then
elaborated into the hierarchy block
graph model. That graph is refined
through interactive choices in the
GUI and solving constraints in the
blocks. The result is then exported
to a netlist, imported into a board
design tool, and ready for manual
layout.

Subcircuits and generators are defined similarly, as shown
in Figure 5. The same also mostly holds true for links, given
their block-like structure.

Links and Inference
Link types are automatically inferred based on the types
of ports being connected, freeing the user from manually
specify this information. Strongly typed links can detect and
prevent mistakes like nonsensical connections, while also
providing specific rules for parameter propagation. For ex-
ample, as hinted on the LED example in Figure 5, a Digital
link would propagate logic threshold voltages.

GUI
Prior work [7] has highlighted the need for control and trans-
parency when automating circuit design, so our system fea-
tures a GUI to allow interaction with a generated design.

1 class I nd i ca to rLed (GeneratorBlock) :
2 def _ _ i n i t _ _ (s e l f) −> None :
3 super () . _ _ i n i t _ _ ()
4 s e l f . i o = s e l f . Por t (D i g i t a l S i n k ())
5 s e l f . gnd = s e l f . Por t (Ground ())
6
7 def generate (s e l f) :
8 super () . generate ()
9 vo l tage = s e l f . get (s e l f . i o . l i n k () . ou t_ th resho ld . upper ())

10 s e l f . led = s e l f . Block (Led ())
11 s e l f . res = s e l f . Block (Res is to r (
12 res i s tance =(vo l tage / 0.010 , vo l tage / 0 . 0 0 1)))

Figure 5: Simplified code for the indicator LED subcircuit. Lines 4
and 5 define the external ports by their types, while lines 10 and
11 define the internal blocks. Notably, as shown on line 9,
generators can access solved values like input digital logic
thresholds, and use those to automatically size internal blocks like
the resistor. We omit the internal connections for brevity.

The current prototype, shown in Figure 6, illustrates the
core required functionality of providing visibility into the sys-
tem’s reasoning through displaying solved values. Further-
more, the ability to set value constraints and select block
refinements allows the HDL design to stay at a high level
while specifics can be set interactively.

Continued work is required to make this interface more us-
able, such as by supplementing the tree view with an auto-
matically laid out hierarchy block diagram [3].

Board Generation
As subcircuits are fully defined at lower levels of the hier-
archy block diagram, the overall design is equivalent to a
schematic. While we do not address the problem of phys-
ical board design, the system can produce a netlist de-
scribing components and their connectivity, which can be
imported into KiCad’s [6] board layout tool. The overall flow

is summarized in Figure 4.

Figure 6: Prototype design
explorer GUI. The tree view on the
top left provides navigation through
the design, while the tree view on
the top right lists refinements for
the currently selected element.
Here, we see the options for the
resistor, with the surface-mount
ChipResistor selected and the
resulting constraint listed in the
center right. The bottom box
displays details of the selected
element.

As the overall hardware design flow involves a back-and-
forth between schematic and layout, we use name stabil-
ity to allow updates without losing a work-in-progress lay-
out. However, additional strategies are needed when name
changes are necessary, such as when refactoring.

Preliminary Evaluation
We conduct a preliminary evaluation of our system by con-
structing a few example designs, then validating the func-
tionality of the resulting hardware.

Simon
An extension of the above Blinky example is the Simon
memory game, which consists of four colored light-up but-
tons and an accompanying audio tone for each color.

We continue to use the Nucleo board as both a power
source and the central microcontroller. Since the dome
buttons require 12 volts while the Nucleo can only supply
5 volts, we use a boost converter to generate the neces-
sary voltage, and a MOSFET circuit to switch the buttons
from the 3.3 volt capable microcontroller. We further added
a speaker driver, speaker connector, and debugging red-
green-blue LED. In terms of structure, each of these was a
library sub-block.

Overall, the top-level HDL for Simon is 58 lines of code.
Of note is that the boost converter instantiation was only
one line to specify the controller chip and desired output
voltage. The boost converter generator library encapsulates
the details and process of component sizing.

Datalogger
A more complex design is the datalogger, a board that
records data from a Controller Area Network (CAN) inter-

face to a SD card. In contrast to Simon’s socketed micro-
controller board, this drops a microcontroller chip and its
supporting components on the board.

In addition to the obviously required CAN interface, SD card
socket, microcontroller, and power conditioning blocks, this
design also includes a supercapacitor-based backup power
supply. Similar to Simon’s boost converter generator, the
supercapacitor backup block generates a current-limited
power supply and automatically sizes internal elements like
transistor and reference voltage divider.

Libraries
As shown in the above examples, libraries are what ulti-
mately enables significant design automation. Though we
have built a library including many common parts and sub-
circuits, it is far from complete. While a database of simple
parts might be easily parse-able from a parametric prod-
uct table, complete details for more complex parts are often
only available in PDF datasheets.

Mixed-initiative approaches can help alleviate this process,
allowing users to scan datasheets and select individual ta-
bles which can then be automatically parsed. While archaic
encoding or formatting in some datasheets complicates the
process, using external tools like Tabula [10] and DocParser
is a potential solution.

Overall, collaboration from a large community may be key
to building a critical mass of parts to support the needs of
users.

Conclusion
Building upon recent work examining how electronics de-
signers work and proposing a hierarchy block diagram ab-
straction, we implemented a circuit design tool based on
those principles and which is capable of providing mean-

ingful design automation. System designers can compose
systems using high-level blocks, while experienced engi-
neers can provide the implementation of those blocks as re-
usable generators, encapsulating their design methodology
in executable code. We demonstrate the capability of this
system though example designs, where complex subcircuits
are generated from high-level specifications.

Ultimately, we hope this system both enables existing en-
gineers to work more efficiently, and extends the reach of
novices in building custom, personalized devices.

Figure 7: The Simon PCB with
connected buttons. Our system is
able to generate the 5v to 12v
boost converter subcircuit to drive
the LEDs in the dome buttons.

Figure 8: The datalogger PCB.
Our system supports complex
subcircuits such as
microcontrollers application circuits
and analog power generators such
as the current-limited
supercapacitor backup.

REFERENCES
[1] Fraser Anderson, Tovi Grossman, and George

Fitzmaurice. 2017. Trigger-Action-Circuits: Leveraging
Generative Design to Enable Novices to Design and
Build Circuitry. In Proceedings of the 30th Annual ACM
Symposium on User Interface Software and
Technology (UIST ’17). ACM, New York, NY, USA,
331–342. DOI:
http://dx.doi.org/10.1145/3126594.3126637

[2] Jonathan Bachrach, David Biancolin, Austin Buchan,
Duncan W Haldane, and Richard Lin. 2016. JITPCB.
In Intelligent Robots and Systems (IROS), 2016
IEEE/RSJ International Conference on. IEEE,
2230–2236. DOI:
http://dx.doi.org/10.1109/IROS.2016.7759349

[3] Eclipse Foundation. 2020. Eclipse Layout Kernel.
(2020). https://www.eclipse.org/elk/

[4] Gumstix. 2018. Geppetto. (2018).
www.gumstix.com/geppetto/

[5] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A.
Magyar, D. Kim, C. Schmidt, C. Markley, J. Lawson,
and J. Bachrach. 2017. Reusability is FIRRTL ground:

Hardware construction languages, compiler
frameworks, and transformations. In 2017 IEEE/ACM
International Conference on Computer-Aided Design
(ICCAD). 209–216. DOI:
http://dx.doi.org/10.1109/ICCAD.2017.8203780

[6] KiCad. 2020. KiCad EDA. (2020).
http://kicad-pcb.org/

[7] Richard Lin, Rohit Ramesh, Antonio Iannopollo,
Alberto Sangiovanni Vincentelli, Prabal Dutta, Elad
Alon, and Björn Hartmann. 2019. Beyond Schematic
Capture: Meaningful Abstractions for Better
Electronics Design Tools. In Proceedings of the 2019
CHI Conference on Human Factors in Computing
Systems (CHI ’19). Association for Computing
Machinery, New York, NY, USA, Article Paper 283, 13
pages. DOI:
http://dx.doi.org/10.1145/3290605.3300513

[8] Brant Nelson, Brad Riching, and Josh Mangelson.
2012. Using a Custom-Built HDL for Printed Circuit
Board Design Capture. PCB West 2012 Presentation.
(2012).

[9] Rohit Ramesh, Richard Lin, Antonio Iannopollo,
Alberto Sangiovanni-Vincentelli, Björn Hartmann, and
Prabal Dutta. 2017. Turning Coders into Makers: The
Promise of Embedded Design Generation. In
Proceedings of the 1st Annual ACM Symposium on
Computational Fabrication (SCF ’17). ACM, New York,
NY, USA, Article 4, 10 pages. DOI:
http://dx.doi.org/10.1145/3083157.3083159

[10] Tabula. 2020. Tabula. (2020).
https://tabula.technology/

http://dx.doi.org/10.1145/3126594.3126637
http://dx.doi.org/10.1109/IROS.2016.7759349
https://www.eclipse.org/elk/
www.gumstix.com/geppetto/
http://dx.doi.org/10.1109/ICCAD.2017.8203780
http://kicad-pcb.org/
http://dx.doi.org/10.1145/3290605.3300513
http://dx.doi.org/10.1145/3083157.3083159
https://tabula.technology/

	Introduction
	Related Work
	System Design
	Model and Abstractions
	Hardware Construction Language
	Links and Inference

	GUI
	Board Generation

	Preliminary Evaluation
	Simon
	Datalogger
	Libraries

	Conclusion
	REFERENCES

